



CEEP Working Paper Series 
Working Paper Number 7 

August 2019 

 Ground-Level Ozone and Corn Yields in the United States 

Christopher D. A. Boone, Wolfram Schlenker, Juha Siikamäki 

https://ceep.columbia.edu/sites/default/files/content/papers/n7.pdf

https://ceep.columbia.edu/sites/default/files/content/papers/n7.pdf


Ground-Level Ozone and Corn Yields in
the United States∗

Christopher D. A. Boone† Wolfram Schlenker‡ Juha Siikamäki§
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Abstract

We provide new empirical evidence of a nonlinear effect of ozone on corn yields.
Our county-level panel analysis links observed historical yields to measures of air pol-
lution constructed from fine-scaled hourly pollution monitor data. We find a critical
threshold of 65 ppb for hourly daytime ozone concentration, considerably higher than
the 40 ppb threshold derived from controlled experiments and used as the basis for air
quality standards in Europe. Exposure to concentrations above this threshold has large
negative impacts on yields. Our estimates indicate that a substantial fraction (between
32% and 44%) of the growth in U.S. corn yields observed between 1990 and 2014 can
be attributed to reductions in peak ozone levels. A back-of-the envelope calculation
reveals that the decline in peak ozone levels in the U.S. has reduced global food prices
of the four basic staple crops by roughly 10% and increased consumer surplus of these
commodities by $38 billion annually.
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1 Introduction

Corn yields in the United Sates have been trending upward at a rapid pace since 1950,

experiencing a remarkable productivity gain that outpaced most other sectors of the economy.

Some commonly cited reasons for this gain include the expanded use of fertilizer, irrigation,

and pesticides, as well as the introduction of new crop varieties like hybrid corn (Jorgenson

and Gollop, 1992; Alston et al., 1998). The United States currently produces roughly 40% of

the world’s corn, which is responsible for a substantial portion of global caloric consumption.

Four commodities (corn, wheat, rice and soybeans) account for 75% of the calories that

humans consume (Cassman, 1999).1 Among those four commodities, U.S. corn production

on average accounted for 11% of the caloric production in 1990-2014. Given its market

share, any effect on U.S. corn production influences global commodity markets of all four

commodities, where prices of these substitutes move closely together.

There was a general downward trend in real agricultural commodity prices over the 20th

century as production increases outpaced increases in demand. This trend reversed as prices

increased during the first decade of the 21st century, but since 2012 prices have resumed a

downward trend. The demand for calories has increased as emerging economies switch to a

meat-based diet that uses corn as feedstock. At the same time, corn-based biofuel mandates

have put additional pressure on food supplies (Hill et al., 2006). The combined increase in

calorie demand can only be met if yields continue to grow rapidly. Understanding the driving

forces behind the strong past growth in average yields is an important step in modeling the

future of commodity prices. While climate change has the potential to significantly alter

yields in the future (Schlenker and Roberts, 2009), current empirical estimates are usually

calculated relative to existing trends, which are taken as exogenous. A better understanding

of the causes of yield growth is crucial to modeling future crop prices and food security.

In this paper we focus on the contribution of air pollution reduction to agricultural yield

growth in the United States using a county-level panel of corn yields for the last 25 years

(1990-2014). The counties in our sample account for 91% of U.S. corn production. We

combine the data on yields with a variety of measures of local ozone exposure, which we

construct using hourly readings from all ozone monitors maintained by the EPA. We focus

in particular on identifying nonlinearities in the relationship between ozone and yields.

We make three contributions to the literature. First, we find strong and robust evidence

that the effect of ozone exposure is large in magnitude and may result in substantial produc-

1On a calorie-weighted basis, the U.S. share of total production of corn, rice, soybeans and wheat was
23%, and the majority of that share comes from corn (Roberts and Schlenker, 2013).
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tion losses. Our flexible nonlinear specification allows us to identify a critical threshold of

65 parts per billion (ppb): below this threshold, there is no statistically significant effect of

ozone exposure on yields; above this threshold, however, there is a negative and significant

effect on yields, and the magnitude of the effect is linearly increasing in ozone concentrations

above 65 ppb. We compare our measure to others that are used as the basis for pollution

standards. Our measure performs better at explaining corn yields than those used as the

basis for current air quality standards in the U.S. and in Europe.2 It also outperforms the

W126 measure which was recently proposed by the U.S. Environmental Protection Agency

(EPA) as the basis of a revised air quality standard.

Second, in order to get a better sense of the magnitude of the effects, we use our empirical

estimates to investigate the impact of peak ozone concentrations on crop production. We

compare production in our sample counties under observed ozone levels to a counterfactual

where ozone concentrations are truncated at 65 ppb, i.e., all hourly ozone readings above

65 ppb are set to 65 ppb. The estimated crop losses due to ozone pollution above this

threshold are as much as 20% of potential production in the early years of our sample. The

estimated losses in recent years are smaller, resulting from the decline in exposure to ozone

concentrations above 65 ppb. Peak ozone levels have been trending downward in recent years,

and our estimates of production shortfalls due to ozone therefore decline from almost 20%

at the beginning of our sample period to almost zero recently. At the same time, corn yields

have been growing at a rate of 1.5% per year, for a total increase of 43% between 1990 and

2014. Our estimates imply that the reduction in peak ozone levels is responsible for between

32% and 44% of the observed growth in corn yields over this period. Forty-four percent of

the observed yield growth represents a 19% overall increase in yields and corresponds to the

caloric equivalent of feeding 170 million people on a 2000 calories/day diet.

Third, we derive the effect of the reduction of peak ozone levels on food prices. Elimi-

nation of peak ozone in the United States has decreased global food prices of the four basic

staple crops by roughly 10% and increased consumer surplus of these commodities by 38

billion USD annually. While consumers of basic calories gain, producers suffer. U.S. corn

producers have seen increased yields, yet the reduction in prices offset these gains. Produc-

ers of the four basic commodities outside the U.S. saw a reduction of surplus through lower

prices.

Understanding the relationship between ozone exposure and crop yields is important

2The secondary standard for U.S. ozone pollution is based on the daily maximum 8-hour average, and
the secondary standard in Europe is based on linear exposure above a lower threshold of 40 ppb that has
been identified in laboratory studies.
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for the design of regulatory standards. Regulatory agencies generally do not place limits on

instantaneous concentrations but instead impose limits on some aggregate statistic calculated

using the entire set of observed concentrations. The United States sets two regulatory

standards for air pollutants: a primary standard designed to protect human health, and a

secondary standard designed to protect “human welfare,” which includes agricultural yields.3

For ozone, the current secondary standard sets a limit based on the average concentration

observed over a consecutive 8-hour period.4 As part of a recent review process, the EPA

proposed to revise the secondary standard and instead base it on a measure of cumulative

monthly ozone exposure, where cumulative monthly exposure is calculated as a nonlinear

weighted sum of hourly ozone concentrations.5 In Europe, the ozone standard is based on

the total cumulative exposure above a threshold concentration of 40 ppb. Our results allow

us to compare the performance across alternative measures of ozone exposure in explaining

the variation in crop yields.

Much of the current understanding about the effects of ozone on crop yields comes from

the results of controlled experiments using growth chambers such as glass houses or open-

top chambers (Heagle, 1989). In these experiments, crops are grown in fully or partially

enclosed environments, where the ambient ozone concentration is controlled by adding ozone

or filtering the air. More recently, experiments have been run in open-air environments using

free-air gas concentration enrichment technology (Morgan et al., 2006). Experiments usually

differentiate between acute damage (from short-term exposure) as well as chronic damage,

that is caused by continuous longer-term exposure to lower levels. We focus on acute damage

from peak hourly readings.

Although such experiments offer powerful means to test for the effects of ozone in con-

trolled settings, the differences between the controlled settings and actual agricultural pro-

duction environments, including the full range of relevant environmental conditions (e.g.,

weather, insects, disease) and farmers’ production decisions, may considerably limit the ap-

plicability of the currently available evidence to project damages from ozone pollution in

real-world agricultural production. This has led to calls for comparable assessments using

actual crop production and environmental data. For example, the extensive assessment of

3The two standards are currently the same for most pollutants.
4More specifically, the limit is imposed on the 4th highest daily maximum 8-hour average, averaged over

three consecutive years.
5The agency ultimately decided to continue using the same index, based on consecutive 8-hour aver-

ages, but to make the standard more stringent. Information on the 2015 National Ambient Air Quality
Standards (NAAQS) for Ozone can be found at https://www.epa.gov/ground-level-ozone-pollution/2015-
national-ambient-air-quality-standards-naaqs-ozone.
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ozone pollution by the Royal Society highlights the need for empirical studies to verify the

effects of ozone pollution, including potential threshold effects, using observational data un-

der real-world growing conditions (Royal Society, 2008). Similar concerns were raised by the

United States Environmental Protection Agency in the recent regulatory documents con-

cerning the National Ambient Air Quality Standard for ozone (Environmental Protection

Agency, 2008).

Previous research employing data from real-world agriculture has studied the effect of

ozone on corn and soybean yields in a cross-section of several hundred fields in the Eastern

U.S. (Westenbarger and Frisvold, 1995). However, cross-sectional studies are potentially

subject to and limited by omitted variable bias. Another study focused on soybean yields

using five years of data from three states in the Midwestern U.S. (Fishman et al., 2010).

The most closely related paper to ours is by McGrath et al. (2015), who also find significant

negative impacts of ozone pollution on crop yields using panel data.6 Our analysis focuses

on corn, the key agricultural crop in the U.S., and encompasses almost all corn production

in the United States over a time period of 25 years. Following the results of earlier studies,

we allow for the existence of thresholds and nonlinear relationships. We investigate these

nonlinearities in more detail than has been done in previous observational studies or has

been feasible in experimental settings where there are practical limitations on how much the

treatment can be varied.

One empirical challenge that we face involves transforming our pollution data so that

it corresponds to the same spatial and temporal scale as our agricultural data. Simply

averaging across space or time makes it harder to identify possible nonlinear relationships

and can lead to significant attenuation bias, and we therefore take great care to capture

the actual ozone exposure. To do so, we use hourly ozone readings to construct several

measures of ozone exposure before aggregating them over the entire growing season (March

to August). We also develop a new methodology to approximate missing values using the

cumulative distribution function of each monitor station. We then fit a pollution surface

between monitors and average the values over the agricultural area within each county to

6That paper was written concurrently with ours and uses the same underlying data sources for crop
production and pollution. Our paper differs in a number of key respects. By accounting for nonlinearities
when aggregating across space and time and by capturing the effects of ozone exposure at different concen-
trations, we show that the threshold estimated using actual field-based yields is substantially higher than the
threshold estimated from earlier experiments; we use these estimates to evaluate the performance of different
ozone measures; and we show that failure to properly account for these nonlinearities substantially biases the
estimates of pollution-related crop losses as well as projections for future yields. We also employ nonlinear
transformations of temperature that have been shown to influence yields, and we discuss the effects of ozone
on yields trends and food prices.
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obtain a more accurate measure of the actual exposure. The five sets of ozone variables that

we construct are: (i) the maximum daily 8-hour average, which is the basis for the current

U.S. secondary (and primary) ozone standard; (ii) the simple daytime mean exposure; (iii)

the weighted sum of all hourly daytime exposure using EPA’s W126 weight, the basis for the

proposed revised secondary ozone standard; (iv) a measure of cumulative linear exposure

above a threshold, which has been used in laboratory experiments that form the basis for

some regulatory standards in Europe;7 and (v) a semi-parametric approach that models the

relationship with the help of flexible restricted cubic splines.

