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Abstract

This paper utilizes a peculiar ecological phenomenon, the mass emergence of cicadas
in 13 and 17-year cycles, to identify the impact of pesticides on human health and
long-term development. I rely on the fact that cicadas only damage woody plants
(e.g., apple trees), through egg laying in branches and subsequent nymph-feeding on
roots—and not agricultural row crops. Using the natural temporal and geographic
variation of cicada emergence, I show that a sharp increase in insecticides coincides
with cicada emergence in places with high tree crop production. This is followed by
higher subsequent-year infant mortality and adverse health impacts. Looking at long-
term e�ects, I find evidence of lower elementary test scores and then higher dropout
rates among exposed cohorts. This paper supports the conclusion that moderate levels
of environmental pollution, not just extreme exposure, can a�ect human health and
development. JEL Codes: I10, Q10, Q53, Q57.

1 Introduction
Farmers in the US spend $7.9 billion annually on pesticides (US EPA 2017). Modern pes-
ticides, along with other technological advances in agriculture, have brought about sig-
nificant increases in productivity. But concerns have long been raised about the poten-
tial negative environmental and health impacts of pesticides given their toxicity by design.
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Since the high-profile federal ban of DDT in 1972, dozens of pesticides have been banned
by the EPA on account of their potential risk to humans and the environment (Bu�ngton
and Mcdonald 2006).

I utilize an ecological phenomenon, the emergence of periodical cicadas (Magicicada sep-

tendecula), as a source of quasi-exogenous temporal and spatial variation in the applica-
tion of insecticides to identify a potential causal channel for the impact of insecticides on
health. My identification strategy hinges on the fact that cicadas emerge as mass broods
in the same locations every 13 or 17 years such that each brood is linked to a specific year
and unique geographic footprint. For example, Thomas Je�erson described the ‘great lo-
cust years’ of Brood II cicadas that arrived every 17 years at his home in Monticello, Vir-
ginia (Je�erson 1944). This same brood still emerges on schedule at Monticello 250 years
later, most recently in summer 2013.

I find a significant increase in insecticide use in years and in counties experiencing a cicada
emergence. This impact, however, is limited to places with a large proportion of woody
crops like fruit trees—and not herbaceous row crops like corn and soy. This is because
cicadas only damage woody plants. Adult cicadas lay their eggs in small branches and
nymphs feed on tree roots.

Using apple production as a proxy for woody crop intensity, I exploit this variation and
compare treated counties (i.e., counties with high apple production in years of a cicada
emergence) to untreated counties. In the treated counties, I find a corresponding increase
in county-wide insecticide use and subsequent increase in next-year infant mortality of 0.3
deaths per thousand births (the current mean in the US is six deaths) following a cicada
emergence. An investigation of the quarterly impacts aligns with the timing and patterns
of insecticide usage by farmers. Treated counties also see an increased probability of pre-
mature births and other adverse infant health outcomes. There is evidence of long-term
impacts in the form of lower elementary school test scores and higher high school dropout
rates among exposed cohorts.

The findings are likely generalizable outside of just agriculturally-intensive regions. Tree
crops cover a relatively small portion of US counties (always less than 5% of county land
area, generally far less than 1%), especially compared to row crops like soy and corn which
account for a majority of total acreage in many counties. Baseline pesticide use is moder-
ate to low in many tree-intensive counties. These facts support the conclusion that moder-
ate levels of pesticides, not just extreme exposure, a�ect human health and development.
And since this analysis looks only at average county-level impacts, it likely understates the
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health impacts among those living in close proximity to insecticide application.

Overall this paper contributes to the environmental and health economics literature on the
health impacts of agricultural inputs. This is a timely topic considering the many current
pesticide lawsuits and regulatory proposals.1 While acknowledging the importance of pes-
ticides to agricultural productivity, the findings warrant caution in the over-application of
insecticides. This paper also provides an example of how ecological phenomena like cicadas
may be used to generate quasi-random variation that can be employed to answer impor-
tant economic and public health questions.

2 Background

2.1 Pesticides and health

Pesticides, and insecticides in particular, are toxic by design. Many were initially devel-
oped for warfare purposes. One prominent insecticide type, organochlorides (e.g., DDT),
opens sodium channels in the nerve cells; another, organophosphates, targets the nervous
system like the nerve agents in chemical weapons.

While laboratory and controlled studies have documented the negative impacts of pesti-
cides on organisms and ecosystem services such as water quality, few have demonstrated
a direct causal link between pesticides and human health. Almond and Currie 2011 show
that fetal shocks, particularly ones occurring early in a pregnancy, can have long-lasting
impacts. Environmental shocks including heavy metal exposure, high temperatures, and
air pollution have been causally linked to adverse birth outcomes (Chay and Greenstone
2003; Zheng et al. 2016).

But there is little evidence causally linking pesticides to health outcomes like infant mor-
tality, low birth weight, and premature birth. And no study, to my knowledge, has directly
linked pesticide exposure to long-term outcomes like educational achievement and attain-
ment.

Most estimates of the health impacts of pesticides come from non-randomized studies
with small sample sizes (Jurewicz et al. 2006; Andersson et al. 2014). Many focus on
occupationally-exposed groups who are unlikely to be representative of the broader pop-
ulation. Among farm workers, there is evidence of higher levels of still births and infant
1 See link for debate on regulating the insecticide chlorpyrifos and link for the recent $10 billion glyphosate

herbicide settlement.
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deaths within 24 hours of birth (Regidor et al. 2004) and birth defects (Garry et al. 2002),
especially for conceptions occurring during the spring pesticide application season. Others
highlight the impact of pesticide exposure during the first trimester (Bell et al. 2001) and
a link between agricultural chemicals in water and birth defects (Winchester et al. 2009).
Schreinemachers 2003 find that birth defects increase with a county’s wheat acreage, which
is used as a proxy for herbicide exposure.

Larsen et al. 2017 use detailed spatial and micro-level panel data in California to show
that pesticide exposure increases adverse birth outcomes among populations exposed to
high quantities of pesticides (i.e., 95th percentile exposure). Brainerd and Menon 2014 ex-
ploit variation in planting times to link agrichemical exposure to adverse birth outcomes
in India. Dias et al. 2019 link herbicide use driven by genetically modified crop adoption
to negative birth outcomes in Brazil. Rauh et al. 2012 find evidence of long-term impacts
in the form of lower IQ scores among a small sample of children exposed to insecticides
in utero. Frank 2018 exploits a bat-killing fungus and finds that farmers compensate for
the mortality of insect-eating bats with insecticides resulting in higher (primarily female)
infant mortality.

2.2 Cicadas and Insecticides

Periodical cicadas (Magicicada septendecula) occur throughout the eastern half of the US.2

Bob Dylan described the distinctively loud mating song of the cicada (often colloquially
called a locust) as follows:

And the locusts sang, yeah, it give me a chill

Oh, the locusts sang such a sweet melody

Oh, the locusts sang their high whining trill

Yeah, the locusts sang and they were singing for me

There are fifteen extant broods, three of which are on 13-year cycles and twelve of which
are on 17-year cycles. Rarely flying more than 50 meters from where they emerge from
the ground, each brood returns to the same place at the cycle’s end. Figure 1 maps each
brood’s range, cycle, and next year of emergence. Note that some counties receive multiple
broods.

There is ample agronomic and ecological research on cicadas and tree health, with a con-
siderable focus on fruit trees in particular. Cicadas spend most of their lives underground
2 There are several species of annual (i.e., non-periodical) cicadas that exist globally, including in ranges

that overlap with periodical cicadas in the US. But the populations of such species do not tend to vary
greatly year to year.
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Figure 1

Source: Liebhold, A. M., Bohne, M. J., and R. L. Lilja. 2013. USDA Forest
Service Northern Research Station.

feeding on the xylem fluids of tree roots before synchronously emerging in the late spring
at any given location. Emergence densities of 1.5 million cicadas per acre have been re-
ported (Dybas and Davis 1962), representing some of the highest biomass values of any
naturally occurring terrestrial creature. Cicadas remain active for four to six weeks to
mate and lay their eggs in small tree branches (i.e., oviposition), causing harm especially
to young trees. When the eggs hatch, the nymphs fall to the ground to begin their devel-
opment. Tree growth is further damaged by cicada nymphs feeding on tree roots, which
can reduce growth by up to 30% (Karban 1980).

