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Abstract

Starting in 2013, China’s pollution information disclosure program raised public

awareness of air quality. This study seeks to analyze quantitatively the impact of

information disclosure on college desirability. To that end, I assemble a comprehensive

dataset on admission scores for all colleges in China for eight years. In an event study

setting, I find that pollution information drives down cuto↵ scores for colleges in dirty

cities by 0.3% for the arts track and 0.6% for the science track of first- and second-

tier colleges and no impacts for third-tier colleges. The e↵ect is mainly driven by the

increased competition for clean colleges, and is stronger for journalism, economics and

environment-related majors. The findings confirm the importance of environmental

information and are consistent with people’s avoidance behavior against pollution.
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1 Introduction

Every year, around 10 million students take the college entrance exam (CEE) in China,

competing to get in to about 2600 universities of di↵erent tiers. The CEE score determines

students’ final admission results, with preference submitted by students themselves and

priority given to high scores. To perhaps a surprising degree, preferences of students and

their families play an important role in college selecting despite reliance on the standardized

CEE. When choosing their colleges, parents and students take multiple factors into account

including teaching and research quality, alumni network, and opportunities and amenities

in that city. Whether air quality has an amenity value that can a↵ect college desirability

remains largely unanswered1.

China has been experiencing high concentrations of air pollutants. In 2013, the annual

average exposure to fine particulate matter in China was more than five times higher than

that of the US (Brauer et al., 2016). To try to address severe pollution, the Chinese govern-

ment declared a “war against pollution” at the beginning of 2014 at the National People’s

Congress (Greenstone and Schwarz, 2018). Complementary with the war, China launched

a nationwide, real-time air quality monitoring and disclosure program in 2013. Since then,

regular air quality monitoring has been carried out and hourly data are released on govern-

ment’s open platform. The emergence of disclosure program provides information shock and

largely rises public awareness on air pollution.

This paper provides the first quantification of the impact of an amenity information shock

on college desirability. The analysis presented herein leverages a comprehensive dataset on

cuto↵ scores of China’s college entrance exam, containing the number of admitted students,

cuto↵ scores that vary at college, year, province and major for all colleges in China for eight

years. This dataset is augmented with satellite products on air quality measured in each

city where the college is located, as well as the timing of pollution information rollout from

1Students with respiratory diseases are reported to only apply for universities in clean cities:
news.sinovision.net/society/201701/00396862.htm
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China’s government. Using these datasets, this paper takes advantage of pollution disclosure

by city as a natural experiment and conducts an event study to quantify the impact of this

information shock on college desirability as captured by cuto↵ scores. Lower cuto↵ scores in

dirty colleges mean less severe competition and lower demand for the college. Apart from

comparing dirty and clean colleges, I also show the di↵erence is attributed to the increased

competition for clean colleges. Heterogeneous impacts over tiers, tracks, and majors are also

discussed.

This study makes three contributions to the existing literature. First, this study provides

evidence on people’s avoidance behavior and location choice against pollution in developing

countries. Choosing where to spend their four-year undergraduate program serves as a

medium-term location choice decision. Compared with migration, which is largely a↵ected

by job opportunities and has much higher costs, college choice is a necessary decision on

location faced by all high school graduates, and could overcome the censored results estimated

from migration. While billions of residents of developing countries are faced with high air

pollution which endangers their physical and economic health, a few existing studies find

people’s avoidance behavior or willingness to pay for improvements is low in developing

countries (Yusuf and Resosudarmo, 2009; Kremer et al., 2011; Zhang and Mu, 2018; Ito and

Zhang, forthcoming). This study provides new empirical evidence of avoidance behavior by

investigating students’ and parents’ demand for colleges with di↵erent air quality.

Second, this study provides evidence of the impact of pollution information disclosure

programs which has proven important for emission control and public awareness. Most

existing studies focus on the polluter side, and conclude that Toxic Release Inventory (TRI)

in US (Cohen, 1997; Graham, 2000; Konar and Cohan, 2001; Stephan, 2002; Hamilton, 2005;

Sanders, 2012; Mastromonaco, 2015), Program for Pollution Control, Evaluation and Rating

in Indonesia (Afsah, Blackman and Ratunanda, 2000; Garcia, Sterner and Afsah, 2007;

Blackman, 2010), National Pollutant Release Inventory in Canada (Antweiler and Harrison,

2003), and Green Rating Project in India (Blackman, 2010) are tied to the decline in pollution
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emissions and stock returns. On the public behavior side, Sanders (2012); Mastromonaco

(2015) finds stricter TRI reporting has a negative impact on the housing market near toxic

emitters. Huet-Vaughn, Muller and Hsu (2018) finds more phone call complaints when real-

time visual emission camera at Shenango coke plants is on. Most related to this study,

Barwick et al. (2019) finds China’s air quality disclosure shock in 2013 induces more online

searches, fewer outdoor purchase trips, and lower housing demand. Unlike Barwick et al.

(2019), this study focuses on the impact on college desirability, an important content of

education system and job market in China.

Third, this study contributes to the links between environmental conditions and educa-

tion outcomes. In addition to substantial findings of the biological impact of air pollution on

academic performance, including pre-college performance (Currie et al., 2009; Ham, Zweig

and Avol, 2014), CEE scores (Ebenstein, Lavy and Roth, 2016; Amanzadeh, Vesal and

Fatemi, 2019), and final exams in colleges (Roth, 2016), this study contributes to the lit-

erature by showing that air quality is an influential factor for the final results of college

entrance exams. Thus, family preferences - not just standardized scores - are both malleable

and consequential for educational outcomes in China.

The remainder of this paper is organized as follows. Section 2 provides background on

China’s air quality disclosure program, and introduces college entrance exam including the

exam policy and admission process. Section 3 describes the data for empirical analysis.