In our baseline specifications we control for weather since ozone formation is correlated

with temperature, which itself affects yields (Schlenker and Roberts, 2009). We also include

two sets of time controls: county-specific quadratic time trends to capture overall yield trends

that have varied in space (Burke and Emerick, 2016), as well as year fixed effects to capture

system-wide effects like movements in global commodity prices. To address concerns about

omitted variables bias, we show that our results are robust to a variety of controls and across

a number of specifications. The inclusion of county fixed effects as well as county-specific time

trends ensures that the parameters are identified by fluctuations around baselines that are

allowed to trend separately in each county. Threats to the validity of our empirical estimates

must entail some unobserved factor that varies systematically with ozone around a county-

specific mean or trend. The most likely candidate would be weather. We demonstrate

that our results are insensitive to the inclusion of a variety of different weather-related

controls. The other obvious candidates are other (non-ozone) air pollutants, and we show

that controlling for other pollutants leaves the estimated effect of ozone unchanged.

2 Data

We begin by describing the data on maize yields and ozone pollution that we use for our

analysis. This section outlines in detail how we aggregate the hourly ozone readings at the

monitor level into daily ozone measures at the county level (which are then aggregated over

the growing season).

7While the European standards usually rely on a 40 ppb threshold, we vary it between 1 ppb and 120 ppb.
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2.1 Agricultural Yields

Data on agricultural yields were obtained from the National Agricultural Statistics Service

Quick Stats website for the years 1990-2014.8 Annual county-level corn yields are defined as

the ratio of total production in a county to the harvested area. We focus on dryland agricul-

ture and therefore only use counties east of the 100 degree meridian (except Florida) that

report corn yields in at least half of the years in our sample (13 out of the 25). These counties

are shaded grey in Figure 1 and account for on average 91% of annual U.S. production in

1990-2014. The aggregate log yield in our sample is shown in Figure 2.

2.2 Pollution Data

Since yield data are reported on an annual level for each county, we need to aggregate the

hourly ozone data to an annual county-level panel as well. Earlier studies linking corn yields

to weather outcomes used a growing season of March 1st-August 31st of each year (Schlenker

and Roberts, 2009). Our model uses the same definition of the growing season to derive a

season-total ozone measure.

We start by downloading hourly monitor-level ozone readings for all monitors in the

United States for the years 1990-2014.9 Some ozone monitors only operate for a fraction of a

season. Figure 3 shows the average number of monitors that report ozone readings on a day

across the days of the year. There is a significant increase in the number of active monitors

on April 1st. We therefore separately interpolate ozone data for the month of March (when

fewer monitors are available) and the time period from April through August.

For each of the two time periods (March and April-August) we follow the same script.

First, the data set is restricted to monitors that report values for at least 75% of the days

in the time period of consideration in a year. We do this separately for each year as few

monitors report consistently for the entire time period 1990-2014. It is possible that a

monitor is included in only some years. The number of “good” monitors in our data set,

i.e., the ones that have at least 75% of their daily values non-missing for at least one of the

time periods, are shown in Figure 4.

Second, for each monitor, we aggregate the hourly readings into daily statistics, such

as average daily concentration or total exposure above a threshold concentration. These

statistics are defined in Table 1 below.10

8We downloaded data from the “Survey” program at http://quickstats.nass.usda.gov.
9http://www.epa.gov/ttn/airs/airsaqs/detaildata/downloadaqsdata.htm

10Some hourly observations are missing. Since hourly ozone readings are highly serially correlated, missing
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Third, we fill in the missing daily values from the previous step by using the average

cumulative distribution function (CDF) of surrounding non-missing stations. Specifically,

we compute the empirical CDF of daily readings for each monitor; then, for each non-

missing monitor on a particular day, we compute the corresponding percentile of that day’s

reading based on the monitor’s CDF; and finally, for any monitor with a missing value

on that day, we compute the weighted average of the percentiles from all the surrounding

non-missing monitors, where the weights are the inverse squared distance, and we fill in

the missing value using the value that corresponds to the weighted-average percentile from

that (missing) monitor’s own CDF.11 This procedure produces a balanced panel of daily

monitor-level ozone characteristics for each year and time period.

Fourth, we interpolate the daily monitor readings to the fine-scaled grid used by the

Parameter-elevation Regressions on Independent Slopes Model (PRISM),12 the grid under-

lying our daily weather data. It is an evenly spaced grid in both longitude and latitude with

a grid size of 1
24

degrees. Pollution readings at a grid point are the squared inverse distance

weighted average of all monitor readings.13

Finally, we then average the daily ozone readings for all grid cells in the county in order

to construct a county-average daily ozone reading, weighting by the cropland area in each

grid cell, which was obtained from the 1992 Land Cover database provided to us by Shawn

Buchholz at the Economic Research Service at USDA.

2.3 Weather Data

Ozone is highly collinear with solar radiation and temperature. It forms from Volatile Or-

ganic Compounds (VOC) and Nitrogen Oxides (NOx). Omitting temperature controls from

observations are better approximated by the previous reading than the daily average. We thus weight each
hourly observation by the time until the next reading. For example, if readings occur at 9 am and 11 am, the
9 am reading will get a weight of 2 (hours). By the same token, if the first readings of the day are missing,
we count the hours until the first reported reading and assign it to the first observed reading. For example,
if we calculate the daily average between 6 am and 8 pm, and readings occur at 8 am, 9 am, and 10 am,
the 8 am reading will receive a weight of 3 (hours). Similarly, if the last readings of the day are missing, we
assign them to the last observed reading. As a result, the weights of all readings on a day always sum to the
number of hours of the day over which the ozone measure is calculated.

11For example, if a non-missing monitor 1 km away has a value that equals 80th percentile of all readings
in 1990-2014 for the given time period (e.g., March or April-August), and another that is twice as far away
has a value that equals the 60th percentile, the weighted average will be the 76th percentile. Supposing that
the weighted average of all non-missing monitors corresponds to the 76th percentile, we then replace the
missing value at the station with the value at the 76th percentile of its own cumulative distribution function.

12http://www.prism.oregonstate.edu
13We always add 1 m to the distance to avoid division by zero in case a monitor is located at a grid

centroid.
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the regression will bias the ozone coefficient as it would attribute the effects of temperature

to ozone. We use the same fine-scaled daily weather data set of Schlenker and Roberts (2009)

that gives daily minimum and maximum temperatures on a 1
24

-degree grid (2.5 minutes, or

about 4.5 km by 4.5 km) in both longitude and latitude, but extend it to 2014. This allows us

to derive degree days measures that capture the nonlinear effects of temperatures on yields.

3 Model

We estimate a panel regression linking log yields to pollution exposure over the growing

season, which we fix to be March-August. Specifically, log corn yields in county i and year

t are regressed on measures of ozone as well as other explanatory variables.

log(yit) = αoit + Witβ1 + Xitβ2 + f(t) + γi + εit (1)

The main coefficient of interest α captures the effect of the ozone measure oit over the

growing season in year t in county i on log corn yields. The various ozone measures are

discussed below in Section 3.1. We control for weather variables Wit to capture the direct

effect of weather on yields. Since ozone formation is correlated with warmer temperatures,

controlling for weather variables is crucial to avoid omitted variable bias. If we omit weather

variables, the coefficient α becomes more negative as it also captures the direct damaging

effects of extreme heat, which is conducive to ozone formation. In our baseline specification

the weather controls include total degree days between 10-29◦C, degree days above 29◦C,

and a quadratic in precipitation. Similarly, Xit can include other control variables that could

covary with ozone and directly influence yields, such as other pollutants.

Yields exhibit strong upward trends over time, and we hence include temporal controls

f(t). The baseline specification uses county-specific quadratic time trends to capture overall

movements in average yields over time as well as year fixed effects that capture economy-wide

shocks (e.g., fluctuations in world prices).

Finally, the inclusion of a county fixed effect γi ensures that our identification stems from

comparing outcomes within a county across years. The error terms εit are clustered at the

state level to account for spatial correlation. This procedure gives comparable standard errors

to approaches that more specifically model the covariance of error terms between counties

as a function of distance (Fisher et al., 2012), e.g., Conley’s standard errors (Conley, 1999).
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3.1 Ozone Measures

We construct five sets of ozone variables: (i) maximum daily 8-hour average, the basis for

the current secondary ozone standard; (ii) simple daytime mean exposure; (iii) weighted

sum of all hourly daytime exposure using EPA’s W126 weight (Figure 5), the basis for the

proposed revised secondary ozone standard; (iv) linear hourly exposure above a threshold,

the variable used in aforementioned laboratory experiments that form the basis for some

regulatory standards in Europe; while the European standards usually rely on a 40 ppb

threshold, we vary it between 1 ppb and 120 ppb; and (v) a semi-parametric approach that

models the relationship with the help of flexible restricted cubic splines with 7 knots. The

exact specifications are given in Table 1. For all other pollutants, we construct the daily

daytime average. Our interpolation procedure is further assessed and discussed in Section 5.6

through cross validation.

3.2 Contribution of Peak Ozone Levels on Yield Trends

We investigate the contribution of declining pollution levels to the observed growth in corn

yields. We derive the contribution of peak ozone on corn yields more formally using a

bootstrap technique that accounts for the uncertainty of our parameter estimates. We com-

pare yields under observed peak ozone levels to a counterfactual where concentrations above

65 ppb are truncated at 65 ppb—that is, ozone exposure above 65 ppb is set to zero. The

exact steps of the procedure are described in Table 2.

4 Empirical Results

4.1 Cross-Section

Earlier studies have linked field-level yields to ozone exposure in the cross-section (Westen-

barger and Frisvold, 1995). For comparison, we use our data set of piecewise linear ozone

exposures to replicate a series of cross-sectional estimates that are summarized in Figure 6.

We use the same county-level data set and variables (except temporal controls), but limit it

to one year at a time. The x-axis indicates the year that is used in the estimation.

The estimates vary significantly between years. More strikingly though, the top line of

the graph reports the threshold that gives the highest R2.14 The optimal threshold varies

14We pick the threshold among the following possible candidates: 0, 10, 20, 30, 40, 50, 55, 60, 61, 62, ...,
89, 90, 95, 100, 110, 120.
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anywhere between 10 ppb and 120 ppb; that is, it largely depends on what year we use.

4.2 Panel Regression Results

We find strong and robust evidence that the effect of ozone exposure is large in magnitude and

may result in substantial production losses. The effect of ozone exposure on maize yields

is approximately linearly increasing in ozone concentration above a threshold of 65 ppb.

Figure 7 shows the regression results for two of our models that link log yields to ozone: the

lines represent the effect on log yields from 100 hours of exposure to various concentrations.

The blue line shows the results using restricted cubic splines with 7 knots (the knot locations

are indicated by the dashed lines). Exposure to ozone concentrations below 65 ppb have

no statistically significant effect on maize yields. On the other hand, exposure to ozone

concentrations above the 65 ppb threshold have a negative and significant effect that is large

in magnitude and increases linearly in concentrations above 65 ppb. One hundred hours of

exposure to 90 ppb reduces annual corn yields by 18 log points (or about 19%) compared to

exposure below 65 ppb.