Both the egg-laying and nymph-feeding processes have a negative impact on orchard trees.
In an early study, Hamilton 1961 reported a complete loss among unprotected young apple
and pear trees in the Hudson Valley following a cicada event in 1945. Karban 1982 con-
ducted an experiment on apple trees and found that removing cicada nymphs significantly
increased wood accumulation relative to when nymphs were present.

Most commercial tree growers and serious gardeners are well aware of the damage that ci-
cadas can cause, and utilizing insecticides to mitigate cicada damage is well documented.
Hamilton 1961 describes the process and e�cacy of spraying trees with insecticides to kill
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adult cicadas as well as soaking the soil with insecticides to control nymphs. Lloyd and
White 1987 recommended killing o� understory grasses to starve young nymphs. There are
many publicly-available resources on cicada management for fruit growers, including infor-
mation on pesticide use and application methods (Krawczyk 2017; Johnson and Townsend
2004).3

3 Empirical Strategy
Cicada emergence is anticipated by both tree growers and, to a certain extent, the general
population. There is ample news coverage leading up to what some call ‘cicada mania’.
Figure 2 shows the Google Trends of average monthly search volume for the word ‘cicada’
in metropolitan regions of Virginia, including Charlottesville, the area where Thomas Jef-
ferson noted the creatures in his writings over two centuries ago. This event study demon-
strates the distinct temporal pattern of periodical cicadas. The two spikes in 2004 and
2013 coincide with the emergence years of the two endemic broods to the region.

Figure 2

Source: Google Trends

Despite the public awareness, I argue that cicada emergence is e�ectively exogenous in re-
lation to anything that could a�ect public health outcomes at a county level. I have found
no research or media reports documenting any aggregate increase in pesticide usage in
3 See link for example guidance from Purdue University on protecting fruit trees from cicada damage.
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cicada years, and nothing about the health risks related to cicadas and pesticide use. In
fact, most media coverage highlights the fact that cicadas are harmless to humans.

Further, note that the Charlottesville region accounts for much of Virginia’s fruit produc-
tion, whereas Richmond and DC have few orchards. Yet Figure 2 shows that public inter-
est in cicadas follows similarly predictable patterns across regions—regardless of land use.
Cicada emergence therefore would act as a quasi-experiment where tree-intensive counties
receive more insecticides during emergence years relative to the same counties during non-
emergence years, and where tree-intensive counties receive more insecticides relative to non
tree-intensive counties in emergence years. I include several robustness checks and alterna-
tive specifications to ensure the exclusion restriction holds.

Insecticide exposure and its potential impact on health should be related on the life cy-
cle of the cicada, the risk to tree crops, and the timing of human exposure. The Timing
Framework provides a conceptual diagram. If accurate, one would expect: first, an in-
crease in insecticide use in the year of cicada emergence; second, birth impacts in the year
following emergence, starting in the spring; and third, yield impacts on tree crops begin-
ning in the year before emergence as nymphs increase their root feeding and continuing
for several years. Each of these propositions is tested and confirmed in the analyses that
follow.
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Timing Framework

4 Data
Cicada data
The US Forest Service provides shapefiles with county-level presence-absence data on pe-
riodical cicadas by brood with emergences projected through 2031 (Koenig et al. 2011).
Given the temporal and spatial consistency of cicada emergence, I extend the time series
further into the past using each brood’s 13 or 17-year cycle assuming that cicada emer-
gence occurred in the same counties. While there are some examples of accelerations in
cycles and changes in the range of broods (Williams and Simon 1995), cicada behavior and
brood distribution has been remarkably consistent for the most part (Marshall 2001).

Agricultural data
The land use dataset comes from the USDA’s National Agricultural Statistics Service
(NASS) online tool and from the historical U.S. Census of Agriculture, available online
through the Inter-university Consortium for Political and Social Research (ICPSR) com-
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piled by Haines et al. 2014. I collected various measures of apple and woody crop intensity
at the county-year level (i.e., number of acreage and production in bushels).4 I choose ap-
ples as my preferred explanatory variable because apples are the historically dominant tree
crop in the US. There is also ample agronomic and ecological literature on the e�ect of
cicadas on apple trees, as described earlier. Apple production is well-distributed geograph-
ically among the cicada-endemic eastern US states, with top producers in the Northeast
(NY, MA, CT), Central-Midwest (PA, MI, OH), and the South (VA, NC). Figure 3 shows
the states included in my analysis along with cicada presence and quantile of apple pro-
duction intensity.

Figure 3

Source: USDA Census average values in 1964 and 1997.

Unfortunately, an annual time series cannot be constructed for tree crop variables for sev-
eral reasons: the agricultural census takes place every five years, variables were not mea-
sured consistently over time, and surveys in the 1970s and 1980s only included 50% of
counties. Therefore, I used a time invariant measure of county-level tree crop intensity,
4 County-year data values of ‘(D)’, which NASS uses to denote confidentiality, were coded as not available,

and values of ‘(Z)’, which denote being too small to estimate, were coded as zero. Given that only posi-
tive values are included in NASS output, excluded county-years are assumed to have a value of zero. All
measures of agricultural intensity are standardized by county land area.
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varying the base year for robustness checks. But since tree crops are long-term invest-
ments with an asset value over multiple decades, there is very little annual change in planted
area, unlike row crops. Even over the longer period between 1964 and 1997 there is a 0.84
correlation in county-level apple production in bushels—a time of significant agricultural
change in the US.

Note that of the 2,464 eastern US counties across 34 states in our sample, 1,038 have en-
demic periodical cicadas (42%). Apple production is distributed among both cicada and
non-cicada counties. Among the former, 136 counties are in the top decile of sample-wide
apple production. Among the 1,426 non-cicada counties, 111 counties are top apple pro-
ducers.

Pesticide data
The United States Geological Survey (USGS)’s National Water-Quality Assessment Project
provides county-level pesticide use data from 1992 to 2016 (USGS 2019). Information was
compiled from surveys of farm operations in USDA Crop Reporting Districts and annual
crop acreage reports. My preferred measure is the sum of all insecticide-categorized con-
stituents using the ‘EPest-high’ measure in kilograms per county. 5 Insecticide intensity is
also standardized by county land area.

Infant health data
Infant mortality and birth outcome data come from the National Center for Health Statis-
tics (NCHS 2019). NCHS Natality Data Files contain full records for data publicly avail-
able from 1968 to 1988, while records from 1989 to 2016 were obtained under confiden-
tiality agreement. NCHS Linked Birth-Infant Death Data Files contain confidential micro-
data from 1995 to 2016. For longer-term analysis of infant mortality, I use the Inter-university
Consortium for Political and Social Research (ICPSR)’s County-Level Natality and Mor-
tality Data, 1915-2007 (Bailey et al. 2016). The ICPSR data are averaged annually and
do not allow for within-year or demographic disaggregation aside from race. I use ICPSR’s
preferred ‘fixed’ variables whenever available.

ICPSR’s resident infant death data become available starting in 1941 and are based on the
residence county of the mother (rather than the county of birth occurrence). After 1988,
ICPSR masks counties with populations less than 100,000, which presents challenges given
that many of the counties of interest are agricultural and have populations lower than
100,000. Since the NCHS Linked Birth-Infant Death data begin in 1995, there is a data
gap from 1989 to 1994 for low population counties. Starting in 1995 I use infant mortal-
5 The USGS pesticide dataset was classified by function (i.e., insecticide, herbicide, fungicide) like in Frank

2018. 160 of the constituents had insecticidal properties.
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ity rates derived from these linked files. I address concerns about sample composition by
running alternate analyses on a subset of observations ending in 1988, as well as a sample
using IPUMS data which is available from 1990 to 2007 (Manson et al. 2020).6

I use the NCHS Linked Birth-Infant Death data from 1995 to 2016 to compute infant mor-
tality rates at the sub-year level (i.e., quarter averages that can be linked to timing of in-
secticide application). I use NCHS Natality data from 1968 to 2016 to construct detailed
birth outcome measures like Apgar scores, gestation time, and birth weight, as well as for
constructing controls for maternal characteristics.