Section 4 discusses my empirical setting. Section 5 and 6 reports the empirical results and

robustness tests. Section 8 concludes.

2 Background

2.1 Pollution disclosure program in China

The conversation on China’s pollution has shifted dramatically in recent years. Before 2013,

citizens had limited access to environmental information, such as data on air, water or soil
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quality. National media used to report “fog” for poor visibility and deny that smog was

caused by emissions2. Although the Ministry of Environmental Protection (MEP) started

to report an air pollution index (API) in 2000, API only covered 86 major cities, one-fourth

of the total, and was not widely published in broadcasts and media. Besides, API only

incorporated PM10, SO
2

, NO
2

, and failed to capture the level of PM2.5, a major pollutant

and threat to human health. Focussing on the threshold value for “clean” and “polluted”

days, Chen et al. (2012) and Ghanem and Zhang (2014) found evidence of manipulation of

API reports, which clearly compromises the information transparency of China’s air quality.

Public debate and pressure for air pollution disclosure were triggered by the US Em-

bassy’s release of hourly PM2.5 data for its neighborhood in Beijing. Starting in 2013,

regular air quality monitoring has been carried out and hourly data are released on the

Chinese government’s open platform. This disclosure campaign was a component of China’s

pollution reduction plan, with the aim of providing a scientific system of air quality moni-

toring and enhancing public awareness. The new air quality index (AQI) incorporates six

major pollutants, PM2.5, PM10, O
3

, CO, SO
2

, NO
2

. The number of monitors increased

gradually. Figure 1 provides the timing of monitors rollout and their locations. Only 496

monitors started to report at the beginning of 2013, and the number was 1605 in 2018. The

county-coverage rate increased from 0.16 to 0.54. This discrete, localized timeline allows an

observational study on the causal e↵ects of pollution disclosure.

After monitors started to report, hourly data is not only posted on the government

website, but also widely broadcast by local media and newspaper. There are also some

mobile applications scraping these reports and widely used by citizens. While this pollution

disclosure does not imply a shift from no to complete information, it triggers a surge in

public awareness on air pollution problems.

2www.newyorker.com/news/news-desk/china-tries-new-tactic-combat-pollution-transparency for exam-
ple
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2.2 Colleges and college entrance exam in China

In China, a total of 2,631 colleges were registered in 2017 and classified in four tiers by

the Ministry of Education3. First-tier colleges are mainly national key universities under

the control of central government, concentrated with the highest ability students, teachers

and resources. Second-tier colleges are less selective universities mostly under the control of

provincial governments. Third-tier colleges are mainly private universities or independent

schools jointly run by higher education institutions and social forces that are able to o↵er

a bachelor’s degree. Most of them are similar to for-profit colleges or community colleges

with bachelor degree in the US. Fourth-tier colleges are 3-year vocational colleges that do

not o↵er a bachelor degree, and are designed for practical skills like nursing and machinist

rather than abstract subjects.

All the colleges o↵ering bachelor degrees recruit students via the college entrance exam.

Every year, high school graduates take the CEE from June 7th to 9th for math, Chinese,

English and the other three subjects depending on arts or science track4. Although the

exams take place in the same period across the country, five provinces5 design their own

exams independently, and the rest take three di↵erent exams6 based on provincial policies.

Therefore, scores are only comparable within province-year-track. Student’s overall score is

the sum of these six subjects and is the determinant of their final admission result. First-tier

colleges are usually considered elite universities (Jia and Li, 2016), while those admitted to

third-tier colleges are very likely to go to colleges in home provinces7. Unlike the top three

tiers, CEE score is not necessary for admission to fourth-tier colleges.

3www.moe.gov.cn/srcsite/A03/moe 634/. College list is updated by the Ministry of Education every
year.

4Arts: geography, history, politics; Science: physics, chemistry, biology
5Beijing, Shanghai, Tianjin, Jiangsu, Zhejiang
6In 2018, provinces using National I exam: Chongqing, Shaanxi, Gansu, Ningxia, Qianghai, Xinjiang,

Heilongjiang, Jilin, Liaoning, Inner Mongolia, Hainan; National II: Shanxi, Hebei, Henan, Anhui, Hubei,
Hunan, Jiangxi, Fujian, Guangdong, Shandong; National III: Yunnan, Guizhou, Sichuan, Tibet, Guangxi

7For example, in Jiangxi province, the number of admits for first- and second-tier colleges are almost
the same for colleges in Jiangxi and outside Jiangxi, about 30 thousand per year. For third-tier colleges, the
number of admits for colleges in Jiangxi is 17201, 33247, 16457 in 2010, 2012, 2014, while the number of
admits outside Jiangxi is 5828, 12297, 7152.
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Apart from di↵ering test contents, there are three di↵erent application systems. For

most provinces, students take the exam first, and the exam is graded independently by

their home provinces. Based on the score distribution, the provincial government announces

cuto↵ scores for the three tiers for arts and science. After knowing their real scores and the

three cuto↵s, students fill applications for individual universities. For Beijing and Shanghai,

students apply for individual universities before taking the exam. For Xinjiang, Shanxi and

Heilongjiang, students apply before knowing their real scores, but estimate it based on the

announced solutions and their recalled answers. In all cases, the cuto↵ of each individual

university is unknown ex ante. Thus, the cuto↵ score could reflect the competition and

demand for each university.

Receiving students’ applications, final admission decisions are made by provincial govern-

ments using two mechanisms: sequential and parallel mechanism. In sequential mechanism,

priority is given to students’ first choice in their application form. That is, in the first round,

only the first choices of students are considered. Students left unassigned would have their

second choices considered in the second round. In contrast, in parallel mechanism, priority is

given to test scores. Students submit several parallel desirable choices within three tiers. If

the first choice of high score student could not be satisfied, his second paralleled choice will

be considered immediately. Previously, all the provinces used sequential mechanism for CEE

admission, which is shown less likely to reveal students’ true preference (Chen and Kesten,

2017). Since 2001, provinces rolled out parallel mechanism in di↵erent formats. By 2012, 28

out of 31 provinces adopted parallel mechanism, and the number remains the same in 2017.