For comparison, we also add a second model in Figure 7 that forces the effect of ozone

to be linear in exposure levels above 65 ppb. It is shown as the red line. The slope is

comparable to the model that uses restricted cubic splines. Since the model is estimated

using fixed effects, the results are in relative terms (net of the constant, or group fixed effect).

We therefore normalize both models so the y-value is zero on average below 65 ppb for easier

comparison of the relative effects.

Regression results for these two models as well as the other specifications outlined in

Table 1 are summarized in Table 3. Most of the variation in ozone is already absorbed by

the county fixed effects. A model with only county fixed effects has a R-squared of 0.5.

We hence report the R-squared once the fixed effects and temporal controls (county-specific

time trends and year fixed effects) are partialled out. The R-squared is increasing from

left to right (except for column 4a). Since we are keeping all other control variables the

same between the columns, a higher R-squared implies greater explanatory power of the

ozone measures. Controlling for weather variables has a R-squared of 0.257. If we finally

include the linear ozone exposure measure above 65 ppb (column 4b), the R-squared increases

modestly to 0.286. The reason is that much of the ozone variation is already accounted for:

in space (dirty versus clean areas) through county fixed effects and over time through the

year fixed effects and county-specific time trends. We prefer to control for the covariates

to rule out confounding variation or spurious correlations between two trending variables.
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Just for comparison, a model that only includes the linear ozone measure above 65 ppb but

no other controls has a R-squared of 0.18 and the coefficient is -1.073, which is larger in

magnitude than our preferred estimate of -0.737 in column (4b). Our preferred estimates

are more conservative.

Figure 8 shows the R-squared for additional linear models above an exposure threshold.

The piecewise linear model with the highest R-squared uses a threshold of 66 ppb. In-sample

R-squared, however, has been criticized as a model selection criterion. For example, it can

only go up as the number of control variables increases and is not the best measure to select

between models.

We therefore also examine out-of-sample forecasts to help assess which concentration-

response specification best predicts variation in our data (Efron and Tibshirani, 1993). It is

an intuitive way to assess which model is best: Ultimately, we are interested in the model

that can best predict yields. Assessing this criterion out-of-sample avoids overfitting the data

in-sample.15 We hence assess each model in the following way. We randomly draw 80% of

the data, estimate the model, and predict log yields for the remaining 20% out-of-sample.16

We calculate the squared prediction error for each of the observations in the 20% prediction

sample, and derive the root mean squared error. We repeat this procedure 1000 times so

the results are not driven by the particular selection of the 20% sample. Figure 9 plots the

average percent reduction in root-mean-squared error compared to a model with no ozone

variable.

The model that uses the 4th highest daily maximum 8-hr average, the basis of the current

U.S. ambient air quality standard, has almost no effect on the RMSE, compared to a model

without any ozone variable. This is perhaps not surprising as it only counts one day of the

season and omits the rest. The highest reduction in prediction error is accomplished by the

flexible spline in hourly ozone exposure over the growing season. Recall that this model with

seven knots has six variables. It reduces the RMSE twice as much as a model that uses the

average of daytime (6am-8pm) ozone readings. It is also better than the newly proposed

W126 weighted sum of hourly ozone exposure.

The figure also shows that within the class of linear exposure models, a model with a

threshold of 64 ppb has the best performance; that is, when the threshold is systematically

varied between 60 ppb and 90 ppb, the reduction in RMSE peaks at 64 ppb. (This peak

is also fairly close to the 66 ppb threshold that gave the highest in-sample R-squared in

15It is usually possible to get an almost perfect fit by adding enough covariates.
16If observations from a county only appear in the 20% prediction sample, we include a fixed effect to

make sure the average error is zero, for all other case we use the fixed effect from the 80% estimation sample.
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a linear model in Figure 8.) Moreover, the linear exposure model performs only slightly

worse than the spline model.17 While the spline model is very flexible and has the greatest

predictive power, the linear exposure model is parsimonious and easier to interpret and use

for forecasts, as it only requires the estimation of one coefficient. In the remainder we use

a threshold of 65 ppb, which is in the middle of 64 ppb (best out-of-sample fit) and 66 ppb

(highest R-squared).

4.3 Production Impacts of Ozone

In order to get a better sense of the magnitude of the effects of ozone on crop production,

we use our empirical estimates to investigate the impact of extreme ozone concentrations

(corresponding to concentrations above the threshold of 65 ppb identified above). We derive

the estimated crop losses by comparing the sum of predicted production in our sample

counties under observed ozone levels to a counterfactual where ozone concentrations are

truncated at 65 ppb, i.e., all hourly ozone readings above 65 ppb are set to 65 ppb.18

Figure 10 displays the reduction in maize production from hourly ozone concentrations

above 65 ppb under our two preferred model specifications: a flexible spline in hourly ozone

exposure as well as a more parsimonious model of linear ozone exposure above 65 ppb.

The figure shows that the estimated crop losses due to ozone pollution in the early years

of our sample are as much as 20% of potential production. The spline model gives smaller

estimated declines of up to 14% of potential production.19 A 20% loss corresponds to the

caloric equivalent of feeding 170 million people on a 2000 calories/day diet. The estimated

losses in recent years are smaller, as exposure above 65 ppb has decreased over time; as

shown in Figure 11, while average ozone concentrations show no discernible trend, there is a

strong decline over time in exposure to extreme hourly concentrations. The large majority

17The W126 measure does not perform quite as well as the linear exposure model, but still performs better
than the models that are based on average concentrations. The implication is that the W126 weighting
function (shown in Figure 5) does not capture the impacts of ozone exposure as well as a simple linear model
with a threshold at 65 ppb, but it is not too far off. Note that the three measures based on cumulative
exposure perform better than all three measures based on average concentrations.

18Predicted production under observed ozone levels corresponds to ̂log(yit) from Equation (1); the coun-

terfactual production is then calculated as ̂log(yit) − α̂oit where oit equals the cumulative exposure above
65 ppb.

19The estimates of crop losses using the spline model are smaller than for the linear exposure model but
still quite large in magnitude. The gap between the two estimates highlights the uncertain nature of these
predictions, but both models suggest the losses are substantial. Note that we selected the optimal threshold
for the linear exposure model based on the threshold that resulted in the highest explanatory power (65
ppb), but the locations for the knots in the restricted cubic splines were chosen ex ante.
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of the estimated yield reductions due to ozone are associated with the 65-90 ppb range. For

example, when we set all readings above 90 ppb to 90 ppb, the estimated reduction is three

quarters of the number we get in the baseline case.

The top left panel of Figure 12 replicates the predicted production reductions from hourly

ozone concentrations above 65 ppb for all regression models of Table 3. The numbers in

the legend refer to the column number of the regression model. Besides our two preferred

specifications and the W126 measure, the production impacts are much smaller under the

other model specifications. The other ozone measures pool ozone readings that matter for

yields together with ozone readings that do not, resulting in a coefficient that is biased

towards zero and an underestimate of the true effect of ozone on yields. The linear model

of cumulative exposure above a threshold of 40 ppb, for example, puts too much weight on

concentrations between 40 and 65 ppb, and as a result underestimates the negative effects

of concentrations above 65 ppb. The same is true of the W126 measure, but the bias in not

nearly as extreme.20

Traditional chamber studies rely on a linear ozone exposure measure above 40 ppb,

suggesting that reducing any hourly ozone reading above 40 ppb will be beneficial. The top

right panel of Figure 12 displays the predicted production impacts from hourly ozone levels

above 65 ppb (grey dashed line) as well as 40 ppb (black solid line) for a regression model

that is based on a linear exposure measure above 40 ppb. The predicted impacts of ozone

pollution above 40 ppb are much larger than above 65 ppb as the same regression coefficient

is multiplied by a larger cumulative exposure measure. Note, however, that this result relies

on significant out-of-sample interpolation that might be questionable. The bottom left panel

of Figure 12 shows the histogram of observed annual linear ozone exposure above 40 ppb

in our data, which is never close to zero. Constructing a counterfactual where the variable

is zero presumes that the estimated linear model will extend beyond the observed range of

values in the data. For comparison, the bottom right panel shows the histogram of observed

annual linear ozone exposure above 65 ppb, which has significant mass around zero. Our

baseline results do not rely on out-of-sample predictions.

20Essentially, the W126 uses too low of a threshold, overweighting concentrations below 65 ppb. See
Figure 5 for the shape of the W126 weighting function, which looks like a close approximation to a linear
model of cumulative exposure above a threshold of about 50 ppb. As expected, Figure 9 shows that the
W126 measure results in the same out-of-sample performance as the linear exposure model with a threshold
of 50 ppb.

14



4.4 Contribution of Peak Ozone Levels on Yield Trends

Given the significant impacts of ozone on corn yields, we derive the fraction of the yield

trend that is attributable to changes in peak ozone. Figure 12 shows that peak ozone levels

as measured by our piecewise linear exposure measure above 65 ppb reduced aggregate corn

production by up to 20% in the earlier years of our sample but had close to no impact by

the end of the sample. At the same time, corn yields have been growing at a rate of 1.5%

per year, for a total increase of 43% between 1990 and 2014 (Figure 2).

The distribution of the fraction of the observed yield trend that is due to reduction in

peak ozone levels is shown in Figure 13 for our model using a linear exposure measure above

65 ppb (column 4b in Table 3). The mean is 44% with a standard deviation of 5.6% with a

95% confidence interval that stretches from 33% to 55%. That is, the model predicts that

the reduction in ozone exposure above 65 ppb contributed to a 19% increase in yields (44%

of the observed 43% growth). We conduct three sensitivity checks that all give comparable

results. First, if we use historically observed yields in step 3c) instead of predicted yields,

the predicted fraction that is explained by reduction in peak ozone remains at 44% with a

95% confidence interval of [33,55]. Second, if we use the average area in a county instead

of the annual observed area in steps 3b) and 4b) to rule out shifts in planting areas, the

predicted fraction has a mean of 42% with a 95% confidence interval of [31,52]. Finally, if

we use the spline model in column (5) of Table 3, the predicted fraction has a mean of 32%

with a 95% confidence interval of [14,50].

The estimated increase in yields due to ozone reduction is not geographically uniform.

Figure 14 fits a separate trend in ozone exposure above 65 ppb for each county, which are

all negative, and then multiplies the linear trends by the estimated coefficient from the

panel regression (column 4b in Table 3) to obtain the predicted trend in yields due to ozone

reductions. Counties on the Eastern seaboard exhibited the largest yield gains that are due

to ozone reductions, up to 2.8% per year. Not surprisingly, these areas that had the highest

pollution levels to begin with in 1990 (Appendix Figure A1). The figure also shows large

contributions to yield growth in parts of Illinois and Indiana, which contain counties with

high baseline yields.