Education data
For educational achievement, I use standardized annual county-level test scores from the
Stanford Education Data Archive 2.1 (Reardon et al. 2018). SEDA harmonized state and
federal NAEP test results to create a spatially and temporally consistent dataset available
for the seven years from 2009 to 2015. Despite the challenges in comparing state level test
results, Kuhfeld et al. 2019 find high correlations between the SEDA data and NWEA’s
MAP Growth which is another nationally administered test given to a subset of the pop-
ulation. I average SEDA county data across the third, fourth, and fifth grades to produce
an elementary school average score for each cicada exposure cohort (e.g., 3rd graders nine
years after a cicada event, fourth graders ten years afterwards, and fifth graders eleven
years afterwards).

For a measure of educational attainment, I construct a dataset on high school dropout
rates using the National Center for Education Statistics (NCES) Local Education Agency
Universe Survey Dropout and Completion Data. I average across school districts to get
county-level values from 1991 to 2008. My preferred measure is twelfth grade dropout rate,
which is the total number of twelfth graders dropping out of high school in a given year
divided by the total number enrolled.

Economic and demographic data
County-level economic data come from US Department of Commerce, Bureau of Economic
Analysis. Decadal county-level migration rates are from Winkler et al. 2013.
6 Results hold whether using the infant mortality dataset constructed by combining the Linked Infant

Birth/Death Files with historical ICPSR calculations, incorporating IPUMS data, or just using the
ICPSR dataset which underwent additional data cleaning as described in Bailey et al. 2016.
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5 Model
My empirical approach consists of two main parts: I use a triple di�erence estimator to
first test whether there is an increase in insecticide use in treated counties in cicada emer-
gence years, and second, whether there is a follow-on impact on infant health and longer-
term outcomes. I restrict the sample to all the counties in the 34 states in the eastern half
of the US that span the range of periodical cicadas. Note there are some counties in these
states in which cicadas never emerge.

In all models, the independent variable is a cicada presence-absence dummy, cicadait, tak-
ing the value of 1 if there is a cicada emergence in county i in year t, and 0 otherwise. Ci-
cada emergence for each brood is based on its endemic location and cycle time, as visual-
ized in Figure 1.

For the first step, I specify a model with insecticide use intensity, insecticideit, as the de-
pendent variable, measured in kilograms of insecticide per km2 in county i in state s in
year t. The cicada dummy is interacted with a measure of tree crop intensity (e.g., apple
production), applei, in county i, which is unvarying over time:

insecticideit = —1cicadait + —2cicadait ú applei + –i + “t + fls + ‘it (1)

where –i includes county fixed e�ects and “t includes year fixed e�ects. The former ac-
counts for any time-invariant properties of the county that could a�ect outcomes. Year
fixed e�ects account for national-level time trends and annual anomalies like changes in
commodity prices and recessions. State time trends fls account for trends that could be
driven by state-level policy.7 The coe�cient of interest, therefore, is —2, which estimates
the change in insecticide use in tree crop-intensive counties driven by cicada emergence.

For health outcomes, I specify a model similar to Equation 1 but replace insecticide inten-
sity with infant mortality rate (infant deaths per thousand live births), imri,t+1, in county
i in the following year, t + 1:

imri,t+1 = —1cicadait + —2cicadait ú applei + –i + “t + fls + ‘it (2)

The coe�cient of interest is again —2, which estimates the change in infant mortality rate
stemming from a cicada emergence in tree crop-intensive counties. In addition to imr, I
7 State-year fixed e�ects are not used because some cicada brood-years encompass much of certain states

(i.e., Brood X and Indiana).
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test for other impacts of infant health and educational outcomes.

6 Results

6.1 Insecticides and Cicadas

The first analysis examines the relationship between insecticide use and cicada emergence
using the model specified in Equation 1. The sample is limited to the 25 years from 1992
to 2016 in which county-level USGS pesticide data exist. Table 1 regresses insecticide use
on a cicada dummy and the cicada dummy interacted with fixed top-decile indicators (top
10th percentile) of tree crop intensity.

Table 1: Cicadas and Insecticides

Insecticide use (kg km-2)

——–Levels——– ——–Logs——–

(1) (2) (3) (4) (5) (6) (7) (8)

Cicada 1.08 ≠0.18 0.13 0.29 ≠0.03 ≠0.05 ≠0.05 ≠0.04
(1.35) (0.63) (0.90) (0.94) (0.04) (0.04) (0.04) (0.04)

Cicada:Fruit Acres 10.73ú 0.19úú

(6.10) (0.07)
Cicada:Apple Acres 6.72ú 0.14ú

(3.63) (0.07)
Cicada:Apple Bushels 5.67ú 0.09

(3.25) (0.05)

County FE X X X X X X X X
Year FE X X X X X X X X
State-Yr Trend X X X X X X X X
Observations 61,133 61,133 61,133 61,133 60,784 60,784 60,784 60,784
R2 0.42 0.42 0.42 0.42 0.87 0.87 0.87 0.87

Notes: Linear regression. Dependent variable is county-level insecticide use, which is the combined sum of
the USGS EPest-high values with insecticidal properties divided by county land area. Cicada is a dummy
variable taking the value of 1 if there is a cicada emergence in the county in that year. Interacted co-
variates include the top decile counties in fruit acreage, apple acreage, and apple production in bushels
per land area in 1997. Time series limited to USGS pesticide data, 1992 to 2016. State-level annual time
trends and county and year fixed e�ect dummies included. Standard errors clustered at the state level.
*p<0.1; **p<0.05; ***p<0.01

Model (1) shows the impact of cicada emergence on insecticide use alone. Models (2)-(4)
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interact cicada emergence with the top decile of fruit and apple acreage and apple pro-
duction in bushels, respectively. Models (5)-(7) replicate the analysis using log insecticide
values instead of levels. Cicada emergence, in itself, is not associated with increased insec-
ticide usage except in tree crop-intensive counties. Apple counties see an increase in pesti-
cide use in the range of 5 to 7 kg km≠2, a moderately large e�ect given that mean county
pesticide use is 10 kg km≠2.

Bushels of apple production is used as the primary measure of tree crop intensity going
forward. The broader category of fruit acreage is less consistently measured and includes
a wide array of woody plants (e.g., berries) and management practices. As described ear-
lier, apple production is well distributed across the country: among the 247 counties in
the top decile of apple producers in the eastern half of the US, 27 states have at least one
county in this group. Orchards are a long-term investment with an asset value over multi-
ple decades, so it is not surprising that 70% of counties in the top apple production decile
in 1964 remained there in 1997.

Figure 4 plots the coe�cients from Model (4) as an event study with the inclusion of leads
and lags of cicada emergence.8 Insecticide use increases in the year of cicada emergence.
This outcome aligns with the first prediction of the Timing Framework in which farmers
apply insecticides primarily to control the adult egg-laying population in the year of emer-
gence. And given that cicada emergence is anticipated, any small uptick in insecticide use
in the year prior could reflect pre-spaying to kill nymphs before the emergence. (Cahoon
and Danoho 1982).

Appendix Table A1 shows that only insecticide use responds to cicada emergence in apple-
intensive counties, while herbicide and fungicide use do not appear to change. This pro-
vides assurance that any resulting health impacts are attributable to insecticides and not
a more general change in agricultural practices. Table A2 shows that cicada emergence is
not associated with increased insecticide use in agriculturally-intensive places containing a
high proportion of soy and corn, which aligns with the fact that farmers understand that
cicadas damage woody plants and not herbaceous row crops.
8 Leads and lags are limited to four years to reduce distortion of the event study from the fact that many

counties receive more than one cicada brood, as seen in the national distribution map in Figure 1 and in
Virginia specifically in Figure 2. The sample is limited cicada-endemic counties (42% of full sample) in
order to assign treatment event time.
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Figure 4

Notes: Event study based on Model (4) from Table 1 with the inclusion of cicada leads and lags.
Sample limited to counties with cicada events and to observations with no leading or lagging cicada
events during the sample time period are excluded to balance the panel. Models allow for di�erent
fixed e�ects and geographic trends. Standard errors clustered at the state level. Solid lines show 95%
confidence intervals. Normalized to the year before cicada emergence.