3 Data

3.1 Test scores

The primary data I use is scraped from Sina Gaokao which collects individual cuto↵ scores

from colleges’ o�cial websites. The dataset includes the min, max and mean score for all the
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admitted students, and the number of admitted students at the college-year-province-track

and college-year-province-major level. The data is publicly available and serves as important

guidance for college applications in the next few years. I merge this dataset with the colleges’

tier and locations.

3.2 Pollution from monitors and satellite

Data on city-level monitor rollout is from MEP’s o�cial reports. The start date of report is

considered the timing of information disclosure. If multiple monitors exist in the same city,

I use the first report of the first monitor as the exposure time to air quality information.

Since CEE takes place in June every year, I consider relative year rather than calendar year

as the disclosure timing for further analysis.

Pollution data is also from MEP’s o�cial reports, including hourly data for six major

pollutants and AQI. To fill the data gap before monitor reports, I use PM2.5 reanalysis

product provided by van Donkelaar et al. (2015). This dataset is recovered by combining

inputs from aerosol optical depth (AOD) from NASA’s MODIS installed on satellite Terra’s

platform, ground-level monitoring stations in China, US and Canada, and atmospheric chem-

istry models. The product has 0.05 by 0.05 degree resolution at the monthly frequency. I

process it at the city-year level to show the annual air quality near each college.

4 Empirical Framework

4.1 Identification strategy

To estimate the e↵ect of pollution disclosure on cuto↵ scores, I restrict the sample to colleges

located in clean and dirty cities, each taking account of one-forth of all the colleges in China.

My identification strategy compares scores before and after the disclosure with an event

study approach:

Sijt = ↵Dirtyi + �Dirtyi ⇥Dit + ⌘ij + �jt + "ijt (1)
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where Sijt denotes the college desirability, as captured by the mean score for college i’s admits

in province j year t. Dirtyi denotes college i is located in a polluted city. The variable of

interest, Dit, is equal to 1 if disclosure happened before June in year t and 0 otherwise.

Province by year e↵ects �jt could absorb the exam di�culty and competition, and college

by province e↵ects ⌘ij could capture natural preference or the distance between college and

home province.

I conduct a pooled analysis first with all the three tiers and two tracks. Since colleges of

three tiers are quite di↵erent in their resources, teachers and student ability, and cuto↵ scores

for three tiers are announced earlier than applications for most provinces, I also separately

estimate the equation for three tiers to quantify e↵ects in di↵erent subgroups. Finally,

heterogenous responses are separated for two tracks and multiple majors.

Apart from comparing dirty and clean colleges, I also conduct an event study using the

whole sample. If the di↵erence between clean and dirty colleges exists, I try to attribute the

di↵erence to either increased competition for clean colleges or the decreased desirability of

dirty colleges, or both e↵ects. The econometric specification is:

Sijt = ↵
1

Dirtyi + ↵
2

Cleani + �
1

Dirtyi ⇥Dit + �
2

Cleani ⇥Dit + ⌘ij + �jt + "ijt (2)

where Cleani refers to college i is located in a clean city.

4.2 Sample and balance tests

I use AQI to classify dirty and clean college groups for two reasons. First, from the public

perspective, AQI is the most used indicator by government agencies, apps, newspapers,

and media, not individual pollutants. People are provided the AQI value at the hourly

and daily level, as well as corresponding classification and recommended precautions like

avoiding outdoor exercises. This is the most common information people could get about air
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quality, especially for those with limited knowledge on the meaning of individual pollutants.

Second, from the science perspective, all the six major pollutants could a↵ect human health,

and major pollutants driving down air quality could be di↵erent every day. AQI, as an

aggregated score, represents the worst quality or highest dose among those components,

and in turn indicates whether the city or college is clean or dirty better than individual

pollutants.

AQI=100 is the threshold for good and polluted days used by Chinese government, and

polluted months are those with average monthly AQI higher than 100. I define low pollution

cities whose average number of polluted month is smaller than two, and high pollution cities

are those with high pollution for more than seven month. This classifies about 200 colleges

into each group.

Table 1 reports summary statistics of the study sample. Clean cities have yearly average

PM2.5 lower than 30µg/m3, corresponding to “Good” air quality by China’s classification.

This means air quality in clean cities is considered satisfactory and air pollution poses little

risk. In contrast, dirty cities have yearly average PM10 and PM2.5 higher than thresholds

of “Unhealthy for Sensitive Groups”. In dirty cities, adverse health e↵ects are likely to

take place especially for people with respiratory diseases, older adults and children. PM10,

PM2.5 and AQI in the dirty group are more than twice the value of those in clean group.

Sharp di↵erence exists in pollution between clean and dirty group, while conveniently for my

purposes there is less di↵erence in test scores. The balanced panel shows the low possibility

of omitted variable bias.
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5 The E↵ects of Pollution Disclosure on College De-

sirability

5.1 E↵ects on cuto↵ scores

I first conduct pooled analysis using all three tiers and two tracks. If a city started to disclose

air quality between July 2014 to June 2015, year 2015 is considered year 1 for all colleges

in that city. Figure 2 shows raw cuto↵ scores and score residuals after controlling multiple

fixed e↵ects step by step with a balanced panel from year -2 to year 3. From the raw data,

average cuto↵ score is higher by 4 points for dirty colleges before the treatment, and starts to

converge to 1 point afterwards. With province by year fixed e↵ects, the relatively flat trend

of cuto↵ scores prior to the information disclosure confirms the stable ranking and preference

of universities over years. The jump of blue lines and the drop of red lines suggests that the

e↵ect took place since the year of pollution disclosure. It is more di�cult to get into clean

colleges after exposed to air quality information.