5 Robustness Checks

We present several sensitivity checks to ensure that our results are driven by changes in

ozone and not some other confounding variation. The robustness checks evaluate the main
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results both under alternative statistical modeling approaches and under a variety of controls

for potentially confounding factors. We focus here on the parsimonious model examining

daytime hourly exposure above 65 ppb, summed over the growing season, as it can be

summarized by one parameter. For ease of comparison, the first column in each of the tables

repeats our baseline results using a linear exposure model above 65 ppb, while additional

columns present sensitivity checks. We also investigate how the optimal threshold changes

in response to our sensitivity checks. For each specification we estimate the model using

thresholds of 0, 10, 20, 30, 40, 50, 55, 60, 61, 62, ..., 88, 89, 90, 95, 100, 110, and 120 ppb.

We report the coefficient estimates for the model containing linear exposure above 65 ppb

to facilitate comparison across specifications, but report the threshold that results in the

highest R-squared value in the footer of the table, i.e., the best in-sample measure. The

optimal threshold based on the in-sample criterion is 66 ppb in our baseline, and our 46

sensitivity checks have a mean optimal threshold of 65 ppb with a standard deviation of

6.3 ppb, i.e., they remain close to our baseline.

5.1 Including Additional Weather Controls

Higher temperatures are conducive to ozone formation. One might worry that higher ozone

levels simply approximate higher temperatures, which are themselves harmful for corn yields.

Recall that degree days above 29◦C are the best predictor of year-to-year variation in yields.

Table 4 examines the sensitivity of our baseline results to the chosen temperature controls by

including additional temperature controls: minimum, maximum, and average temperature,

as well as the diurnal temperature range (maximum minus minimum temperature). The

last four rows display what variables are included and up to which order. The first column

replicates our baseline results, while consecutive columns add additional controls. The last

column includes an additional 20 control variables: all four temperature measures up to

order 5.

The first row of Table 4 gives the main coefficient of interest: hourly ozone exposure

above 65 ppb, summed over the growing season. When we include the additional temperature

variables, the coefficient on degree days above 29◦C varies a lot (from -0.498 to -2.649) due to

the correlation with the other temperatures variables; nonetheless, the coefficient on ozone

exposure remains very robust (between -0.637 and -0.761), which makes it unlikely that the

ozone variable is picking up temperature effects.

Table 5 includes higher order precipitation terms, which have even smaller effects on the

ozone coefficient than temperature controls: coefficients vary between -0.731 and -0.761.
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5.2 Interaction with Maximum Temperature and PM10

In a second step we not only include additional temperature variables, but also interact them

with our preferred ozone measure.21 Since both hot temperatures as well as solar radiation

increase ozone formation, we also include PM10, which is correlated with haze and hence less

sunlight. We standardize the annual interaction term by removing the mean and normalizing

by the standard deviation of the demeaned series. The coefficient on the interaction variable

gives the effect of a one standard deviation increase in the interaction variable as we move

away from the mean.

The first row of Table 6 now gives the effect of ozone exposure above 65 ppb if the

interaction variables are kept at their mean level. This average effect is attenuated a bit

when interacting with both degree days above 29◦C and maximum temperature, but the

effect is relatively robust overall, varying between -0.579 and -0.784. The interaction with

degree days above 29◦C or maximum temperature is statistically significant, suggesting that

ozone is more harmful if the crop is experiencing heat stress. On the other hand, ozone is

less harmful if PM10 is higher, which implies increase in haze and hence less solar radiation.

5.3 Controlling for Other Pollutants

Pollution concentrations are highly correlated as many of them are by-products of the same

industrial activities. To rule out the possibility that other pollutants besides ozone are

causing the large decline in yields, Table 7 controls for average pollution levels of carbon

monoxide (CO), nitrogen oxides (NOx), particulate matter (PM10), and sulfur dioxide (SO2)

one at a time as well as all of them together.22

The first row of Table 7 gives the estimated coefficient on ozone exposure above 65 ppb,

which is very robust to accounting for other pollutants in the regression equation as the

coefficient hardly moves at all between -0.733 and -0.742. None of the other pollutants have

statistically significant effects. Some papers even found beneficial effects of SO2 as crops are

sulfur limited (Sanders and Barreca, 2012).

21We interact the season-total of the variables, not the daily values.
22We construct the daily daytime (6am-8pm) mean levels of the other pollutants the same way we con-

structed the average ozone variable as described above, i.e., we interpolate then to the PRISM grid and
average them over the agricultural area.
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5.4 Sensitivity to Temporal Controls

Our baseline results include two sets of temporal controls: first, we include county-specific

quadratic time trends to capture smooth increases in average yields that are allowed to vary

by county; on top of that, we include year fixed effects to allow for common shocks to the

entire country, such as varying global price levels or breakthroughs in crop technologies.

Table 8 varies whether we include year fixed effects or not, and whether we include no

time trends, linear county-specific time trends, or quadratic county-specific time trends. The

coefficient on our ozone variable of interest in the first row varies somewhat, between -0.392

and -0.883 depending on the chosen time control, but not systematically, i.e., including year

fixed effects sometimes increases and sometimes decreases the estimated coefficient.

Table 9 again varies whether we include year fixed effects and also varies the sensitivity of

our results to whether we include common time trends, state-specific time trends or county-

specific time trends. Switching from state-specific time trends to county-specific time trends

has limited effect on the results, ruling out that our results are spuriously driven by common

trends in pollution and yields among counties.23 The more important factor is whether or

not year fixed effects are included.

5.5 Subset of Counties and Measurement Error

Table 10 examines how the results vary depending on how the different counties are weighted.

Our baseline results in column (1) use a pooled analysis where all observations receive the

same weight. Column (2) use area-weights, where we weight by the average corn-growing

area in a county.24 The estimated coefficient decreases slightly from -0.737 to -0.717. Note

that agricultural areas tend to be further away from monitors and the weighted regression

might place more weight on counties with higher measurement error.

Columns (3a)-(3c) split the sample into counties based on their distance to the closest

monitor.25 Columns (3a) and (3b) estimate the model using two distinct subset of counties:

23For example, differences across counties in the adoption of yield-improving technologies such as fertilizer,
irrigation, pesticides, or new seed technologies could lead to differential trends in yields. If these yield trends
were for some reason correlated with trends in ozone levels, this could lead to bias in the estimate on the
ozone variable. Controlling for county-specific time trends would substantially reduce this bias. It’s therefore
quite reassuring that the estimate on the ozone coefficient is robust across so many different specifications.

24The weights are hence constant over time and not subject to annual fluctuations in the growing area.
25For each of the PRISM grids we derive the distance to the closest monitor in a year. We then take the

maximum of the minimum distance for all grids in a county to derive the largest minimum distance to a
monitor in a county. Finally, we average the derived distance over all years for which we have corn yields in
a county. Recall that some monitors only report for some of the years, and hence the distance to the closest
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those with a distance below the median and those with a distance above the median, respec-

tively. The coefficient for the areas further away is slightly smaller. Column (3c) therefore

estimates the models for the two subsets of the data jointly by including an interaction term

for the subset of counties whose distance is larger than the median distance.26 It is positive

but not significant, and the magnitude is of limited size. One possible explanation is that

our pollution interpolation procedure performs worse for areas that are further away from

monitors and we hence have attenuation bias.

Columns (4) go a step further and limit the analysis only to counties that have at least

one reporting monitor. Column (4a) uses the same specification and spatial interpolation as

column (1) but limits the data set to counties with a monitor. As a result, the number of

counties in the sample decreases from 1747 to 474. Column (4b) uses the same counties but

no spatial interpolation, i.e., it only averages all monitor readings in the county without any

spatial interpolation. The coefficient decreases significantly in magnitude, which would be

consistent with measurement error in the data set that simply averages all monitor readings.

To further asses the role of measurement error, we rely on instrumental variables regres-

sion. Column (5a) instruments the pollution variable in column (4a) with the simple monitor

average in column (4b). Note how the coefficient hardly changes at all. If, on the other hand,

we instrument the pollution variable in column (4b) with our spatially interpolated variable

in (4a), the coefficient increases significantly in magnitude, which is again consistent with

the fact that simply averaging all monitor readings has more measurement error than our

spatial interpolation procedure. While our interpolation procedure might itself suffer from

attenuation bias in counties that are far away from a monitor, it seems to do better than

simply averaging monitor readings. In case there is remaining attenuation bias, our results

will understate the true relationship, and are hence a conservative lower bound.

5.6 Cross-validation of Pollution Interpolation

Our pollution data relies on an interpolation procedure between monitors. This section

presents checks on how well the interpolation procedure is working. We conduct cross-

validation exercises where we omit one monitor at a time and interpolate the remaining data

to the monitor location, which allows us to compare the interpolated values to the actual

observed values.

monitor might change from year to year.
26It also interacts the weather variables and time controls with an indicator for whether the distance to

the closest monitor is above the median, but these coefficients are omitted from the table due to space
constraints.
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Results of regressions where we regress the interpolated values at a monitor station

on the actual reading are given in Table 11. The table has two panels: panel A only

includes monitor fixed effects, while panel B also includes monitor-specific quadratic time

trends and year fixed effects, analogous to the temporal controls we include in our baseline

regression. Columns (1a)-(1c) use daily values in March-August, while column (2a) uses

annual aggregates. Column (1a) uses all monitors and days in the Eastern United States,

while column (1b) limits the data to monitors that lie within a county that has corn yields,

and column (1c) additionally excludes days where the monitor reading is missing and had

to be interpolated from adjacent stations.

The coefficients in all regressions are significantly less than 1, i.e., if the actual value

deviates by a certain amount from the mean outcome at a monitor, the interpolated value

deviates by less. The fraction is around two thirds in column (1a) of both panels where we

use all daily values of all Eastern monitors. If we limit the data to monitors that lie within

counties that have yield data in column (1b), the ratio remains the same. Excluding days

where a monitor reading is missing in column (1c) also has close to no effect.

Finally, aggregating the data to season totals in column (2a) slightly increases the ratio in

panel A when we only include monitor fixed effects, but decreases the ratio to 0.48 in panel

B when we also include the temporal controls. The reason is that there are strong regional

trends in season-total variation, and the temporal controls absorb these trends, amplifying

measurement error.

If our interpolated values systematically under-predict the true variation in the data,

this would bias the magnitude of our coefficients upward. On the other hand, if we add

measurement error but the variation in the variable remains constant, attenuation bias will

imply that our coefficient estimates are biased towards zero. The footers of each panel in

Table 11 aims at disentangling the two influences. In panel A we regress both interpolated

and observed monitor readings on monitor fixed effects and derive the standard deviation of

the resulting error terms. Panel B also includes temporal controls in the regression before

we obtain the residuals. Our interpolated variables have less variation than the observed

readings and this effect if more pronounced if we include temporal controls in Panel B of

column (2a), the variation we are using. On the other hand, the estimated coefficient on

the interpolated ozone variable is higher, not lower, when we omit the temporal controls

in column (3b) of Table 8. This makes it unlikely that we are overestimating the true

coefficient. On the other hand, attenuation bias is a real concern in columns (4) and (5)

of Table 10. Taken together, we feel that our interpolation procedure reduces some of the
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possible attenuation bias, but might still be a conservative lower bound on the true magnitude

of the parameter.

6 Economic Effects

Corn production in the United States accounts for 11% of the global caloric production of

the four basic commodities (corn, wheat, rice and soybeans), which themselves account for

75% of the calories that humans consume. The U.S. share is obtained by converting country-

level production numbers from the Food and Agricultural Organisation (FAO) of the four

commodities into calories (Roberts and Schlenker, 2013) using conversion ratios of calories

per pound. Given the large market share of U.S. corn production, quantity changes have

global price effects, especially since the demand and supply are highly inelastic.