6.2 Cicadas and Infant Mortality

To assess potential causal channels, I run the model specified in Equation 2. Given the
link established between cicada emergence and insecticide use, one would expect a rela-
tionship between cicada emergence and infant mortality in tree crop-intensive areas if in-
secticides indeed have an impact on health. In contrast to the regressions using insecticide
data, this analysis allows for the use of a much longer time series. ICPSR starts tracking
resident infant mortality at the county level in 1941, while USGS pesticide data is only
available from 1992 to 2016. I restrict the sample to after 1950, which encompasses the
post-WWII era when farmers started using synthetic pesticides at a large scale.

Table 2 regresses next-year infant mortality on cicada emergence.9 Model (1) of shows no
significant impact of cicada emergence, in itself, on birth outcomes. Model (2) interacts ci-
cada emergence with county apple acreage. Model (3) interacts cicada emergence with a
dummy for high apple production (i.e., top decile counties). Models (4) and (5) use county
9 In the main specification, counties with less than five births in a given year are dropped to minimize the

inclusion of unreasonably high infant mortality rates due to small sample size (i.e., if there are two births
in a county, and one death, IMR is 500 compared to the current US average of six). Results are robust to
varying the birth cuto� threshold. Table A3 shows similar results weighting the regression by the number
of county births in order to include observations with less than five births.
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area normalized apple production in bushels in 1964 and 1997, respectively, the years in
which apple data in the agricultural census is the most extensive. All standard errors are
clustered at the state-level, which is the administrative level at which birth records are col-
lected and aggregated. General results hold if standard errors are clustered at other levels.

Table 2: Cicada Impact on Infant Mortality, 1950-2016

Dependent variable:

Next-Year Infant Mortality Rate (IMR)

(1) (2) (3) (4) (5)

Cicada 0.07 0.05 0.03 0.05 0.06
(0.12) (0.13) (0.13) (0.13) (0.13)

Cicada:Acres 0.31úúú

(0.10)
Cicada:Bushels(decile) 0.28ú

(0.16)
Cicada:Bushels 1964 0.54úúú

(0.15)
Cicada:Bushels 1997 0.42úú

(0.17)

County FE X X X X X
Year FE X X X X X
State-Yr Trend X X X X X
Observations 144,083 144,083 144,083 144,083 144,083
R2 0.52 0.52 0.52 0.52 0.52

Notes: Linear regression. Dependent variable is next-year infant mortality rate (deaths per
1000 live births). Excludes county-year observations with less than 5 births. Cicada is a
dummy variable taking the value of 1 if there is a cicada emergence in the county in that
year. Covariates include apple acreage, a dummy for the top decile apple production, and
apple production in bushels in 1997 and 1964. Time series from 1950 to 2016. State-level
annual time trends and county and year fixed e�ect dummies included. Standard errors
clustered at the state level. *p<0.1; **p<0.05; ***p<0.01

For interpretation, top decile apple counties see an increase in next-year infant mortality of
0.3 deaths per thousand. In terms of apple production levels, a one standard deviation in
production is equal to 167 bushels km≠2 in 1964 and 225 bushels/km≠2 in 1997 on a cross-
county basis. Units are in 1,000s of bushels. Therefore, a one standard deviation increase
in county apple production, when accompanied by cicada emergence, is associated with an
increase in infant mortality of about 0.1 deaths per thousand.

For robustness, Appendix Table A4 restricts the sample to the period from 1950 to 1988,
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allowing for a more balanced panel. As discussed in the Data section, the ICPSR infant
mortality data are limited after 1988 to counties with populations over 100,000, while
the infant mortality rates derived from restricted NCHS Infant Linked Birth/Death files
are not available until 1995. Additionally, Appendix Table A5 shows results using other
compilations of county-level infant mortality rates, including ones derived from restricted
NCHS data, ICPSR, and IPUMS. The resulting coe�cients are all of similar magnitude.

Figure 5

Notes: Event study with level of apple production based on Model (5) of Table 2, but including ci-
cada leads and lags. Sample limited to counties with cicada events and to observations with no lead-
ing or lagging cicada events during the sample time period are excluded to balance the panel. Models
allow for di�erent fixed e�ects and geographic trends. Standard errors clustered at the state level.
Solid lines show 95% confidence intervals. Normalized to the year before cicada emergence.

Figure 5 plots the cicada-apple interaction coe�cients from Model (5) of Table 2 as an
event study with the inclusion of cicada emergence leads and lags. Infant mortality in-
creases in the year following cicada emergence. Showing a similar pattern, Appendix Fig-
ure A1 plots the event study coe�cients using county-level apple acreage as an alternate
measure of apple intensity.

These results align with the second prediction of the Timing Framework and the coe�-
cient plot in Figure 4, which shows an increase in pesticide use by tree growers in the year
of cicada emergence. The increase in next-year infant mortality would follow from insecti-
cide exposure among first trimester pregnancies during cicada emergence. E�ect timing is
discussed in the next section.
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6.3 Timing and Sub-annual Impacts

Figure 6 shows the impact on infant mortality by quarter. This analysis is limited to the
period from 1995 to 2016 when Linked Infant Birth/Death Files are available that allow
for sub-annual aggregation. Model (4) of Table A5 shows an overall positive but less pre-
cise e�ect for this sub-period, but one in line with the estimates from the longer-duration
analyses in Models (1)-(3), and as shown in Table 2 and Figure 5. Looking sub-annually,
Figure 6 shows that the e�ect is concentrated in the second quarter (April to June) of the
year following cicada emergence.

Figure 6

Notes: Output similar to Model (5) of Table 2 but with quarterly IMR as outcome vari-
able estimated using separate regressions. Time series limited to 1995 to 2016. Apple in-
tensity interaction measure is apple crop acreage or production in bushels in 1997. Green
area is the year of cicada emergence, yellow is the next year, and red is the third year.
Gray area is the second quarter in the year following cicada emergence. State-level annual
time trends and county and year fixed e�ect dummies included. Standard errors clustered
at the state level. Solid lines show 95% confidence intervals.

Cicadas arrive in the late spring and insecticide spraying starts in June to control the
adult population from laying their eggs in tree branches as well as throughout the summer
to prevent cicada nymphs from establishing in the soil in order to mitigate detrimental
growth e�ects (Hamilton 1961; Lloyd and White 1987). Summer conceptions occurring in
June, July, or August, for example, would entail a first trimester coinciding with a period
of high potential for insecticide exposure. Assuming full-term gestation, such births would
occur the following March, April, or May. Our finding of elevated infant mortality in the
second quarter (April to June) would align with this cohort considering that two-thirds of
infant deaths occur within the neonatal phase (i.e., first 28 days), and much of the remain-
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ing occur within the first three months of life (Ely and Hoyert 2018).

These sub-annual results support the predictions of the Timing Framework and are in line
with known cicada behavior and orchard management practices. Going forward, we will
focus on annual impacts given the longer time series and the lack of sub-annual data for
most other historical variables.