Table 2 reports the estimated e↵ects of the air quality disclosure on college desirability.

Panel A compares dirty and clean colleges, and cuto↵ scores went down by 2 points due to

the information shock. Disentangling the di↵erence between clean and dirty colleges, the

e↵ect is attributed to the increased competition for clean colleges by 1.5 points, as is shown

in Panel B. The results are quite robust with di↵erent fixed e↵ects specification.

5.2 Tier and track di↵erence

Given the di↵erence of resources and quality among colleges, I separately estimate the e↵ects

for three tiers. In the whole sample, the number of colleges is 202, 353, and 255 in first-,

second-, and third-tier respectively; restricting sample within clean and dirty colleges, the

number of colleges is 103, 187 and 115. Figure 3 shows raw cuto↵ scores and score residuals

for first-tier colleges. The trend is similar to pooled result, but the score di↵erence between
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dirty and clean colleges is larger: before the treatment, average cuto↵ score is higher by 8

points for dirty colleges, and converges to 5 points afterwards. For second-tier colleges, the

score di↵erence is negligible between dirty and clean group before, but starts to expand by 3

points after the disclosure, as is shown in Figure 4. Statistical results are reported in Table 3.

In contrast, Figure 5 and Table 3 report no significant impact on third-tier colleges. Given

the admission quota, most third-tier admits go to colleges in home province and the decision

is hardly a↵ected by air quality. The information shock only a↵ects application choices for

top two tiers given the large number of colleges and quota outside their home provinces.

Heterogenous responses for science and arts track are also separately estimated, as is

shown in Figure 6, 7, and Table 4. Finally, results for six specifications and magnitude

relative to the mean are reported in Figure 8 and Table 5. Compared with the arts track,

science track has a larger response by 1 points, equivalent to a 0.3% larger response relative

to the mean. One possibility is that the number of colleges for science track is more than that

for arts track, and the sorting e↵ect is larger due to more cities of option. Another potential

reason is that students and parents get more understanding of air pollution and its adverse

impact from science training, and thus care more about the environmental conditions in

general. The third reason lies in the future job market. When recruiting employees, science-

related jobs depend on technical skills and job entrance exams, so the signal of educational

background is not as pivotal as that for arts-related jobs.

5.3 Major di↵erence

When applying for colleges, students submit their ideal college list and preferred majors for

each college in order, and check “yes” or “no” for further adjustment within that college. On

the college side, colleges set fixed quotas for each major for each province when deciding the

total quota in that province. The admission process for majors is the same as college admis-

sion, with priority given to higher scores. Those above the cuto↵ score for that university

but ranked in lower places may be less likely to get into popular majors. If all the submitted
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preferred majors have no position left, the student will be adjusted into other majors with

vacancy if free adjustment is allowed. Thus, cuto↵ scores at the major level could also show

the demand and competition for di↵erent majors.

To show heterogeneous responses to pollution disclosure across majors, I conduct similar

event studies for ten majors for first-tier colleges. Among them, five majors I’m interested in

include: 1) environment, students care more about air quality and environment in general;

2) health, students care more about health conditions for themselves and for others; 3)

engineering, future polluters contribute to air pollution; 4) economics, students make rational

choice with pollution a↵ecting their utility; 5) journalism and communication, students read

more news and adjust to information quickly. I also use other five popular majors: 6)

computer science; 7) law; 8) political science and international relation; 9) math, physics,

chemistry and biology; 10) architecture and design. Given the various major names called

by di↵erent colleges, I use all majors filtered by relevant keywords to assign these ten majors

of interest.

Results in Table 6 shows the parameter of interest and magnitude relative to mean scores.

Large impacts are found in journalism, economics, computer science, and environment-

related majors, around 0.5% of the mean. Scores for engineering majors go down by 0.2%. In

contrast, almost no impact is found in health-related majors. This shows majors with more

theory work or lab experiments seem to be a↵ected less by pollution information disclosure.

6 Robustness

6.1 Pollution before and after disclosure

If pollution itself changes due to pollution disclosure, I could not separate the e↵ect of

information shock and pollution shock. If the increasing air pollution and the start of

monitors took place hand in hand, the event study will overestimates the treatment e↵ect.

In contrast, if industries were worried about their exposed environmental performance after
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monitors went on, or if governments strategically located monitors in cities with decreasing

pollution trends, or if governments strategically relocated polluting sources to cities without

monitors, the treatment e↵ect will be underestimated.

To investigate this, I use satellite PM2.5 product provided by van Donkelaar et al. (2015)

as the dependent variable to test the treatment e↵ect of information disclosure on pollution.

Figure 9 shows the yearly average PM2.5 before and after disclosure in clean and dirty

groups. Annual average PM2.5 remains around 63.5µg/m3 for dirty colleges and 34.5µg/m3

for clean colleges, with a di↵erence smaller than 1µg/m3 before and after the treatment. The

number of polluted months is also constant before and after the treatment - colleges in dirty

group experience 11.3 months with high PM2.5 in a year while colleges in clean group have

6 months fewer. I also estimate using the event study setting and find no significant results.

This confirms that the e↵ect on cuto↵ scores results from an information shock rather than

a pollution shock.

6.2 Parallel pre-trend

To make sure dirty and clean colleges have parallel trend before the disclosure event, I

estimate a dynamic specification as follows:

Sijt = Dirtyi + ��2

⇥ 1(k = �2)⇥Dirtyi + ��1

⇥ 1(k = �1)⇥Dirtyi

+�
1

⇥ 1(k = 1)⇥Dirtyi + �
2

⇥ 1(k = 2)⇥Dirtyi + �
3

⇥ 1(k = 3)⇥Dirtyi

+⌘ij + �jt + "ijt

(3)

where ��2

is the di↵erence of dirty and clean college in their cuto↵ scores two years before

the disclosure year, comparing with the disclosure year normalized to zero. With parallel

pre-trend, ��2

and ��1

should be small and insignificant. �
1

, �
2

, �
3

are the treatment e↵ect

in each year after the disclosure event.