Global production of the four basic commodities in 1990-2014 results in 5.92×1015 calo-

ries, or using a 2000 calories per day diet for 365 days a year, enough calories to feed 8.1

billion people. U.S. corn production accounted for 11%, or the caloric equivalent of feeding

893 million people. The substantial decline in peak ozone levels led to a 19% increase in

yields (44% of the observed yield trend of 43%), or the caloric equivalent of feeding 170

million people, which is 2.1% of global production. Given the estimated demand and supply

elasticities of Roberts and Schlenker (2013), this implies an 8-12% decrease in food prices,

or roughly 10%.

The caloric cost of a 2000 calorie per day diet is 47 dollars per year using an average price

of 4 dollars per bushel of corn, 56 pounds per bushel of corn, and 1107 calories per pound:

4
dollars

bushel
× 1

56

bushel

pound
× 1

1107

pound

calories
× 2000

calories

day
× 365

days

year
= 47

dollars

year

The 10% price drop hence increased consumer surplus by 0.1 × 8.1 × 47 = 38 billion dollars

annually. The estimate of 4 dollars per bushel is conservative, as prices have been more

than twice as high, which would increase the predicted gain in consumer surplus. Note that

consumers of calories include farmers, as corn is used as feed for livestock.

Producers of corn in the U.S. see a 19% increase in yields, but a 10% decrease in price

of both corn and soybeans, which are usually grown in rotation. The next effect is hence

a small gain. On the other hand, foreign producers of the basic commodities lost through

lower prices.
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7 Conclusion

This study provides robust real-world evidence that short-term (hourly) exposure to high

levels of ozone is harmful for crop yields. Using multiple empirical modeling approaches and

a wide range of robustness checks, we identify a 65 ppb threshold above which hourly ozone

concentrations are harmful, and the damaging effect on crop yields is well explained using

a linear damage function. Laboratory studies have often relied on similar linear threshold

models, although they usually adopt much lower thresholds of around 40 ppb. (Fuhrer et al.,

1997) point out that exposure above 40 ppb gives a good fit for experimental data, but it is

“less certain that it provides the best fit to data for [...] semi-natural communities.” Our

findings suggest that a higher threshold is appropriate for maize yields. Our results also

provide support for potentially adopting an ozone standard based on hourly ozone readings,

not 8-hour averages. The current U.S. standard is 70 ppb, which is not far from our threshold

of 65 ppb. Note, however, that the 70 ppb standard is imposed on the highest daily 8-hour

average, which can mask hourly spikes above 70 ppb.

Second, multiple studies have used complex simulation models to describe and predict

the effects of ozone on yields at the regional or even global level (Avnery et al., 2011; Van

Dingenen et al., 2009). The parameters used in these models are generally based on the

results of chamber studies. One potential concern with this approach is that small errors

in the estimated effects in micro-level chamber studies could add up to large errors in the

macro-level analysis. The results of this paper and similar analyses could be used to validate

these types of complex models.

Third, we find that falling pollution levels in recent years were a substantial driver of

the growth in corn yields. The reduction in peak ozone levels accounted for 44% of the

observed yield trend over the last 25 years, and increased the surplus of consumers of these

commodities by $38 billion. Understanding the determinants of yield growth can help with

modeling future crop production and prices. In the U.S., exposure to high concentrations of

ozone has fallen to low levels in recent years, suggesting that further benefits to corn yield

growth from reductions in air pollution are likely to be minimal (and therefore interventions

in other areas may be required to sustain the high rate of yield growth). On the other

hand, many developing countries have ozone levels that exceed those in the Eastern U.S.,

suggesting the potential for further yield gains through pollution reduction. However, there

could be important differences across countries that cause the relationship between ozone

and yields to differ from the results observed in this study. Given the relative lack of existing

data from developing countries (Mauzerall and Wang, 2001), the substantial effects that we
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find in the U.S. suggest at the very least that it may be worth investing additional resources

into data collection and analysis focused on pollution and agriculture in these regions.
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Figure 1: Location of Ozone Monitors Used in Analysis (1990-2014)

Note: Figure shows the locations of ozone monitors and the counties included in our sample. We use monitors if at least 75% of the observations

are non-missing in March or April-August of a year. We separate the year into these two sub-periods as many ozone monitors only report for

part of the year as shown in Figure 3. Counties east of the 100 degree meridian (except Florida) that report corn yields at least for 13 years

in 1990-2014 (half the time) are shaded in grey.
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Figure 2: Trend in Log Yields

Predicted Yield Trend: 1.49% per Year
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Note: Figure displays annual log yield averaged over the counties in our sample (shown in grey in Figure 1),

weighted by harvested area. Counties included in our baseline sample, i.e., that report yields for at least half

the years, accounted on average for 91% of the corn that was produced in the United States in 1990-2014.

A trend is fitted to the annual aggregate data: yields on average grow 1.49% per year.
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Figure 3: Seasonality of Ozone Monitors (1990-2014)
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Note: Figure shows the number of monitors that are on average reporting on a particular day in 1990-2014.

Several monitors come online in April. To make years consistent for this figure, we drop February 29th in

leap years.

28



Figure 4: Number of Monitors Over Time
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Note: Figure shows the number of monitors where at least 75% of the daily values in March or April-August

are non-missing. We separately interpolate values in March and April-August, as there are fewer monitors

reporting in March (See Figure 3). The black line shows the overall number of monitors in the database,

and the grey line shows the number of monitors that fall into counties with corn yield data shown in grey in

Figure 1.
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Figure 5: Weighting Function W126 by EPA
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Note: Figure displays the weighting function W126 (left axis) as well as the product of the weight and

the pollution exposure (right axis). The season-total weighted sum is obtained by multiplying each hourly

ozone observation between 8am and 8pm during the growing season (March-August) by the weight and then

summing all weighted observations, i.e., all blue values.
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Figure 6: Cross Sectional Estimates of the Effect of Ozone on Corn Yields
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Note: Figure displays results of county-level cross-sectional regressions. Point estimates are shown as (x)

and the 95% confidence intervals are added as (–). The x-axis indicates the year used in the estimation.

We use the same ozone and weather measures as in our baseline model in column (4b) in Table 3. For

comparison, the estimate of column (4b) in Table 3 is added as the green dashed line. The top of the figure

gives the threshold that results in the highest R2 or equivalently, the lowest AIC/BIC.
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Figure 7: The Effect of Ozone on Corn Yields

−
.7

−
.6

−
.5

−
.4

−
.3

−
.2

−
.1

0
E

ffe
ct

 o
n 

A
nn

ua
l L

og
 C

or
n 

Y
ie

ld

0 20 40 60 80 100 120
Ozone Exposure for 100hrs

Spline in Ozone Exposure Linear Above 65ppb

Note: Figure shows the estimated effect of ozone on log corn yields from two different models. First,

the blue line shows the results of a model where log yields are allowed to flexibly depend on hourly ozone

readings. The model uses restricted cubic splines in ozone with 7 knots (indicated by dashed lines at 1, 15,

30, 45, 60, 75, and 90ppb). The 95% confidence band is added as shaded area. The second model forces the

effect of ozone to be linear above a threshold of 65ppb and is shown in red. The slope coefficient is estimated

in a regression model. Since the regression model includes county fixed effects that allow for difference in

average yields, the graph should be interpreted in relative terms, i.e., by comparing if pollution is shifted

from one concentration to another. We normalized the spline plot so the estimated average effect below

65ppb is zero.
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Figure 8: Highest In-sample R2
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Note: Figure shows the R2 for piecewise linear models. The x-axis varies the threshold above which ozone

exposure is measured (being 10ppb above the threshold is forced to be 10 times as bad as being 1ppb above

the threshold), while the y-axis gives the R2 from a model that also includes the weather variables of Table 3,

county-level quadratic time trends as well as year and county fixed effects. The highest R2 is reached for a

model that uses a threshold of 66ppb.
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Figure 9: Out-of-Sample Prediction Error
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Note: Figure shows the reduction in out-of-sample prediction error compared to a model without any

ozone control. All models include the four weather variables of Table 3, county-specific quadratic time

trends as well as year and county fixed effects. The first five bar charts include the following ozone variables,

respectively, as outlined in the specification in Table 1: (1a) The 4th highest of the daily maximum 8hr

average (March-December, the remainder uses the growing season March-August); (1b) mean of all daily

maximum 8-hour averages; (2) average of all hourly ozone readings 6am-8pm; (3) weighted sum of hourly

ozone readings 8am-8pm (EPA’s W126 weights); (5) restricted cubic spline in hourly ozone with 7 knots. The

remaining line plots the reduction in out-of-sample prediction error as a function of the exposure threshold

of a piecewise linear model (specification 4). For each model, we estimated the parameters 1000 times using

80% of the data and predicted yields for the remaining 20%.
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Figure 10: The Effect of Observed Hourly Ozone Above 65ppb on Total Corn Production
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Note: Figure displays the percent reduction in overall corn production caused by hourly ozone levels above

65ppb. We compare predicted yields under observed ozone levels to a counterfactual where all hourly ozone

readings above 65ppb are set to 65ppb.
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Figure 11: Ozone Levels Over Time
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Note: Figure shows ozone levels over time. The solid red line (left y-axis) shows the average of the highest

daily 8-hour average concentration over the growing season (March-August), while the solid cyan line (right

y-axis) shows the cumulative exposure above 65ppb during daylight hours (6am-8pm) over the growing

season. Ozone levels are weighted averages of the county-level data, where we weight each county by the

average growing area in 1990-2014, i.e., weights do not change year-to-year. A linear trend (dashed lines) as

well as a 95% confidence band on the trend are added.
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Figure 12: Eliminating Hourly Ozone Readings above 65ppb and 40ppb under Various Model
Specifications
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Note: Top panels display the percent reduction in overall maize production caused by ozone. We compare

predicted yields under observed ozone levels to a counterfactual where all hourly ozone readings above a

threshold are set to equal the threshold. The top left panel eliminates ozone above a threshold of 65ppb

using various models; the model numbers correspond to the column headers of the regressions in Table 3.

In the top right panel, the model incorporating linear exposure above a threshold of 40ppb (Model 4a in

Table 3) is used to examine the scenarios where all hourly ozone readings above 65ppb are set to 65ppb

(dashed line) and all hourly ozone readings above 40ppb are set to 40ppb (solid line). The bottom row shows

the histogram of observed linear ozone exposure above 40ppb (bottom left panel) as well as 65ppb (bottom

right panel).
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Figure 13: Fraction of Yield Trend Due to Reduction in Peak Ozone
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Note: Figure displays the distribution of the 10000 draws to evaluate the fraction of the observed yield

trend (from 1990 to 2014) that is due to reduction in peak ozone levels as measured by ozone exposure above

65ppb. The mean is 44% with a standard error of 5.6%. The 95% confidence interval reaches from 33% to

55%.
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Figure 14: Yield Trend Due to Trends in Peak Ozone Levels

Note: Figure displays the annual trend in log yields due to the observed trends in season-total exposure

above 65ppb. We derive this by estimating a separate trend in season-total exposure above 65ppb for

each county and then multiply the trend by the estimated coefficient on the ozone measure from our panel

regression. We only include counties that report yields for half of the years in our sample, i.e., have at least

13 observations in 1990-2014. The trend in overall log yields in our sample of counties is 1.49% per year

(Figure 2).
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Table 1: Definition of Ozone Specifications
Spec Description
(1) Daily maximum 8-hour average in ppb. We calculate average ozone levels for consecutive 8-hr

intervals starting at each hour of the day, i.e., the average ozone concentration from midnight to 8am,
1am-9am, etc. We utilize the maximum daily 8-hr average in two ways:

(1a) We pick the fourth highest for the year (March-December). We separately interpolate the ozone data
for October and November-December using the above procedure. The current U.S. ambient air quality
standard is based on the fourth highest of these daily maximum 8-hr averages, averaged over three
consecutive years. This boils down to the pollution reading on one day of the growing season.