6.4 Brood analysis

The next section assesses impacts by individual cicada brood. This specification involves
a di�erence-in-di�erence where the same counties are treated every 17 years. Neighboring
counties that do not receive that cicada brood are used as a control. Table 3 shows the
results for the largest of the five 17 year broods. Excluded are the two primary 13-year
southern broods which are located in hotter areas with very little apple production, as vi-
sualized in Figure 3.10

Table 3: Cicada Impact on Infant Mortality, 1950-2016

Dependent variable:

Next-Year Infant Mortality Rate (IMR)
All Brood 2 Brood 5 Brood 10 Brood 13 Brood 14

(1) (2) (3) (4) (5) (6)

Cicada 0.06 0.19 0.10 0.19 ≠0.12 0.13
(0.13) (0.26) (0.20) (0.17) (0.16) (0.16)

Cicada:Bushels 0.42úú 0.57úúú 0.69úúú 0.42úú 0.54úú 0.45úú

(0.17) (0.14) (0.17) (0.16) (0.19) (0.18)

County controls All <100km <100km <100km <100km <100km
County FE X X X X X X
Year FE X X X X X X
State-Yr Trend X X X X X X
Observations 144,083 16,816 11,256 38,094 13,375 36,811
R2 0.52 0.66 0.60 0.61 0.58 0.60

Notes: Linear regression. Dependent variable is next-year infant mortality rate (deaths per 1000
live births). Excludes county-year observations with less than 5 births. Cicada is a dummy variable
taking the value of 1 if there is a cicada emergence in the county in that year. Bushels is apple
production in 1997 per county land area. State-level annual time trends and county and year fixed
e�ect dummies included. Standard errors clustered at the state level.

10 13-year broods may also have di�erent physiological mechanisms governing their development (White
and Lloyd 1975).
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For comparison, Model (1) pools all the broods as done in our primary specification in
Model (5) of Table 2. The remaining columns show a consistently positive e�ect for each
brood in which apple-intensive counties experience higher infant mortality in the year fol-
lowing a cicada emergence. Figure 7 plots the leading and lagging coe�cients as done in
Figure 5 but includes neighboring counties as controls. Each brood involves a di�erent
treatment year and di�erent geographic footprint as seen in the maps. For example, Brood
X, the Great Eastern Brood, emerges in three distinct pockets of the US in the summer of
2021.

For most of the broods, there is a clear increase in infant mortality the year following a
cicada event, which sometimes seems to extend into subsequent years.11 The noisier coe�-
cients may be attributable to the smaller sample size, di�erent regional pest management
practices, and the fact that some counties are treated twice by di�erent broods. Overall,
however, brood-level results provide increased confidence that the paper’s main finding is
not driven by a particular brood, location, or set of treatment years.

6.5 Interpretation of Infant Mortality Impact

Infant mortality decreased by 80% over the course of this study, from a national average of
30 deaths per thousand in 1950 to the current average of 6, so the interpretation of coe�-
cient magnitudes depends on the time period. For the longer timeframe from 1950 to 2016
the average infant mortality rate is 16, for the balanced panel from 1950 to 1988 the aver-
age is 21, and for the period when pesticide data is available from 1992 to 2016, the aver-
age is 7. This warrants some caution when interpreting and comparing coe�cient magni-
tudes.

Table 1 shows that among top decile apple counties, insecticide use increases during a ci-
cada emergence by about 6 kg km≠2. These same treated counties see an increase in next-
year infant mortality by 0.28 to 0.47 deaths per thousand, based on Table 2 and the bal-
anced panel in Table A4, respectively. This equates to about a 2% increase over the sam-
ple average infant mortality rates. Therefore, one additional kilogram of insecticide use per
km2 can be equated to an increase in the infant mortality rate by one-third of one percent.
For context, mean insecticide use across counties and over time is 10 kg/km2, so one more
kilogram represents an approximate 10% increase over the sample mean.
11 An extended e�ect could potentially reflect the fact that insecticide treatments are known to occur in

the year after to control nymph establishment, or a delayed pesticide exposure from di�erential leaching
rates into water, or the fact that infant mortality includes deaths that occur up to 12 months following
birth.
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Figure 7

Notes: Event study by cicada brood based on Table 3, but including cicada leads and lags. Sample
includes counties receiving the given brood (red), as well as those within 100km of treatment area
(blue). State-level annual time trends and county and year fixed e�ect dummies included. Standard
errors clustered at the state level. Solid lines show 95% confidence intervals. Coe�cients relative to
omitted years outside of four years plus/minus a cicada event.

21



Linking these results to a specific type of insecticide is challenging because this analysis
uses an aggregate measure of insecticides that sums up 160 insecticide constituents by
weight. Further, there is little evidence that orchard growers and farm managers consis-
tently choose one type of insecticide over others for cicada control, especially given that
pest management practices vary greatly across the US and over time. Finally, di�erent
combinations of insecticide types are used depending on the cicada’s stage of development
(e.g., pyrethroid ‘knock down’ insecticides for live adults, carbamates for soaking soil to
control nymphs).

6.6 Other Infant Health Outcomes

Next I assess infant health impacts beyond infant mortality. Using NCHS Natality Data
files from 1968 to 2016, I compute three binary measures of infant health. The first is Ap-
gar score (indicator for a score below 7 out of 10), a quick assessment of infant newborn
health based on appearance, pulse, grimace, activity, and respiration (hence acronym, Ap-
gar). The second is premature birth (indicator if gestation period is under 37 weeks, the
clinical threshold for premature birth). The last is birthweight (indicator if under 2500
grams, the clinical threshold for low birthweight).

Table 4 shows regression results using the model specified in Equation 2. The cicada-apple
interactions have a small but positive impact on the probability of adverse birth outcomes.
The relationship is the clearest for premature birth, followed by low Apgar score. The
birthweight coe�cient is positive but not significant. These results are consistent with the
public health literature on fetal exposure and pesticide impacts (Ling et al. 2018), as well
as our infant mortality findings given that low birthweight and premature birth is highly
correlated with neonatal infant mortality (Ely and Hoyert 2018).

6.7 Education and Long-Term Impacts

I now look at the potential impact on educational achievement via elementary school co-
horts exposed to a cicada emergence during conception or during the first year of life. Ta-
ble A6 shows the impact on county-level scores in math and English language arts using
Stanford Education Data Archives NAEP-equivalent test scores (Reardon et al. 2018).
County scores are pooled by cicada exposure cohorts, i.e., averaging the scores of third
graders 9 years after a cicada event, fourth graders 10 years after, and fifth graders 11
years after.
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Table 4: Cicada-Apple Interaction Impact on Other Birth Outcomes

Next-year birth outcome
Prob. Low Apgar Prob. Premature Prob. Low Birthweight

(1) (2) (3) (4) (5) (6)

Cicada ≠0.045 ≠0.041 ≠0.068 ≠0.065 ≠0.080 ≠0.074
(0.053) (0.053) (0.082) (0.082) (0.059) (0.058)

Cicada:Acres 0.135úú 0.143úúú 0.161
(0.056) (0.036) (0.109)

Cicada:Bushels 0.157ú 0.184úúú 0.133
(0.087) (0.054) (0.150)

County FE X X X X X X
Year FE X X X X X X
State-Yr Trend X X X X X X
Observations 83,426 83,426 109,387 109,387 112,165 112,165
R2 0.102 0.102 0.205 0.205 0.261 0.261

Notes: Linear regression. Dependent variables are various next-year birth outcomes averaged at the
county level: Apgar low is a dummy for a score below 7 out of 10 (time series from 1978 to 2016);
Premature is a dummy if gestation is under 37 weeks (time series from 1968 to 2016); Birthweight
low is a dummy if under 2500 grams (time series from 1968 to 2016). Each dummy is multiplied by
100. Excludes county-year observations with less than 5 births. Cicada is a dummy variable taking
the value of 1 if there is a cicada emergence in the county in that year. Covariates include apple
acreage and apple production in bushels in 1997. State-level annual time trends and county and
year fixed e�ect dummies included. Standard errors clustered at the state level. *p<0.1; **p<0.05;
***p<0.01
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Figure 8

Notes: Event study based on Models (2) and (5) in Table A6 using NAEP-equivalent
Stanford Education Data Archive data. Scores averages by cicada exposure cohort: 3rd

graders 9 years after cicada exposure, 4th graders 10 years after, and 5th graders 11 years
after. Apple intensity measure is top decile of apple production. Solid lines show 95% con-
fidence intervals.

Figure 8 plots the impact with the inclusion of year leads and lags. There is a decline in
average test scores of 1 to 1.3 NAEP-equivalent points among exposed cohorts. Each suc-
cessive grade level NAEP score is, on average, 10 points higher, so this coe�cient can be
crudely interpreted as a reduction of 10-13% of one grade-level’s worth of learning.