Table 7 reports the estimated �s for pooled analysis, three tiers, and two tracks. None of

13



the pre-period has significant parameters, which confirms the validity of parallel trends as-

sumption. The post-period parameters show the impact becomes larger with time especially

for the second-tier colleges and science track, indicating that students and parents learn and

adjust to the information as time goes on.

Besides, the results are also robust with time trends added using the following specifica-

tions:

Sijt = ↵Dirtyi + �Dirtyi ⇥Dit + �Cleani ⇥ Trendt + ⌘ij + "ijt (4)

Sijt = ↵Dirtyi + �Dirtyi ⇥Dit + Trendit + ⌘ij + "ijt (5)

where Cleani ⇥ Trendt denotes linear time trend for the whole clean group. Trendit is

city-specific linear time trend. Results in Table 8 show the robustness of specifications. The

e↵ect of disclosure on cuto↵ scores remains -2 points for dirty colleges with and without

linear time trends controlled.

6.3 Alternative classification

To check the sensitivity of my results, another classification is used to construct dirty and

clean college groups. I define the clean group as colleges with yearly average AQI below

80, and dirty group as colleges with yearly average AQI above 120, given AQI=100 as the

threshold for good and polluted days. This also classifies about 200 colleges into each group,

about one forth of all China’s colleges.

Figure 10 and Table 9 report the estimated e↵ects for three tiers two tracks. The mag-

nitude of the e↵ects is quite similar as that in Figure 8 and Table 5. The disclosure drives

cuto↵ scores down by 2.5 and 2 points for science and arts track respectively.
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6.4 Placebo analysis

Instead of using actual disclosure years, I conduct placebo tests using cuto↵ scores in 2008-

2012 before the study period and 2010 as fake event year. This test examines the compara-

bility of dirty and clean colleges before the study period.

Results shown in Figure 11 and Table 10 indicate that the placebo disclosure year does

not generate any impact on the cuto↵ scores. In general, admission to a dirty college is more

di�cult than clean college and the di↵erence is the same over five years. With the same

specification, the estimated parameter is small and insignificant for first- and second-tier

colleges.

6.5 Pollution spikes

Apart from discretely comparing dirty and clean colleges, I conceptualize cuto↵ scores this

year as a function of pollution spikes last year, and examine how such relationship changes

as pollution disclosure takes place in the city. The estimation equation is as follows:

Sijt = �Dit + �Pit�1

⇥Dit + ⌘ij + �jt + "ijt (6)

where Pit�1

denotes yearly pollution one year before in college city i. Due to data limitation

for other pollutants before monitors started, I use satellite PM2.5 product to construct this

variable. Here, three specifications are used: 1) logged yearly average PM2.5; 2) the number

of high PM2.5 months last year, namely the number of months with monthly average PM2.5

over 35µg/m3, threshold value given by China’s AQI standard; 3) the number of very high

PM2.5 months last year, monthly average PM2.5 over 75µg/m3. The key parameter of

interest is �, which represents average changes in cuto↵ scores with the increase in PM2.5

in pollution-disclosing cities.

Table 11 reports estimation of � coe�cients. When yearly average PM2.5 increases by

1%, cuto↵ scores for first- and second-tier colleges go down and the magnitude is larger for
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science track, consistent with my main findings. Compared with high months specification,

the number of very high months is a more powerful factor a↵ecting cuto↵ scores. 35 and

75µg/m3 are thresholds for excellent-good-polluted air quality. This shows students and

parents care more about the number of polluted months than not so clean months when

making college choice decisions. Again, pollution disclosure has no significant impact on

third-tier colleges, whichever tracks or pollution specifications.

6.6 E↵ects on min & max scores

To test the robustness of my results, I use min and max scores at college-year-province level

instead of mean scores. Though min scores are usually the thresholds for admission, in

reality, it is possible that some students with scores below the cuto↵ get accepted due to

extra scores from other characteristics such as being an ethnic minority, being a child of a

military martyr, or having talents in sports, music and math, etc (Jia and Li, 2016). Max

scores are also not an ideal indicator for college desirability because it could be driven by

outliers or some bad application strategies for students with higher scores.

Table 12 reports the parameters of interest for three tiers, two tracks. The results are

quite similar with those using mean scores. In general, pollution disclosure drives down the

desirability of first- and second-tier colleges, and small and insignificant impacts are found

in third-tier colleges.

7 Conclusion

In this paper, I provide empirical evidence that information disclosure can lead to higher

competition for colleges with better air quality. Examining the nationwide monitor roll-

out starting from 2013 and analyzing comprehensive cuto↵ data for all China’s colleges in

2008-2016, I find that first- and second-tier colleges in clean cities receive more severe com-

petition captured by higher cuto↵ scores. This e↵ect is higher for science track and for
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journalism, economics, and environment-related majors. My findings are consistent with the

avoidance behaviors against adverse environmental conditions and highlight the importance

of environmental information transparency.

From the public perspective, good colleges are less attractive with dirty environment

conditions, which broadens the externality of pollution. Given the cuto↵ scores of individual

colleges, the decreased cuto↵ by 3 points for science track and 2 points for arts track is

equivalent to a lowered ranking by 10 schools measured by CEE scores, namely 5% of all

colleges in each tier. For local governments, clearing the air is an e↵ective way to attract

talents and even more beneficial when considering human capital accumulation, as college

graduates tend to work close to their universities especially in large cities8.