(1b) We take the average of all daily maximum 8-hr averages over the growing season (March-August).
(2) Daily mean in ppb: We derive the simple average of all hourly observations between 6am and 8pm

of each day and then average the daily values over all days of the growing season (March-August).
(3) Weighted sum of hourly exposures by EPA: EPA recently proposed a new secondary ozone

standard based on a weighted sum of all hourly observations. The primary ambient air quality
standard is designed to protect human health, while the secondary standard is designed to protect
human welfare, i.e., visibility, damages to crop, etc. The proposed revision to the secondary standard
is outlined at https://www.gpo.gov/fdsys/pkg/FR-2010-01-19/pdf/2010-340.pdf. (See also McCarthy
(2010) and https://www.epa.gov/ozone-pollution/2008-national-ambient-air-quality-standards-naaqs-
ozone.) The weighting function is shown in Figure 5. Specifically, we multiply all hourly ozone
observations between 8am and 8pm by the appropriate weight and sum these values over all days in
the growing season (March-August). We follow EPA, which uses a time period of 8am to 8pm, but
results are the same if we start at 6am instead to keep the time of the day consistent with other
measures. Since ozone is generally very low in the morning, this has no significant effect on the
measure.

(4) Linear hourly exposure above a threshold in ppb-hours: Earlier U.S. ambient air quality
standard were based on hourly observations, and chamber studies have suggested that the damaging
effects of ozone are linearly increasing above a threshold—for example, being twice as high above the
threshold is twice as harmful. We therefore derive linear exposure measures above various thresholds
b. For each hour between 6am and 8pm, we calculate the difference between the monitor reading
and the threshold if the monitor reading is larger than the threshold and then sum it for these hours
of the day for all days of the growing season. For example, a linear exposure measure above 65ppb
sums max{v − 65, 0} for all hourly values v between 6am and 8pm for all days of the growing season
(March-August).

(5) Spline polynomials in hourly ozone exposure: Instead of imposing weights on various ozone
readings, we estimate the effect of various hourly ozone levels on annual yields. We use flexible re-
stricted cubic splines, which are a series of third-order polynomials that approximates the unknown
function between consecutive knot locations subject to the constraints that the polynomials contin-
uously “blend” into one another (are continuous and have a continuous derivative at the knot). For
a restricted cubic spline, the function is forced to be linear below the smallest and above the largest
knot. Since we are pairing annual yields with a season worth of hourly pollution readings, we need
to aggregate the hourly readings. While the functional form is flexible, the assumption we impose is
that the effects are additively separable. Specifically, let the effect of an hourly ozone exposure ohit
be given by the splines s1(ohit), . . . , sn−1(ohit), where n is the number of spline knots. In our baseline
specification we use seven knots at 1ppb, 15ppb, 30ppb, 45ppb, 60ppb, 75ppb, and 90ppb. Summing
the effect over all hours h of the growing season we get:

∑
h

n−1∑
k=1

αksk(ohit) =

n−1∑
k=1

αk

∑
h

sk(ohit)︸ ︷︷ ︸
Skit

=

n−1∑
k=1

αkSkit

We are hence left with n− 1 variables S1it, . . . , S(n−1)it which are the spline polynomials evaluated at
each hourly reading and then summed over the entire growing season (March-August). The coefficients
α1, . . . , αn−1 then give us the estimated effect of various ozone levels on annual log yields.40



Table 2: Bootstrap Procedure: Fraction of Yield Trend Explained by Ozone Reduction

Step Description
1) Estimate our preferred model specification (columns (4b) and (5) in Table 3).
2) Take 10,000 random draws of the joint distribution of all parameters of the model

in 1. For each of the draws, evaluate steps 3-5.
3) Calculate yield trend with observed historical peak ozone levels.
3a) Get predicted yields in each county using the observed variables and parameters

from step 2.
3b) Derive the average yield in a year, which is the area-weighted average of all predicted

yields from step 3a. In the baseline we use the observed corn acreage.
3c) Estimate the trend in predicted annual yields from step 3b.
4) Calculate yield trend under counterfactual where peak ozone is eliminated.
4a) Get predicted yields in each county using the observed variables and parameters

from step 2 except that ozone above 65ppb is set to 65ppb.
4b) Derive the average yield in a year, which is the area-weighted average of all predicted

yields from step 4a. In the baseline we use the observed corn acreage.
4c) Estimate the trend in predicted annual yields from step 4b.

5) Fraction explained by ozone is 1-Trend in 4c
Trend in 3c

. We plot the 10,000 outcomes.
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Table 3: Effect of Ozone on Log Corn Yields under Various Specifications
Model (0) (1a) (1b) (2) (3) (4a) (4b) (5)
Ozone Measure -0.004∗∗∗ -0.219∗∗∗ -0.252∗∗∗ -0.152∗∗∗ -0.188∗∗∗ -0.737∗∗∗

(0.001) (0.040) (0.048) (0.020) (0.028) (0.088)
Ozone - Spline 1 -0.030

(0.036)
Ozone - Spline 2 0.030

(0.441)
Ozone - Spline 3 0.378

(1.249)
Ozone - Spline 4 -1.384

(1.714)
Ozone - Spline 5 1.760

(1.926)
Ozone - Spline 6 -1.585

(2.000)
DDays 10-29◦C (1000) 0.296∗∗ 0.298∗∗ 0.384∗∗∗ 0.382∗∗∗ 0.359∗∗∗ 0.380∗∗∗ 0.303∗∗∗ 0.291∗∗∗

(0.117) (0.117) (0.115) (0.114) (0.109) (0.112) (0.106) (0.097)
DDays ≥ 29◦C (100) -0.555∗∗∗ -0.553∗∗∗ -0.506∗∗∗ -0.508∗∗∗ -0.487∗∗∗ -0.494∗∗∗ -0.498∗∗∗ -0.496∗∗∗

(0.060) (0.060) (0.054) (0.054) (0.050) (0.051) (0.051) (0.052)
Precipitation (m) 1.119∗∗∗ 1.115∗∗∗ 1.147∗∗∗ 1.140∗∗∗ 1.095∗∗∗ 1.112∗∗∗ 1.077∗∗∗ 1.067∗∗∗

(0.209) (0.207) (0.201) (0.201) (0.197) (0.200) (0.191) (0.191)
Precipitation (m) Squared -0.850∗∗∗ -0.848∗∗∗ -0.928∗∗∗ -0.923∗∗∗ -0.896∗∗∗ -0.909∗∗∗ -0.870∗∗∗ -0.861∗∗∗

(0.165) (0.163) (0.156) (0.157) (0.154) (0.156) (0.151) (0.152)
R-squared 0.2573 0.2584 0.2714 0.2714 0.2818 0.2766 0.2861 0.2874
Observations 40552 40552 40552 40552 40552 40552 40552 40552
Counties 1747 1747 1747 1747 1747 1747 1747 1747
Years 25 25 25 25 25 25 25 25

Note: Table regresses log yields in counties east of 100 degree meridian (excluding Florida) on ozone and

weather controls over the main growing season March-August for the years 1990-2014. All specifications

control for weather (degree days 10-29◦C, degree days above 29◦C, and a quadratic in precipitation) and

include county fixed effects, year fixed effects, and county-specific quadratic time trends. R-squared does

not include the variation that is explained by the county fixed effects or temporal controls, i.e., only what

is explained by the ozone or weather variables. Columns differ in how the effect of ozone is modeled.

Specifications of Table 1 are indicated in the top row:

(0): No control for ozone

(1a): 4th highest of daily maximum 8-hour averages during the season in ppb

(1b): Season average of daily maximum 8-hour averages in ppb

(2): Season average of daily ozone average (6am-8pm) in ppb

(3): Weighted sum of hourly exposure 8am-8pm (EPA’s W126 weights) in 10 ppm

(4a): Linear exposure above 40ppb (6am-8pm) in 1000ppb-hrs

(4b): Linear exposure above 65ppb (6am-8pm) in 10000ppb-hrs

(5): Restricted cubic spline in ozone with 7 knots for ozone readings between 6am and 8pm in ppm.

Robust standard errors in parentheses, adjusted for clustering at the state level. * p < 0.10, ** p < 0.05,

*** p < 0.01.
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Table 4: Effect of Ozone on Log Corn Yields - Higher Order Temperature Terms

(1) (2a) (2b) (2c) (2d) (2e) (3) (4)

O3 Exp. ≥ 65ppb (10000 ppb-hrs) -0.737∗∗∗ -0.761∗∗∗ -0.675∗∗∗ -0.637∗∗∗ -0.647∗∗∗ -0.659∗∗∗ -0.649∗∗∗ -0.644∗∗∗

(0.088) (0.089) (0.099) (0.097) (0.099) (0.096) (0.100) (0.100)
Degree Days 10-29◦C (1000) 0.303∗∗∗ 0.479∗∗∗ 1.560∗∗∗ -0.038 0.805 -0.058 -0.066 -0.432

(0.106) (0.092) (0.531) (0.691) (0.932) (1.904) (1.809) (1.819)
Degree Days ≥ 29◦C (100) -0.498∗∗∗ -0.499∗∗∗ -0.637∗∗∗ -1.828∗∗∗ -2.421∗∗∗ -2.375∗∗∗ -2.610∗∗∗ -2.649∗∗∗

(0.051) (0.054) (0.168) (0.264) (0.316) (0.541) (0.541) (0.474)
Precipitation (m) 1.077∗∗∗ 1.135∗∗∗ 1.235∗∗∗ 1.328∗∗∗ 1.320∗∗∗ 1.315∗∗∗ 1.275∗∗∗ 1.255∗∗∗

(0.191) (0.196) (0.225) (0.213) (0.212) (0.208) (0.204) (0.206)
Precipitation (m) Squared -0.870∗∗∗ -0.890∗∗∗ -0.984∗∗∗ -1.041∗∗∗ -1.024∗∗∗ -1.009∗∗∗ -0.972∗∗∗ -0.956∗∗∗

(0.151) (0.154) (0.175) (0.169) (0.171) (0.168) (0.162) (0.163)

R-squared 0.2861 0.2871 0.2979 0.3068 0.3089 0.3115 0.3161 0.3171
Opt. Threshold (R2/AIC/BIC) 66 65 67 68 68 68 68 68
Observations 40552 40552 40552 40552 40552 40552 40552 40552
Counties 1747 1747 1747 1747 1747 1747 1747 1747
Years 25 25 25 25 25 25 25 25
Min Temperature Polynomial - 1 2 3 4 5 5 5
Max Temperature Polynomial - 1 2 3 4 5 5 5
Max-Min Temp Polynomial - - - - - - 5 5
Avg Temperature Polynomial - - - - - - - 5

