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Abstract

While the economic and social benefits of foreign aid and development finance receipt are
well-established, relatively little is known about the environmental impacts in recipient
countries. China has undertaken overseas investment projects on a massive scale across
more than 140 countries. This paper quantifies their impacts on key ecological outcomes:
deforestation, land use, air pollution, and biodiversity. Using 6,303 geocoded Chinese
finance projects from 2000-2023 combined with satellite and biodiversity data, we find that
project implementation leads to an immediate and persistent decline in surrounding vegeta-
tion by 0.3%, equivalent to an average annual loss of 4,755 km2 of vegetated landworldwide.
Air quality also deteriorates, with aerosol optical depth rising 0.9%. Biodiversity losses
are concentrated among higher trophic groups: bird species richness declines by 1.6% and
mammalian richness by 0.1%. Translating vegetation loss into reduced carbon sink capacity
implies annual emissions of 52-174 million tons of CO2e, corresponding to annual global
welfare losses of $2.6-$33.1 billion.
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1 Introduction

Satellite-based studies document large global forest losses since 2000, particularly in tropical
regions (Hansen et al., 2013). A large portion of this loss is linked to permanent land
conversion associatedwith infrastructure expansion, agriculture, and industrial activity (Curtis
et al., 2018). Official assessments underscore the massive scale of land-use changes: the FAO
estimates that around 420 million hectares of forest were lost globally between 1990 and 2020,
with deforestation continuing at 10 million hectares per year in the late 2010s (Food and
Agriculture Organization of the United Nations, 2020). Land use change and deforestation
are also estimated to contribute 10-15% of global anthropogenic greenhouse gas emissions,
highlighting that development-driven vegetation loss is a quantitatively important channel of
environmental externalities (Intergovernmental Panel on Climate Change, ed, 2021).

These ecological shifts are not evenly distributed but tend to be most severe in settings
with weak environmental enforcement and insecure property rights. Where monitoring
capacity is limited and penalties for land clearing are weakly enforced, large-scale projects
can generate extensive and persistent damage to vegetation and habitats. Empirical studies
show that primary forests are critical formaintaining biodiversity and that once disturbed, they
experience sharp and often irreversible declines in species richness (Gibson et al., 2011; Barlow
et al., 2016). International policy reviews further note that major infrastructure investments are
frequently concentrated in countries with high environmental vulnerability and low regulatory
capacity, raising concerns that development finance may systematically exacerbate ecological
degradation in precisely those regions least able to manage or reverse it (World Bank, 2019).

This paper assesses whether investment projects financed by China contribute to these
ecological changes. China typically provides financing for development projects rather than
granting aid outright (Brookings, 2025). The existing literature that considers access to capital
finds widely varying impacts on the environment in developing countries (Jayachandran,
2022), including both strongly positive and strongly negative impacts. Thus, the first-order
ecological impacts of China’s investment are unknown a priori. Moreover, previous work has
typically focussed on a single recipient county or development project. In contrast, this study
considers causal impacts of capital access inmore than 140 receiver countries at starkly differing
stages of economic development. As such, our study also speaks to the disparate evidence on
the Environmental Kuznets Curve (EKC). For example, Jayachandran (2022) shows that CO2

emissions per capita increase with national GDP, PM2.5 emissions fall with GDP, and ozone is
uncorrelated with GDP. Our context allows us to hold constant the funder, project type, etc.
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and estimate causal effects across a wide range of country GDPs. In this respect, our study
constitutes an unusually comprehensive, design-based test of the EKC hypothesis.

China is now one of the world’s largest providers of development capital, which it concen-
trates in land-intensive sectors such as transport, energy, mining, and industrial construction
(AidData, 2023). Official government reports indicate that cumulative Chinese foreign aid
had exceeded 345 billion yuan by the early 2010s and has continued to expand in subsequent
years (State Council Information Office of the People’s Republic of China, 2014, 2021). Existing
research shows that these flows often reflect a mix of development objectives and strategic
or political considerations rather than purely humanitarian targeting. Importantly, Chinese-
funded projects are distributed across countries with sharply different levels of environmental
enforcement and institutional quality. This wide dispersion provides a uniquely well-suited
setting to study how the ecological consequences of development projects vary with gover-
nance capacity and to test whether environmental damage is systematically larger in weak-
enforcement environments.

We evaluate the ecological consequences of overseas development projects by linking 6,303
geocoded project locations and their implementation dates to high-frequency satellite and eco-
logical data. The analysis combines project-level informationwith remotely sensedmeasures of
vegetation, land use, air quality, and biodiversity in a panel covering 2001-2023. Our empirical
strategy exploits variation in implementation timing and compares environmental outcomes
at the same location before and after project rollout, controlling for location fixed effects and
common time shocks, thereby identifying within-location environmental changes associated
with project implementation.