In terms of student numbers, the magnitude of this e↵ect is about 0.3% for the arts track

and 0.6% for the science track. Given the distribution of test scores, this e↵ect is equivalent

to about 20 and 30 thousand students in China. Namely, every year, 20 thousand students

that would have applied to other colleges instead sort to clean colleges after exposed to

environmental information.

If assuming the quality of colleges remains stable before and after the information shock,

this e↵ect refers to a tradeo↵ between college quality and clean air faced by students and

their parents. From the graduate wage survey in 2018, average monthly wage is 300, 400,

700 RMB lower for 1-, 3-, 5-year graduates, comparing No. 110 college with No. 100 college.

Namely, students gives up $4K income over the first five years after graduation. Assuming

a steady wage growth in the first ten years and same wage later, over a forty-year lifetime

working period, the forgiven income is $85K over the whole life cycle, as a tradeo↵ of better

air quality during undergraduate study.

From the research perspective, my result confirms that pollution could serve as an ex-

ogenous variation on school choices. When estimating the payo↵ of schooling, education

studies try to address the problem that di↵erent types of students go to di↵erent schools by

8In 2017, 60, 70, 45% of college graduates in Beijing, Shanghai, Guangzhou chose to work in the city
they graduated from. The number is 20-45% for other large cities: www.jiemodui.com/N/85364.html
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using the distance to schools as an instrument or exploring the discontinuity around cuto↵

scores. My findings exploit another variation for future studies especially for areas with poor

environmental conditions.

My findings have some policy implications for countries with pollution challenges. First,

it confirms that providing pollution information will work. It is costly to build monitors

and to collect and deliver their reports, but it is worthwhile if the public raises awareness

and conduct further avoidance behaviors. Consistent with Barwick et al. (2019), this study

adds another aspect of the value of information. Second, this paper supports the benefit of

environmental regulations. Beyond the existing literature on the value of air quality focussing

on health and productivity, this result suggests air pollution also a↵ects school choices,

and improving air quality could attract high ability students and enhance human capital

accumulation. Third, my work shows students and parents do care about environmental

conditions of schools. Given the concentrated population on campus and the importance of

college learning over the life cycle, this study may call for further emphasis on both indoor

and outdoor air quality improvement at schools.
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Figure 1: Monitors Distribution and County Coverage Rate, 2013-2018
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Table 1: Summary Statistics

Whole sample High Low Di↵erence

College 848 214 191
Yearly PM10 113.50 167.50 75.01 92.49

(39.06) (27.94) (16.32) [5.41]
Yearly PM2.5 46.61 72.54 29.63 42.92

(17.81) (11.54) (9.10) [2.53]
Yearly AQI 98.87 138.23 69.14 69.09

(28.88) (18.91) (11.73) [3.74]
Mean score for admits 573.02 582.63 576.55 6.08
arts, first-tier (43.28) (46.03) (47.51) [0.84]

18864 7178 5372
Mean score for admits 570.89 582.74 575.92 6.81
science, first-tier (50.59) (54.63) (54.57) [0.83]

29200 10348 7519
Mean score for admits 515.03 516.75 518.69 -1.94
arts, second-tier (41.48) (40.65) (42.59) [0.62]

36296 10447 7823
Mean score for admits 494.21 496.75 497.03 -0.27
science, second-tier (49.67) (49.22) (50.25) [0.64]

50736 13433 11147
Mean score for admits 456.46 453.23 452.63 0.60
arts, third-tier (37.82) (39.06) (37.14) [1.02]

10592 3137 2526
Mean score for admits 430.63 428.98 423.89 5.09
science, third-tier (45.65) (46.92) (46.55) [1.18]

12216 3818 2693

Notes: Standard deviations are reported in parentheses. Standard
errors are reported in brackets.
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Figure 2: Cuto↵ scores and score residuals, pooled analysis
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Notes : Panel A includes no control; Panel B includes province fixed e↵ects; Panel C includes
year fixed e↵ects; Panel D includes province fixed e↵ects and year fixed e↵ects; Panel
E includes province by year fixed e↵ects; Panel F includes province by year and city by
province fixed e↵ects.
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Table 2: E↵ects of pollution disclosure on cuto↵ scores, pooled analysis

Panel A: only dirty and clean colleges

Dirty 3.990 3.345 2.698** 3.222***
(2.636) (2.417) (1.167) (0.756)

Dirty⇥Post -2.308 -2.308 -1.014 -2.062*** -2.062***
(3.971) (3.972) (1.245) (0.424) (0.445)

R2 0.0006 0.3245 0.3299 0.3751 0.9298
Observations 61434 61434 61434 61434 61434

Panel B: all colleges

Dirty 11.93*** 10.80*** 9.480*** 9.939***
(1.999) (2.127) (0.918) (0.693)

Dirty⇥Post -2.308 -2.308 0.340 -0.578 -0.578
(3.971) (3.972) (0.977) (0.451) (0.474)

Clean 8.586*** 8.052*** 6.728*** 6.678***
(2.224) (1.955) (1.048) (0.976)

Clean⇥Post -1.295 -1.295 1.354** 1.454*** 1.454***
(3.885) (3.886) (0.556) (0.304) (0.319)

R2 0.0054 0.3522 0.3580 0.4046 0.9263
Observations 123024 123024 123024 123024 123024
province FE Y Y
year FE Y
prov-year FE Y Y
college-prov FE Y