Note: Column (1) is the same as column (4b) of Table 3, while additional columns add further weather controls. The last four rows give

the highest order polynomials that are included for minimum and maximum temperature, diurnal range (maximum-minimum temperatures),

and average temperature. Columns (2a)-(2e) include various polynomials of minimum and maximum temperature, while column (3) adds the

diurnal range, and column (4) adds average temperature. Higher order temperatures are first calculated for each day and then averaged over

the growing season. All specifications include county fixed effects, year fixed effects, and county-specific quadratic time trends. R-squared does

not include the variation that is explained by the county fixed effects or temporal controls. Robust standard errors in parentheses, adjusted

for clustering at the state level. * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table 5: Effect of Ozone on Log Corn Yields - Higher Order Daily Precipitation

(1) (2a) (2b) (2c) (2d) (3)
O3 Exp. ≥ 65ppb (10000 ppb-hrs) -0.737∗∗∗ -0.761∗∗∗ -0.732∗∗∗ -0.732∗∗∗ -0.731∗∗∗ -0.731∗∗∗

(0.088) (0.089) (0.087) (0.088) (0.087) (0.087)
Degree Days 10-29◦C (1000) 0.303∗∗∗ 0.479∗∗∗ 0.302∗∗∗ 0.302∗∗∗ 0.302∗∗∗ 0.303∗∗∗

(0.106) (0.092) (0.106) (0.106) (0.106) (0.106)
Degree Days ≥ 29◦C (100) -0.498∗∗∗ -0.499∗∗∗ -0.496∗∗∗ -0.496∗∗∗ -0.496∗∗∗ -0.496∗∗∗

(0.051) (0.054) (0.051) (0.052) (0.052) (0.052)
Precipitation (m) 1.077∗∗∗ 1.135∗∗∗ 1.091∗∗∗ 1.090∗∗∗ 1.102∗∗∗ 1.127∗∗∗

(0.191) (0.196) (0.192) (0.199) (0.208) (0.197)
Precipitation (m) Squared -0.870∗∗∗ -0.890∗∗∗ -0.857∗∗∗ -0.857∗∗∗ -0.858∗∗∗ -0.861∗∗∗

(0.151) (0.154) (0.156) (0.156) (0.157) (0.155)
R-squared 0.2861 0.2871 0.2862 0.2862 0.2862 0.2863
Opt. Threshold (R2/AIC/BIC) 66 65 66 66 66 66
Observations 40552 40552 40552 40552 40552 40552
Counties 1747 1747 1747 1747 1747 1747
Years 25 25 25 25 25 25
Daily Precipitation Polynomial - 2 3 4 5 5
Min Temperature Polynomial - - - - - 5
Max Temperature Polynomial - - - - - 5
Max-Min Temp Polynomial - - - - - 5
Avg Temperature Polynomial - - - - - 5

Note: Column (1) is the same as column (4b) of Table 3, while additional columns add further weather controls. The last four rows give the

highest order polynomials that are included for daily precipitation, minimum and maximum temperature, diurnal range (maximum-minimum

temperatures), and average temperature. Columns (2a)-(2d) include various polynomials of daily precipitation, while column (3) adds all other

temperature controls. Higher order polynomials are first calculated for each day and then averaged over the growing season. All specifications

include county fixed effects, year fixed effects, and county-specific quadratic time trends. R-squared does not include the variation that is

explained by the county fixed effects or temporal controls. Robust standard errors in parentheses, adjusted for clustering at the state level. *

p < 0.10, ** p < 0.05, *** p < 0.01.
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Table 6: Effect of Ozone on Log Corn Yields - Interactions with Temperature and PM10

(1) (2a) (2b) (2c) (2d) (2e) (2f) (2g)

O3 Exp. ≥ 65ppb (10000 ppb-hrs) -0.737∗∗∗ -0.617∗∗∗ -0.620∗∗∗ -0.579∗∗∗ -0.784∗∗∗ -0.664∗∗∗ -0.668∗∗∗ -0.630∗∗∗

(0.088) (0.078) (0.077) (0.075) (0.092) (0.084) (0.083) (0.080)
× Degree Days ≥ 29◦C -0.141∗∗∗ -0.086∗∗ -0.145∗∗∗ -0.108∗∗∗

(0.035) (0.039) (0.034) (0.038)
× Maximum Temperature -0.182∗∗∗ -0.129∗∗∗ -0.156∗∗∗ -0.082∗∗

(0.035) (0.046) (0.034) (0.041)
× Mean PM10 0.101∗∗ 0.108∗∗ 0.069 0.090∗∗

(0.043) (0.042) (0.042) (0.040)
Mean PM10 (ppm) -0.024 -0.032 -0.012 -0.024

(0.030) (0.030) (0.030) (0.030)
Maximum Temperature (C) 0.020∗ 0.012 0.017 0.006

(0.012) (0.014) (0.011) (0.013)
Degree Days 10-29◦C (1000) 0.303∗∗∗ 0.285∗∗ 0.376∗∗∗ 0.357∗∗∗ 0.297∗∗∗ 0.279∗∗∗ 0.365∗∗∗ 0.340∗∗∗

(0.106) (0.113) (0.122) (0.124) (0.101) (0.107) (0.114) (0.116)
Degree Days ≥ 29◦C (100) -0.498∗∗∗ -0.379∗∗∗ -0.491∗∗∗ -0.420∗∗∗ -0.497∗∗∗ -0.375∗∗∗ -0.492∗∗∗ -0.401∗∗∗

(0.051) (0.055) (0.052) (0.061) (0.052) (0.056) (0.054) (0.060)
Precipitation (m) 1.077∗∗∗ 1.037∗∗∗ 0.993∗∗∗ 0.990∗∗∗ 1.069∗∗∗ 1.027∗∗∗ 0.999∗∗∗ 0.996∗∗∗

(0.191) (0.192) (0.189) (0.191) (0.184) (0.184) (0.182) (0.184)
Precipitation (m) Squared -0.870∗∗∗ -0.835∗∗∗ -0.823∗∗∗ -0.814∗∗∗ -0.866∗∗∗ -0.830∗∗∗ -0.826∗∗∗ -0.817∗∗∗

(0.151) (0.152) (0.148) (0.150) (0.147) (0.148) (0.146) (0.147)

R-squared 0.2861 0.2903 0.2910 0.2922 0.2891 0.2935 0.2925 0.2942
Opt. Threshold (R2/AIC/BIC) 66 58 55 55 59 54 54 53
Observations 40552 40552 40552 40552 40552 40552 40552 40552
Counties 1747 1747 1747 1747 1747 1747 1747 1747
Years 25 25 25 25 25 25 25 25

Note: Column (1) is the same as column (4b) of Table 3, while other columns additionally control for interactions with temperature and

PM10. Interaction terms are standardized by removing the mean and normalizing by the standard deviation of the demeaned series to make the

coefficients easier to interpret. All specifications include county fixed effects, year fixed effects, and county-specific quadratic time trends. R-

squared does not include the variation that is explained by the county fixed effects or temporal controls. Robust standard errors in parentheses,

adjusted for clustering at the state level. * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table 7: Effect of Ozone on Log Corn Yields - Controlling for Other Pollutants

(1) (2a) (2b) (2c) (2d) (3)
O3 Exp. ≥ 65ppb (10000 ppb-hrs) -0.737∗∗∗ -0.738∗∗∗ -0.733∗∗∗ -0.738∗∗∗ -0.742∗∗∗ -0.741∗∗∗

(0.088) (0.088) (0.085) (0.087) (0.087) (0.084)
Mean CO (10 ppm) -0.372 -0.374

(0.525) (0.503)
Mean NOx (100 ppm) -0.185 -0.238

(0.400) (0.384)
Mean PM10 (100 ppm) 0.277 0.270

(0.276) (0.279)
Mean SO2 (100 ppm) 0.635 0.682

(0.652) (0.638)
Degree Days 10-29◦C (1000) 0.303∗∗∗ 0.300∗∗∗ 0.304∗∗∗ 0.296∗∗∗ 0.303∗∗∗ 0.294∗∗∗

(0.106) (0.106) (0.107) (0.102) (0.106) (0.103)
Degree Days ≥ 29◦C (100) -0.498∗∗∗ -0.497∗∗∗ -0.498∗∗∗ -0.499∗∗∗ -0.497∗∗∗ -0.499∗∗∗

(0.051) (0.051) (0.051) (0.052) (0.051) (0.052)
Precipitation (m) 1.077∗∗∗ 1.076∗∗∗ 1.080∗∗∗ 1.081∗∗∗ 1.073∗∗∗ 1.080∗∗∗

(0.191) (0.192) (0.191) (0.188) (0.191) (0.186)
Precipitation (m) Squared -0.870∗∗∗ -0.869∗∗∗ -0.871∗∗∗ -0.868∗∗∗ -0.866∗∗∗ -0.865∗∗∗

(0.151) (0.151) (0.151) (0.152) (0.151) (0.151)
R-squared 0.2861 0.2862 0.2861 0.2867 0.2863 0.2871
Opt. Threshold (R2/AIC/BIC) 66 66 66 66 66 65
Observations 40552 40552 40552 40552 40552 40552
Counties 1747 1747 1747 1747 1747 1747
Years 25 25 25 25 25 25

Note: Column (1) is the same as column (4b) of Table 3, while other columns additionally control for other pollutants: carbon monoxide

(CO), nitrogen oxides (NOx), particulate matter (PM10) and sulfur dioxide (SO2). Columns (2a)-(2d) control for one pollutant at a time,

while column (3) controls for all four. All specifications include county fixed effects, year fixed effects, and county-specific quadratic time

trends. R-squared does not include the variation that is explained by the county fixed effects or temporal controls. Robust standard errors in

parentheses, adjusted for clustering at the state level. * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table 8: Effect of Ozone on Log Corn Yields - Various Time Controls Part I

(1a) (1b) (2a) (2b) (3a) (3b)
O3 Exp. ≥ 65ppb (10000 ppb-hrs) -0.737∗∗∗ -0.528∗∗∗ -0.727∗∗∗ -0.392∗∗∗ -0.513∗∗∗ -0.883∗∗∗

(0.088) (0.080) (0.086) (0.075) (0.069) (0.056)
Degree Days 10-29◦C (1000) 0.303∗∗∗ 0.327∗∗∗ 0.316∗∗∗ 0.297∗∗∗ 0.187 0.440∗∗∗

(0.106) (0.078) (0.107) (0.082) (0.118) (0.084)
Degree Days ≥ 29◦C (100) -0.498∗∗∗ -0.549∗∗∗ -0.499∗∗∗ -0.568∗∗∗ -0.506∗∗∗ -0.499∗∗∗

(0.051) (0.059) (0.053) (0.065) (0.058) (0.056)
Precipitation (m) 1.077∗∗∗ 1.051∗∗∗ 1.041∗∗∗ 1.007∗∗∗ 1.030∗∗∗ 0.965∗∗∗

(0.191) (0.197) (0.181) (0.203) (0.184) (0.231)
Precipitation (m) Squared -0.870∗∗∗ -0.879∗∗∗ -0.842∗∗∗ -0.851∗∗∗ -0.834∗∗∗ -0.860∗∗∗