Next I analyze even longer-term impacts: whether cohorts conceived during a cicada emer-
gence in tree crop-intensive counties experience a change in educational attainment. Us-
ing NCES data, I calculate the average dropout rate across school districts at a county-
year level from 1991 to 2009. Table A7 shows the results of regressing the twelfth grade
dropout rate on an indicator of whether there was a cicada event 19 years prior, which is
interacted with the various apple intensity measures. Figure 9 plots the interaction coe�-
cients using long-term cicada lags ranging from 16 years after emergence to 22 years. The
dropout rate increases most at the 19-year point among exposed cohorts conceived dur-
ing a cicada exposure, which is the time when these students would most likely be in the
twelfth grade. The coe�cients for the 16 to 18 year lags are also positive but of a smaller
magnitude, implying that there may be impacts on exposed infants and toddlers.

The median twelfth grade dropout rate during this period is four per hundred students,
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Figure 9

Notes: Event study based on models in Table A7. 12th grade dropout rates averaged
across school districts at a county-year level from 1991-2009. Bushels production by
county. Solid lines show 95% confidence intervals.

and the standard deviation in apple bushel production in 1997 is 0.225 thousand bushels
km≠2 (225 bushels). Therefore, in the event of a cicada emergence, counties with one stan-
dard deviation higher apple intensity see an increase in the future dropout rate by 0.18
per hundred students (0.225 x 0.80, which is the coe�cient from Model (3) of Figure 9), or
about a 5% increase. The same results, however, are not found when using a dummy for
top apple production decile instead of production intensity.

It is important to note that the composition of counties over time is unknown. Since many
people move in and out of counties over the course of two decades, it is not possible to
know if those conceived during a cicada emergence were the same individuals in the county
taking the elementary school tests and attending high school. However, I later test the re-
lationship between cicadas and migration in Table A9 and find no evidence that people are
migrating as an avoidance response. While caution is warranted in interpreting these re-
sults, these findings generally align with Rauh et al. 2012 who find that insecticides have
long-term cognitive impacts that a�ect life outcomes beyond just infant health.
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7 Robustness Checks
There are certain factors that could undermine the cicada-infant mortality story. Plausible
candidates need to a�ect tree crop-intensive counties in the year following cicada emer-
gence in ways that are di�erent than those same counties in non-cicada years, as well as
other tree crop-intensive counties in that same year that did not experience a cicada emer-
gence.

7.1 Yields and income

One candidate is agricultural yields. If cicadas decimate apple production, for example,
there could be a health impact via an economic channel. Our main dataset comes from
the agricultural census which is collected approximately every five years and thus does not
allow for testing annual shocks. USDA does, however, track annual apple production for
a subset of 170 counties in the states of Virginia, South Carolina, Kansas, Pennsylvania,
and New Jersey from 1972 to 2012. Using this limited data, I regress county-level apple
production on leads and lags of cicada emergence. Figure 10 plots the coe�cients, with
level of production on the top panel and log production on the bottom panel.

While there is no significant relationship with level of production, the log values show
a decrease in apple production in the year before and the year of cicada emergence. A
weaker but non-significant e�ect seems to persist afterward. Nymphs feed strongly on
roots leading up to emergence as well as in the years that follow during their establish-
ment. The timing of this yield impact aligns with the third prediction of the Timing Frame-
work and partly justifies why orchard owners apply insecticides. It also aligns with the
agronomic and ecological literature showing that cicadas reduce tree growth, with feeding
nymphs being a major main culprit (Karban 1982). This negative yield impact, however,
is less than the 30%-plus reduction in tree growth observed in natural settings in the ab-
sence of insecticides.

There are two main reasons that this economic channel is unlikely to undermine the infant
mortality relationship. First, yield declines occur in the year prior and the year of a cicada
emergence, but the infant mortality impact occurs in the year afterward. If the negative
yield shock was driving the health e�ect, then we would expect an increase in infant mor-
tality in the year of cicada emergen—which is not observed. Second, tree crops comprise
a very small portion of the economic value of most counties. For example, Wayne County,
NY, the largest apple producer in the eastern half of the US, has a county GDP in 2012
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Figure 10

Notes: Event study of cicada impact on apple production. Dependent variable is county-
level apple production in millions of bushels. Upper panel is levels, lower panel is log val-
ues. Annual time series is from 1972 to 2011 for select states with annual production data.
Observations with no leading or lagging cicada events during the sample time period are
excluded to balance the panel. State-level annual time trends and county and year fixed
e�ect dummies included. Solid lines show 95% confidence intervals. Normalized to three
years before cicada emergence.

of $3 billion according to the Bureau of Labor Statistics. The combined value of all fruit
production is $79 million according to USDA NASS, or just 2.5% of GDP. Taken together,
it seems unlikely that a yield-based economic channel is the main driver of observed health
impacts, especially ones that are averaged over an entire county.

To more formally test the income channel in agricultural settings, I regress in Table A8
measures of county-level farm income from the US Bureau of Economic Analysis spanning
1969 to 2016 on cicada emergence and the apple intensity interaction term. While there
appears to be a weak negative relationship between farm income and cicadas in general,
it does not appear that cicada emergence negatively a�ects economic outcomes in apple
intensive counties.
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7.2 Migration

One may be concerned that people migrate over the long term to avoid the negative health
impacts in apple intensive areas. This is unlikely given that there has been no past re-
search documenting the cicada-pesticide-health link. Nevertheless, I test this in Table A9
by running a cross-sectional regression of county-level migration rates from 1960 to 1990
on a dummy of whether cicadas are endemic to a county, interacted with a dummy for top
decile apple producing county in 1964. Note that positive values represent net migration
into a county. The average decadal rate from 1960 to 1990 was 2.3% and there is no ev-
idence of out-migration or lower in-migration from apple intensive cicada counties. This
holds both across states and within states, and using either net migration rates or absolute
net migration.

7.3 Composition and Births

There may be concerns that the composition of mothers somehow changes. In other words,
maybe the mothers in tree crop-intensive counties who give birth in the year following ci-
cada emergence are somehow di�erent in ways that could explain some of the variation
in health outcomes. Table A10 is a balance table of maternal characteristics using NCHS
natality data comparing those giving birth in the year following a cicada emergence ver-
sus other years. There is no meaningful di�erence in the mothers’ average education level,
racial makeup, weight gain, age, or cigarette consumption. Further, no evidence of migra-
tion was found, which could also change maternal composition.

Another factor that could complicate the cicada-infant mortality story is if cicadas alters
behavior in ways that a�ect birth outcomes outside of the insecticide channel (e.g., if peo-
ple engage in more or less risky behavior). A cicada’s life is short, generally lasting only
four to five weeks, so it seems unlikely that their emergence would in themselves alter av-
erage outcomes at the county level over the course of the entire following year. Further,
one would have to believe that people in counties with a high proportion of tree crops be-
have di�erently in response to cicadas than people in places with fewer tree crops.

Table A11 shows the results of a regression of next-year birth rate on cicada emergence
and apple intensity. Birth rate is computed with ICPSR natality data as total annual
births per thousand people (crude) and thousand women of child-bearing age (ages 15-
44). The apple-cicada interaction coe�cients are close to zero and insignificant for the
most part. Behavior, as it relates to number of births, is not di�erent in apple-intensive
‘treated’ counties relative to untreated counties.
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However, overall births seem to increase in the year following a cicada emergence. This in-
teresting finding holds after controlling for various combinations of fixed e�ects and time
trends.12 I calculate a back-of-the-envelope estimate using the crude birth rate impact of
0.11 per thousand and the fact that the population averaged 87 million between 1950 to
2016 in the counties with a cicada presence. Since cicadas emerge every 16 years on av-
erage (3 broods have 13-year cycles, 12 broods have 17-year cycles), this means that an
additional 600 people could be born in the US each year, on average, because of cicadas.