Notes: * significant at 1 percent level, ** significant at 5 percent level, * significant at 10 percent

level. Standard errors are clustered by province.
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Figure 3: Cuto↵ scores and score residuals, first-tier colleges
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Notes : Panel A includes no control; Panel B includes province fixed e↵ects; Panel C includes
year fixed e↵ects; Panel D includes province fixed e↵ects and year fixed e↵ects; Panel
E includes province by year fixed e↵ects; Panel F includes province by year and city by
province fixed e↵ects.
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Figure 4: Cuto↵ scores and score residuals, second-tier colleges
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Figure 5: Cuto↵ scores and score residuals, third-tier colleges
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Notes : Panel A includes no control; Panel B includes province fixed e↵ects; Panel C includes
year fixed e↵ects; Panel D includes province fixed e↵ects and year fixed e↵ects; Panel
E includes province by year fixed e↵ects; Panel F includes province by year and city by
province fixed e↵ects.
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Table 3: E↵ects of pollution disclosure on cuto↵ scores, three tiers

First Second Third

Dirty⇥Post -2.974*** -2.083*** -0.431
(0.424) (0.451) (1.303)

R2 0.7833 0.5151 0.3564
Observations 21522 31014 8898
Dirty⇥Post -1.295*** -1.070** 1.221

(0.416) (0.373) (1.501)
Clean⇥Post 1.727*** 0.944** 1.536*

(0.404) (0.365) (0.679)
R2 0.7889 0.4775 0.3459
Observations 41100 62658 19266
prov-year FE Y Y Y
college-prov FE Y Y Y

Notes: * significant at 1 percent level, ** significant at 5 percent level,

* significant at 10 percent level. Standard errors are clustered by

province.

Table 4: E↵ects of pollution disclosure on cuto↵ scores, science and arts

Science Arts

Dirty⇥Post -2.441*** -1.393**
(0.433) (0.519)

R2 0.9778 0.9786
Observations 35346 26088
Dirty⇥Post -0.502 -0.491

(0.460) (0.540)
Clean⇥Post 1.916*** 0.869**

(0.367) (0.325)
R2 0.9768 0.9781
Observations 70674 52350
prov-year FE Y Y
college-prov FE Y Y

Notes: * significant at 1 percent level, ** significant at 5

percent level, * significant at 10 percent level. Standard

errors are clustered by province.
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Figure 6: Cuto↵ scores and score residuals, science track
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Figure 7: Cuto↵ scores and score residuals, arts track
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Figure 8: Cuto↵ residuals, science and arts, three tiers
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Panel A shows residuals for science track, first-tier colleges. Panel A, C, E are for science
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for second-tier colleges, Panel E, F are for third-tier colleges.

29



Table 5: E↵ects of pollution disclosure on cuto↵ scores, two tracks, three tiers

Sci 1 Sci 2 Sci 3 Arts 1 Arts 2 Arts 3

Dirty⇥Post -3.468*** -2.810*** -0.674 -1.691*** -1.517*** 0.298
(0.471) (0.515) (1.374) (0.442) (0.482) (1.295)
-0.61% -0.57% -0.20% -0.29% -0.29% 0.03%

R2 0.9514 0.8682 0.7582 0.9255 0.8265 0.7027
Observations 12696 17898 4752 8826 13116 4146
Dirty⇥Post -1.742*** -0.723 1.287 -0.631 -1.299*** 1.340

(0.46) (0.479) (1.411) (0.529) (0.330) (1.681)
-0.30% -0.15% 0.27% -0.02% -0.25% 0.25%

Clean⇥Post 1.757*** 2.033*** 1.833** 1.129** 0.174 0.878
(0.409) (0.436) (0.775) (0.428) (0.351) (0.738)
0.31% 0.41% 0.46% 0.19% 0.03% 0.20%

R2 0.9547 0.8619 0.7298 0.9248 0.7983 0.6703
Observations 24636 35784 10254 16464 26874 9012
prov-year FE Y Y Y Y Y Y
college-prov FE Y Y Y Y Y Y

Notes: * significant at 1 percent level, ** significant at 5 percent level, * significant at 10 percent level. Standard

errors are clustered by province.

Table 6: E↵ects of pollution disclosure on cuto↵ scores by major

� std.err. % of mean R2 Observations

Environment -2.404** (1.150) -0.42% 0.9122 13166
Health 0.117 (0.805) 0.02% 0.8389 14347
Engineering -1.087** (0.411) -0.19% 0.8744 129621
Economics -2.761*** (0.638) -0.47% 0.7885 50316
Journalism -3.097*** (1.011) -0.53% 0.8107 6821
Computer Science -2.585*** (0.431) -0.45% 0.9014 35432
Law -1.201 (1.61) -0.21% 0.7808 13265
Political Science -0.723 (0.894) -0.12% 0.8543 4109
Basic Science -0.559 (0.563) -0.10% 0.9032 44148
Design 0.288 (0.469) 0.05% 0.8950 17164

Notes: * significant at 1 percent level, ** significant at 5 percent level, * significant at 10 percent level.

Standard errors are clustered by province.
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Figure 9: Yearly average PM2.5, number of high PM2.5 months, before and after disclosure
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Table 7: E↵ects of pollution disclosure on cuto↵ scores, dynamic event time

Pooled 1st-tier 2nd-tier 3rd-tier Sci Arts

��2

0.0492 -0.108 0.0686 1.379 -0.293 0.354
(0.346) (0.467) (0.488) (0.825) (0.300) (0.354)

��1

-0.164 -0.246 -0.453 1.540 -0.290 0.244
(0.269) (0.267) (0.397) (0.971) (0.249) (0.383)

�
1

-0.923 -1.958*** -1.005* 1.435 -1.240** -0.375
(0.690) (0.584) (0.555) (2.110) (0.528) (1.044)

�
2

-2.357*** -3.590*** 2.315*** 0.175 -2.709*** -1.687***
(0.332) (0.458) (0.430) (1.226) (0.392) (0.454)

�
3

-3.021*** -3.729*** -3.313*** 0.0160 -3.957*** -1.52***
(0.466) (0.613) (0.534) (1.351) (0.549) (0.492)

R2 0.9298 0.9238 0.8733 0.7859 0.9778 0.9786
Observations 61434 21522 31014 8898 35346 26088
prov-year FE Y Y Y Y Y Y
college-prov FE Y Y Y Y Y Y

Notes: * significant at 1 percent level, ** significant at 5 percent level, * significant at 10 percent level. Standard

errors are clustered by province.