(0.151) (0.182) (0.147) (0.188) (0.148) (0.212)
R-squared 0.2861 0.3575 0.2756 0.3372 0.2490 0.3665
Opt. Threshold (R2/AIC/BIC) 66 71 66 78 57 73
Observations 40552 40552 40552 40552 40552 40552
Counties 1747 1747 1747 1747 1747 1747
Years 25 25 25 25 25 25
County-Level Trends 2 2 1 1 - -
Year Fixed Effects Yes No Yes No Yes No

Note: Column (1a) is the same as column (4b) of Table 3, while other columns vary the time controls. The last two rows of the table give

the highest order polynomial in the county-specific time trends and whether year fixed effects are included. Columns (a) include year fixed

effects, while columns (b) do not. Columns (1)-(3) vary the highest order polynomial in the county-specific time trends. All specifications

include county fixed effects. R-squared does not include the variation that is explained by the county fixed effects or temporal controls. Robust

standard errors in parentheses, adjusted for clustering at the state level. * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table 9: Effect of Ozone on Log Corn Yields - Various Time Controls Part II

(1a) (1b) (2a) (2b) (3a) (3b) (4a) (4b) (5a) (5b)
O3 Exp. ≥ 65ppb (10000 ppb-hrs) -0.737∗∗∗ -0.528∗∗∗ -0.674∗∗∗ -0.497∗∗∗ -0.699∗∗∗ -0.386∗∗∗ -0.513∗∗∗ -0.418∗∗∗ -0.513∗∗∗ -0.316∗∗∗

(0.088) (0.080) (0.077) (0.073) (0.082) (0.072) (0.069) (0.057) (0.069) (0.059)
Degree Days 10-29◦C (1000) 0.303∗∗∗ 0.327∗∗∗ 0.277∗∗∗ 0.300∗∗∗ 0.300∗∗∗ 0.286∗∗∗ 0.187 0.258∗∗∗ 0.187 0.239∗∗∗

(0.106) (0.078) (0.104) (0.081) (0.105) (0.081) (0.118) (0.082) (0.118) (0.083)
Degree Days ≥ 29◦C (100) -0.498∗∗∗ -0.549∗∗∗ -0.491∗∗∗ -0.542∗∗∗ -0.493∗∗∗ -0.561∗∗∗ -0.506∗∗∗ -0.549∗∗∗ -0.506∗∗∗ -0.564∗∗∗

(0.051) (0.059) (0.053) (0.061) (0.053) (0.065) (0.058) (0.063) (0.058) (0.066)
Precipitation (m) 1.077∗∗∗ 1.051∗∗∗ 1.089∗∗∗ 1.063∗∗∗ 1.069∗∗∗ 1.032∗∗∗ 1.030∗∗∗ 1.012∗∗∗ 1.030∗∗∗ 0.997∗∗∗

(0.191) (0.197) (0.183) (0.188) (0.180) (0.195) (0.184) (0.192) (0.184) (0.197)
Precipitation (m) Squared -0.870∗∗∗ -0.879∗∗∗ -0.866∗∗∗ -0.877∗∗∗ -0.856∗∗∗ -0.864∗∗∗ -0.834∗∗∗ -0.850∗∗∗ -0.834∗∗∗ -0.845∗∗∗

(0.151) (0.182) (0.144) (0.173) (0.144) (0.181) (0.148) (0.178) (0.148) (0.182)
R-squared 0.2861 0.3575 0.2617 0.3337 0.2623 0.3241 0.2490 0.3215 0.2490 0.3154
Opt. Threshold (R2/AIC/BIC) 66 71 65 69 66 78 57 67 57 78
Observations 40552 40552 40552 40552 40552 40552 40552 40552 40552 40552
Counties 1747 1747 1747 1747 1747 1747 1747 1747 1747 1747
Years 25 25 25 25 25 25 25 25 25 25
Common Trends - - - - - - 2 2 1 1
State-level Trends - - 2 2 1 1 - - - -
County-level Trends 2 2 - - - - - - - -
Year Fixed Effects Yes No Yes No Yes No Yes No Yes No

Note: Column (1a) is the same as column (6) of Table 3, while other columns vary the time controls. The last three rows of the Table give the

highest order polynomial in the state-specific or county-specific time trends and whether year fixed effects are included. Columns (a) include

year fixed effects, while columns (b) do not. Columns (1a-1b) vary the highest order polynomial in the county-specific time trends, while

columns (2a-3b) vary the highest order polynomial in the state-specific time trends, and columns (4a-5b) vary the highest polynomial in the

common time trend. All specifications include county fixed effects. R-squared does not include the variation that is explained by the county

fixed effects or temporal controls. Robust standard errors in parentheses, adjusted for clustering at the state level. * p < 0.10, ** p < 0.05,

*** p < 0.01.
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Table 10: Effect of Ozone on Log Corn Yields - Measurement Error for Subsets of Counties
Baseline Weighted By Distance to Monitor Counties with Monitor IV Regression

(1) (2) (3a) (3b) (3c) (4a) (4b) (5a) (5b)
O3 Exp. ≥ 65ppb (10000 ppb-hrs) -0.737∗∗∗ -0.717∗∗∗ -0.623∗∗∗ -0.605∗∗∗ -0.623∗∗∗ -0.571∗∗∗ -0.337∗∗∗ -0.590∗∗∗ -0.447∗∗∗

(0.088) (0.128) (0.086) (0.124) (0.086) (0.083) (0.052) (0.075) (0.061)
× Large Dist. to Monitor 0.019

(0.123)
Degree Days 10-29◦C (1000) 0.303∗∗∗ 0.371∗∗∗ 0.255∗∗∗ 0.270∗∗ 0.255∗∗∗ 0.260∗∗∗ 0.247∗∗ 0.261∗∗∗ 0.252∗∗

(0.106) (0.114) (0.085) (0.131) (0.085) (0.101) (0.107) (0.101) (0.105)
× Large Dist. to Monitor 0.015

(0.107)
Degree Days ≥ 29◦C (100) -0.498∗∗∗ -0.547∗∗∗ -0.595∗∗∗ -0.466∗∗∗ -0.595∗∗∗ -0.576∗∗∗ -0.597∗∗∗ -0.574∗∗∗ -0.584∗∗∗

(0.051) (0.076) (0.068) (0.050) (0.068) (0.072) (0.076) (0.072) (0.074)
× Large Dist. to Monitor 0.129∗∗

(0.058)
Precipitation (m) 1.077∗∗∗ 1.234∗∗∗ 1.161∗∗∗ 1.083∗∗∗ 1.161∗∗∗ 0.808∗∗∗ 0.837∗∗∗ 0.805∗∗∗ 0.815∗∗∗

(0.191) (0.257) (0.215) (0.199) (0.215) (0.225) (0.241) (0.221) (0.228)
× Large Dist. to Monitor -0.078

(0.263)
Precipitation (m) Squared -0.870∗∗∗ -1.102∗∗∗ -0.874∗∗∗ -0.918∗∗∗ -0.874∗∗∗ -0.617∗∗∗ -0.622∗∗∗ -0.616∗∗∗ -0.617∗∗∗

(0.151) (0.210) (0.146) (0.165) (0.146) (0.173) (0.185) (0.171) (0.176)
× Large Dist. to Monitor -0.044

(0.186)
R-squared 0.2861 0.2731 0.3356 0.2481 0.2914 0.3369 0.3288 0.3370 0.3265
Opt. Threshold (R2/AIC/BIC) 66 67 69 55 66 70 69 70 68
Observations 40552 40552 20388 20164 40552 8032 8032 8032 8032
Counties 1747 1747 874 873 1747 474 474 474 474
Years 25 25 25 25 25 25 25 25 25

Note: Column (1) is the same as column (6) of Table 3. Column (2) weights by the average corn growing area in a county in 1990-2014.

Columns (3a)-(3c) separate counties by the distance to the closest monitor: columns (3a) and (3b) estimate separate equations for counties

with distances below and above the median, respectively, while column (3c) includes an interaction term whether the distance to the closest

monitor is above the median for all variables and time controls. Column (4a) replicates column (1) for the subset of counties that have a

monitor, while column (4b) uses the simple average of all monitor readings (no spatial interpolation) in those counties. Finally, column (5a)

instruments (4a) with (4b), while column (5b) instruments (4b) with (4a). All specifications include county fixed effects, year fixed effects, and

county-specific quadratic time trends. R-squared does not include the variation that is explained by the county fixed effects or time controls.

Robust standard errors in parentheses, adjusted for clustering at the state level. * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table 11: Cross Validation: Interpolation of Pollution at Monitor Sites

(1a) (1b) (1c) (2a)
Panel A: Monitor Fixed Effects

O3 Exp. ≥ 65ppb (ppb-hrs) 0.665∗∗∗ 0.667∗∗∗ 0.665∗∗∗ 0.732∗∗∗

(0.012) (0.013) (0.013) (0.014)
R-squared 0.6982 0.7143 0.7168 0.7359
Resid. σ - Observed Pollution 41.73 41.65 41.95 10.52
Resid. σ - Interpolated Pollution 33.22 32.85 32.96 8.98

Panel B: Monitor F.E. + Time Controls
O3 Exp. ≥ 65ppb (ppb-hrs) 0.657∗∗∗ 0.658∗∗∗ 0.657∗∗∗ 0.482∗∗∗

(0.012) (0.013) (0.013) (0.024)
R-squared 0.6916 0.7071 0.7095 0.4935
Resid. σ - Observed Pollution 40.95 40.81 41.08 6.79
Resid. σ - Interpolated Pollution 32.37 31.93 32.02 4.66
Observations 2674899 1849158 1817197 17341
Monitors 1395 936 936 1253
Observed Pollution - Mean 13.45 13.66 13.85 13.45
Interpolated Pollution - Mean 14.20 14.12 14.21 14.20
Temporal Aggregation Daily Daily Daily Annual

Note: Table regresses interpolated pollution values (interpolated to the location of the monitors without

using the monitor itself) on observed values at the monitor location. Columns vary by the temporal aggre-

gation. Columns (1a)-(1c) use daily values for March-August, while column (2a) use the annual sum of the

daily values in (1a)-(1c). Columns (a) use all monitors east of the 100 degree meridian (except Florida),

while column (1b) furthermore only uses monitors that lie in a county for which we have corn yields for

at least half the years (13 out of 25 years). Finally, column (1c) limits the daily data further by excluding

days with missing values at the monitor that had to be filled in. Panel A regresses interpolated values on

observed station values, while panel B also includes monitor-specific quadratic time trends and year fixed

effects. The footer of each panel reports the residual standard deviation (σ) from regressing observed and

interpolated values on the controls of each panel, i.e., the remaining variation that is not absorbed by fixed

effects that we are using in our identification. Robust standard errors in parentheses, adjusted for clustering

at the state level. * p < 0.10, ** p < 0.05, *** p < 0.01.
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A1 Online Appendix: Additional Figures

A1



Figure A1: Spatial Distribution of Baseline Pollution Levels

Note: Figure displays the spatial distribution of the average annual cumulative ozone exposure above 65ppb

over the growing season (March-August) in the first five years of our panel (1990-1994).
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