This modest but strange result could reflect a dynamic similar to that found in Evans et
al. 2010 and Burlando 2014 where birth rates increase after hurricanes (when people are
forced to stay inside) or power outages. Or perhaps there is a physiological e�ect that sci-
ence has yet to uncover, one that occurs when humans witness millions of frenzied crea-
tures emerging from over a decade underground only to live for a few weeks, just long
enough to sing a shrill song, mate, and die.

8 Conclusions
Insecticides are essential to agricultural productivity, but they also pose risks to the pop-
ulation that are di�cult to measure. In this paper, I use the mass emergence of periodical
cicadas in 13 and 17-year cycles to identify the impact of insecticides on human health. I
find an increase in insecticide use in counties experiencing a cicada emergence that is lim-
ited to areas with a large amount of woody crops (i.e., apple trees), as opposed to herba-
ceous row crops like corn and soy. This is because cicadas only damage woody plants:
nymphs feed on tree roots and adult cicadas lay their eggs in small branches.

I exploit this variation to compare treated counties (i.e., counties with high levels of ap-
ple production that experience a cicada emergence) to untreated counties. In the treated
counties, there is a jump in next-year infant mortality by 0.3 deaths per thousand births.
Sub-annual impacts align with the timing and patterns of insecticide usage by farmers.
Treated counties also see adverse infant health outcomes including an increase in prema-
ture births and low Apgar score. There is also evidence of long-term cohort e�ects in the
form of lower elementary school test scores and higher high school dropout rates.

It may be surprising that tree crop acreage, given its small footprint, can produce e�ects
that are measurable at the county level. The largest apple producer in our sample, which
12 In the main specification, I include state-year fixed e�ects to account for anomalous state-level sampling

processes related to birth counts at the year level.
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spans the cicada endemic states of the Eastern US, is Wayne County, NY. It has about
20,000 acres of apples trees, which is less than 5% of its land area. This is a small fraction
compared to counties that intensively grow soy and corn, where row crops comprise a ma-
jority of the land. Further, apples account for only 1.4% of pesticide use in the US, while
crops like corn, soy, cotton, potatoes, sorghum, and wheat account for 86% (Fernandez-
Cornejo et al. 2014). Together, this supports the idea that externalities from agriculture
may extend beyond farm-intensive areas, and that moderate levels of pesticides, not just
extreme exposure, can have negative long-term impacts.

Overall this paper contributes to the environmental and health economics literature on
the impacts of agricultural inputs. While acknowledging the large benefits of pesticides to
agricultural productivity, the findings warrant caution in the application of insecticides.
This paper also provides a model of how ecological phenomena like periodical cicadas may
be used to generate quasi-random variation to help answer important economic and public
health questions—showing that humans remain beholden to the ancient cicadian rhythm.
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9 Appendix

9.1 Pesticide response to cicadas

Table A1: Falsification by Pesticide Type (kg/km2)

Dependent variable:

Insecticide Herbicide Fungicide

(1) (2) (3)

Cicada 0.29 0.65 ≠0.19
(0.94) (1.07) (0.36)

Cicada:Bushels 5.67ú ≠2.03 0.97
(3.25) (1.93) (1.61)

County FE X X X
Year FE X X X
State-Yr Trend X X X
Observations 61,133 61,133 61,133
R2 0.42 0.84 0.54

Notes: Linear regression. Dependent variable is county-level
pesticide use divided by county land area. Pesticide use is
the combined sum of the USGS EPest-high values for con-
stituents with insecticidal, herbicidal, and/or fungicidal prop-
erties. Many pesticides had multiple properties. Cicada is a
dummy variable taking the value of 1 if there is a cicada emer-
gence in the county in that year. Bushels is a dummy for the
top decile counties in apple production in 1997. Time series
limited to USGS pesticide data, 1992 to 2016. State-level an-
nual time trends and county and year fixed e�ect dummies
included. Standard errors clustered at the state level. *p<0.1;
**p<0.05; ***p<0.01
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Table A2: Falsification by Crop (kg/km2)

Dependent variable:

Insecticide use (kg/km2)

(1) (2) (3)

Cicada 0.29 1.34 0.52
(0.94) (1.50) (1.08)

Cicada:Bushels 5.67ú 5.54ú

(3.25) (3.20)
Cicada:Corn Soy ≠2.18 ≠1.72

(1.44) (1.18)

County FE X X X
Year FE X X X
State-Yr Trend X X X
Observations 61,133 61,133 61,133
R2 0.42 0.42 0.42

Notes: Linear regression. Dependent variable is
county-level insecticide use, which is the combined
sum of the USGS EPest-high values with insecticidal
properties divided by county land area. Cicada is a
dummy variable taking the value of 1 if there is a ci-
cada emergence in the county in that year. Bushels is
a dummy for the top decile counties in apple produc-
tion in 1997. Corn Soy is a dummy for the top decile
counties in the combined corn and soy production by
county area, averaged during the sample period. Time
series limited to USGS pesticide data, 1992 to 2016.
State-level annual time trends and county and year
fixed e�ect dummies included. Standard errors clus-
tered at the state level. *p<0.1; **p<0.05; ***p<0.01
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9.2 Impacts on infant mortality

Table A3: Cicada Impact on Infant Mortality, 1950-2016, Weighted by Births

Dependent variable:

Next-Year Infant Mortality Rate (IMR)

(1) (2) (3) (4) (5)

Cicada 0.09 0.07 0.05 0.06 0.07
(0.12) (0.12) (0.13) (0.12) (0.12)

Cicada:Acres 0.34úúú

(0.11)
Cicada:Bushels(decile) 0.25

(0.16)
Cicada:Bushels 1964 0.61úúú

(0.17)
Cicada:Bushels 1997 0.45úú

(0.18)

County FE X X X X X
Year FE X X X X X
State-Yr Trend X X X X X
Observations 152,107 152,107 152,107 152,107 152,107
R2 0.49 0.49 0.49 0.49 0.49

Notes: Linear regression. Dependent variable is next-year infant mortality rate (deaths per
1000 live births). Regression weighted by the number of county births. Cicada is a dummy
variable taking the value of 1 if there is a cicada emergence in the county in that year. Co-
variates include apple acreage, a dummy for the top decile apple production, and apple
production in bushels in 1997 and 1964. Time series from 1950 to 2016. State-level annual
time trends and county and year fixed e�ect dummies included. Standard errors clustered
at the state level.
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Table A4: Cicada Impact on Infant Mortality, 1950-1988

Dependent variable:

Next-Year Infant Mortality Rate (IMR)

(1) (2) (3) (4) (5)

Cicada 0.12 0.10 0.05 0.09 0.10
(0.16) (0.17) (0.17) (0.17) (0.17)

Cicada:Acres 0.38úú

(0.17)
Cicada:Bushels(decile) 0.47úú

(0.20)
Cicada:Bushels 1964 0.69úú

(0.32)
Cicada:Bushels 1997 0.51úú

(0.23)

County FE X X X X X
Year FE X X X X X
State-Yr Trend X X X X X
Observations 95,832 95,832 95,832 95,832 95,832
R2 0.43 0.43 0.43 0.43 0.43

Notes: Linear regression. Dependent variable is next-year infant mortality rate
(deaths per 1000 live births). Excludes county-year observations with less than 5
births. Cicada is a dummy variable taking the value of 1 if there is a cicada emer-
gence in the county in that year. Covariates include apple acreage, a dummy for the
top decile apple production, and apple production in bushels in 1997 and 1964. Time
series limited to 1950-1988, when infant mortality data is available for all counties.
State-level annual time trends and county and state fixed e�ect dummies included.
Standard errors clustered at the state level. *p<0.1; **p<0.05; ***p<0.01

34



Table A5: Cicada Impact on Infant Mortality, 1950-2016

Dependent variable:

Next-Year Infant Mortality Rate (IMR)

(1) (2) (3) (4)

Cicada 0.06 0.03 0.11 ≠0.16
(0.13) (0.13) (0.15) (0.16)

Cicada:Bushels 0.42úú 0.41úú 0.45úú 0.39
(0.17) (0.16) (0.22) (0.23)

IMR measure Baseline Baseline + IPUMS ICPSR NCHS Linked
County FE X X X X
Year FE X X X X
State-Yr Trend X X X X
Observations 144,083 154,726 105,719 46,239
R2 0.52 0.52 0.48 0.14

Notes: Linear regression. Dependent variable is next-year infant mortality rate (deaths
per 1000 live births). Excludes county-year observations with less than 5 births. Cicada
is a dummy variable taking the value of 1 if there is a cicada emergence in the county
in that year. Bushels is apple production in 1997 per county land area. State-level an-
nual time trends and county and year fixed e�ect dummies included. Standard errors
clustered at the state level.
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Figure A1

Notes: Event study with level of apple acreage based on Model (2) of Table 2, but including cicada
leads and lags. Sample only includes counties with cicada events and observations with no leading or
lagging cicada events during the sample time period are excluded to balance the panel. Models allow
for di�erent fixed e�ects and geographic trends. Standard errors clustered at the state level. Solid
lines show 95% confidence intervals. Normalized to the year before cicada emergence.