Table 8: E↵ects of pollution disclosure on cuto↵ scores, with time trends controlled

Baseline Clean group trend City-specific trends

Dirty 3.222*** 4.538*** 4.773***
(0.756) (4.27) (1.190)

Dirty⇥Post -2.062*** -2.062*** -2.308*** -2.308*** -2.308*** -2.308***
(0.424) (0.445) (0.599) (0.266) (0.575) (0.266)

R2 0.3751 0.9298 0.3245 0.8792 0.3773 0.8798
Observations 61434 61434 61434 61434 61434 61434
prov FE Y Y Y
college-prov FE Y Y Y

Notes: * significant at 1 percent level, ** significant at 5 percent level, * significant at 10 percent level. Standard

errors are clustered by province.
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Figure 10: Cuto↵ residuals using di↵erent classification
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Notes : All these six panels include province by year and city by province fixed e↵ects.
Panel A shows residuals for science track, first-tier colleges. Panel A, C, E are for science
track, Panel B, D, F are for arts track; Panel A, B are for first-tier colleges, Panel C, D are
for second-tier colleges, Panel E, F are for third-tier colleges.
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Table 9: E↵ects of pollution disclosure on cuto↵ scores using di↵erent classification

Sci 1 Sci 2 Sci 3 Arts 1 Arts 2 Arts 3

Dirty⇥Post -2.601*** -2.460*** -0.754 -1.506*** -1.986*** 0.744
(0.485) (0.500) (1.406) (0.423) (0.427) (1.582)

R2 0.9502 0.8659 0.7145 0.9233 0.8143 0.6563
Observations 8676 16872 5016 6252 12906 4494
Dirty⇥Post 0.805* -0.307 -0.527 0.284 -0.465 -1.229

(0.412) (0.286) (0.976) (0.275) (0.334) (0.930)
Clean⇥Post 3.486*** 2.169*** 0.236 1.818*** 1.560*** -1.922*

(0.405) (0.443) (0.711) (0.326) (0.348) (1.048)
R2 0.9548 0.8618 0.7294 0.9249 0.7985 0.6706
Observations 24636 35784 10254 16464 26874 9012
prov-year FE Y Y Y Y Y Y
college-prov FE Y Y Y Y Y Y

Notes: * significant at 1 percent level, ** significant at 5 percent level, * significant at 10 percent level. Standard

errors are clustered by province.

Table 10: E↵ects of pollution disclosure on cuto↵ scores, placebo analysis

Sci 1 Sci 2 Sci 3 Arts 1 Arts 2 Arts 3

Dirty⇥Post -0.649 0.170 1.894** -0.343 0.100 1.040
(0.385) (0.360) (0.916) (0.288) (0.353) (0.755)

R2 0.9869 0.9833 0.9733 0.9891 0.9802 0.9720
Observations 19077 38795 18602 13609 31398 17055
prov-year FE Y Y Y Y Y Y
college-prov FE Y Y Y Y Y Y

Notes: * significant at 1 percent level, ** significant at 5 percent level, * significant at 10 percent level.

Standard errors are clustered by province.

Table 11: E↵ects of pollution disclosure on cuto↵ scores, pollution gradient

Pollution⇥1(after) Sci 1 Sci 2 Sci 3 Arts 1 Arts 2 Arts 3

ln Year mean -3.185*** -2.025*** -1.656 -1.402** -1.302*** 0.379
(0.698) (0.462) (1.881) (0.641) (0.447) (1.200)

High month -0.328*** -0.236*** -0.180 -0.139* -0.153** 0.0903
(>35µg/m3) (0.0883) (0.0597) (0.218) (0.0785) (0.0589) (0.134)
Very high month -0.384** -0.338*** -0.193 -0.268** -0.230** -0.0132
(>75µg/m3) (0.138) (0.0861) (0.394) (0.113) (0.0893) (0.328)

Notes: * significant at 1 percent level, ** significant at 5 percent level, * significant at 10 percent level. Standard

errors are clustered by province.
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Figure 11: Cuto↵ residuals, placebo analysis
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Notes : Panel A includes no control; Panel B includes province fixed e↵ects; Panel C includes
year fixed e↵ects; Panel D includes province fixed e↵ects and year fixed e↵ects; Panel
E includes province by year fixed e↵ects; Panel F includes province by year and city by
province fixed e↵ects.

35



Table 12: E↵ects of pollution disclosure on min and max scores

Min score

Sci 1 Sci 2 Sci 3 Arts 1 Arts 2 Arts 3

Dirty⇥Post -3.472*** -1.950*** -1.626 -1.618** -1.875*** -1.321
(1.091) (0.406) (1.325) (0.724) (0.500) (2.305)

R2 0.7754 0.7395 0.7043 0.7682 0.7433 0.6593
Observations 8980 16652 4152 6176 12956 3736

Max score

Sci 1 Sci 2 Sci 3 Arts 1 Arts 2 Arts 3

Dirty⇥Post -1.858*** -2.361** -0.952 -1.461** -1.548** -0.634
(0.534) (1.016) (0.680) (0.571) (0.627) (1.126)

R2 0.9157 0.8084 0.6492 0.8745 0.7968 0.6148
Observations 14990 28054 10209 10475 22516 9268
prov-year FE Y Y Y Y Y Y
college-prov FE Y Y Y Y Y Y

Notes: * significant at 1 percent level, ** significant at 5 percent level, * significant at 10 percent level.

Standard errors are clustered by province.
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