Figure A2

Notes: Event study with top decile apple producing counties, but including cicada leads and
lags. Observations with no leading or lagging cicada events during the sample time period are
excluded to balance the panel. Solid lines show 95% confidence intervals. Normalized to the
year before cicada emergence.
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9.3 Educational impacts

Table A6: Cicada-Apple Interaction Impact on Elementary School Test Scores

NAEP-equivalent average test scores

Math English

(1) (2) (3) (4) (5) (6)

Cicada 0.20 0.33 0.21 0.02 0.18 0.02
(0.23) (0.26) (0.22) (0.24) (0.27) (0.24)

Cicada:Acres ≠0.51úúú ≠0.31
(0.10) (0.20)

Cicada:Bushels(decile) ≠1.15úú ≠1.27úú

(0.54) (0.56)
Cicada:Bushels ≠1.15úúú ≠0.72ú

(0.38) (0.40)

County FE X X X X X X
Year FE X X X X X X
State-Yr Trend X X X X X X
Observations 10,866 10,866 10,866 11,557 11,557 11,557
R2 0.91 0.91 0.91 0.90 0.90 0.90

Notes: Linear regression. Dependent variable is county-level averages of Stanford Education Data
Archive’s NAEP-equivalent test scores averaged for all elementary school students (grades 3-5) in
the same ‘cicada exposure cohort’. For example, scores include the average of 3rd graders 9 years
after cicada exposure, 4th graders 10 years after cicada exposure, and 5th graders 11 years after
cicada exposure. Annual scores available from 2009 to 2015. Cicada is a dummy variable taking the
value of 1 if there is a cicada emergence in the county in that year. Covariates include apple acreage,
a dummy for the top decile apple production, and apple production in bushels in 1997. State-level
annual time trends and county and year fixed e�ect dummies included. Standard errors clustered at
the state level.
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Table A7: Cicada-Apple Interaction Impact on Dropout Rates

Dependent variable:

Dropout rate per 100 students

(1) (2) (3)

Cicada ≠0.10 ≠0.09 ≠0.10
(0.13) (0.15) (0.13)

Cicada:Acres 0.36ú

(0.19)
Cicada:Bushels(decile) 0.04

(0.25)
Cicada:Bushels 0.80úú

(0.33)

County FE X X X
Year FE X X X
State-Yr Trend X X X
Observations 23,051 23,051 23,051
R2 0.22 0.22 0.22

Notes: Linear regression. Dependent variable is 12th
grade dropout rates. Dropout rates are averaged across
school districts at a county-year level and available from
NCES from 1991 to 2009. Cicada lags are a dummy vari-
able taking the value of 1 if there is a cicada emergence
in the county in that year (i.e., cicada_plus19 denotes a
cicada occurrence 19 years before the year of the dropout
observation). Covariates include apple acreage, a dummy
for the top decile apple production, and apple production
in bushels in 1997. State-level annual time trends and
county and year fixed e�ect dummies included. Standard
errors clustered at the state level.
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9.4 Robustness
Table A8: Cicada Impact on Farm Income per Capita

Dependent variable:

Farm Income ($1,000s) Farm Income (Log)

(1) (2) (3) (4) (5) (6)

Cicada ≠1.032ú ≠0.899 ≠0.903 ≠0.057ú ≠0.055ú ≠0.055ú

(0.608) (0.597) (0.598) (0.032) (0.030) (0.030)
Cicada:Acres 1.058 0.028

(1.090) (0.030)
Cicada:Bushels(Decile) 0.428 0.057

(1.029) (0.051)
Cicada:Bushels 0.278 0.030

(0.508) (0.025)

County FE X X X X X X
Year FE X X X X X X
State-Yr Trend X X X X X X
Observations 118,232 118,232 118,232 105,746 105,746 105,746
R2 0.617 0.617 0.617 0.735 0.735 0.735

Notes: Linear regression. Dependent variables are BEA county-level farm income per capita from
1969 to 2016. Cicada is a dummy variable taking the value of 1 if there is a cicada emergence in the
county in that year. Cicada is a dummy variable taking the value of 1 if there is a cicada emergence
in the county in that year. Covariates include apple acreage, a dummy for the top decile apple pro-
duction, and apple production in bushels in 1997. State-level annual time trends and county and year
level fixed e�ect dummies included. Standard errors clustered at the state level. *p<0.1; **p<0.05;
***p<0.01
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Table A9: Cicada Impact on Long-term Migration, 1960 to 1990

Dependent variable:

Net Migration Rate Net Migration (1,000s)

(1) (2) (3) (4)

Cicada 0.029 0.057ú ≠1.704 6.869
(0.047) (0.028) (5.218) (4.399)

Cicada:Bushels(Decile) 0.046 0.012 2.178 6.124
(0.042) (0.031) (7.758) (9.463)

Constant 0.027 1.444
(0.044) (4.021)

State FE X
Observations 2,423 2,423 2,423 2,423
R2 0.002 0.153 0.0001 0.044

Notes: Linear regression. County-level cross section. Dependent variable
in Models (1)-(2) is long-term migration rates calculated as the sum of
net migration in the four decades between 1960 and 1990 divided by the
average county population during that period. Models (3)-(4) is the sum
of net migration over that time in thousands of people. Cicada county is a
dummy variable if cicadas are endemic to the county. Bushels(Decile) is a
dummy for the top decile counties in apple production in 1964. Standard
errors clustered at the state level. *p<0.1; **p<0.05; ***p<0.01

Table A10: Maternal characteristics in cicada years versus non-cicada years

Variable Cicada.year Non.cicada.year t.value

Education 12.664 12.616 -0.788
Black proportion 0.071 0.074 0.664

Weight gain 30.713 30.638 -0.426
Age 26.346 26.388 0.485

Cigarettes 1.795 1.924 1.267

Notes: Notes: Analysis includes counties in the top decile of
apple production averaged over 1964 and 1997 with endemic
cidadas. Maternal characteristics for those giving birth one
year after a cicada event.
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Table A11: Cicada-Apple Interaction Impact on Birth Rates

Dependent variable:

All people (Crude) Female Age-Specific

(1) (2) (3) (4) (5) (6)

Cicada 0.11úúú 0.12úúú 0.12úúú 0.29 0.24 0.32
(0.03) (0.04) (0.04) (0.21) (0.30) (0.28)

Cicada:Bushels(Decile 1964) ≠0.05 0.28
(0.05) (0.60)

Cicada:Bushels(Decile 1997) ≠0.07 ≠0.17
(0.06) (0.61)

County FE X X X X X X
State-Year FE X X X X X X
Observations 142,212 142,212 142,212 142,193 142,193 142,193
R2 0.84 0.84 0.84 0.73 0.73 0.73

Notes: Linear regression. Dependent variable is next-year birth rate. Models (1)-(3) show the
crude birth rate (births per 1000 people). Models (4)-(6) show births per thousand women of
child bearing age (ages 15-44). Cicada is a dummy variable taking the value of 1 if there is a
cicada emergence in the county in that year. Covariates include a dummy for top decile apple
production in 1964 and 1997. County and state by year fixed e�ect dummies included. Standard
errors clustered at the state level. *p<0.1; **p<0.05; ***p<0.01
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