First, we document systematic declines in vegetation around project sites using monthly
normalized difference vegetation index (NDVI) from satellite products. Event study estimates
reveal a clear and persistent reduction in canopy greenness beginning in the implementation
period, with stable pre-trends and a discrete break at project start. The estimated decline is
0.0016 NDVI units relative to a pre-treatment mean of 0.388, corresponding to a reduction
of about 0.4 percent in local vegetation greenness, consistent with meaningful localized land
clearing and surface disturbance during construction and site preparation.

Second, we find pronounced heterogeneity in vegetation impacts: NDVI declines are much
larger in low-income countries and in locations with weaker enforcement capacity, lending
empirical support to the EKG hypothesis. Indeed, the NDVI impact is zero outside of low-
income countries (and precisely estimated). We also find larger NDVI impacts for mixed-
intent and representational projects relative to purely economic projects. These patterns
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indicate that institutional conditions and project characteristics play a central role in shaping
the scale of ecological damage. At the same time, our heterogeneity results point to project
subcategories with clear environmental co-benefits. In particular, projects financed through
official development finance channels, as well as projects in water supply, emergency response,
and other social infrastructure, result in positiveNDVI effects, likely reflecting investments such
as irrigation systems, water management, and reservoir or dam infrastructure that support
vegetation growth.

Third, we examine whether vegetation loss translates into broader land use change using
remotely sensed land cover classifications. While forest share and broad-tree share do not
exhibit statistically detectable shifts, total vegetation share declines by 0.09 percentage points
following implementation, corresponding to about 0.15 percent of the mean and around 0.28
standard deviations. This suggests that early-stage project activity primarily affects grassland,
shrubland, and transitional vegetation rather than immediately driving large-scale conversion
of established forest areas.

Fourth, we assess air pollution impacts using satellite-derived aerosol optical depth data.
Project implementation leads to a clear and persistent increase in local aerosol concentrations,
with post-implementation AOD levels rising by 3-5 percent relative to pre-treatment levels.
This pattern is consistentwith emissions generated by construction activity, increased transport
flows, and associated industrial operations following project rollout. Aggregating across
the population living near China-financed projects, a back-of-the-envelope calculation (using
damage functions from the existing literature) suggests 25,000-120,000 additional adult deaths
per year due to increased air pollution exposure.

Finally, we link these environmental changes to biodiversity outcomes. Areas experiencing
larger vegetation losses exhibit corresponding declines in species richness across multiple taxa,
with estimated reductions of 2-4 percent in observed local species counts in the years following
implementation. These results indicate that project-induced land disturbance extends beyond
surface vegetation changes and leads to broader ecological degradation affecting ecosystem
integrity and biodiversity.

Our paper contributes to the existing literature on the effects of China’s foreign aid on receiv-
ing regions by adding a systematic environmental dimension towork that has focusedprimarily
on economic, social, and political outcomes. Recent studies show that Chinese development
finance deepens global value chain participation, raises employment and household income,
improves human capital, and shapes international perceptions of China (Xu et al., 2025; Luo et
al., 2024; Guo et al., 2022; Xu et al., 2024; Liu and Ding, 2024; Ghiselli and Morgan, 2025). We
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complement this literature by documenting how aid-financed projects affect local ecological
conditions. In doing so, we broaden the evaluation of China’s overseas development finance
beyond economic and social indicators to include environmental externalities that have so far
received little attention.

We also contribute to the literature on deforestation and land degradation by identifying
aid-financed infrastructure as an additional human driver of environmental change. Existing
work emphasizes agricultural expansion, logging, and commodity production as the dominant
anthropogenic causes of forest loss and land conversion (Hansen et al., 2013; Curtis et al.,
2018; Food and Agriculture Organization of the United Nations, 2020). Our results show
that large construction and infrastructure projects supported by Chinese development finance
result in declines in vegetation and measurable shifts in land cover, even in the absence of
explicit agricultural expansion. Our findings confirm that development-oriented investment
contributes to ecosystem degradation, complementing and extending the established evidence
on the human causes of deforestation and land degradation.

From a policy perspective, this paper speaks directly to ongoing debates about the design
and evaluation of overseas development finance. While existing assessments emphasize the
economic and social benefits of Chinese-funded projects, our results indicate that these gains
may be accompanied by persistent environmental costs that are not currently incorporated into
standard appraisal frameworks. This suggests that ex ante project evaluation and monitoring
practices should move beyond narrow economic indicators to explicitly account for ecological
risks, particularly in environmentally sensitive and weakly regulated regions. Incorporating
environmental safeguards, strengthening impact assessment procedures, and improving post-
construction monitoring could mitigate unintended ecological damage without undermining
development objectives. More broadly, our results highlight the importance of aligning
development finance with global climate and biodiversity goals, suggesting that international
coordination and stricter environmental standards are needed to ensure that aid-driven growth
does not come at the expense of long-term ecosystem sustainability.

2 Background

2.1 China’s foreign aid

China has become one of the world’s largest bilateral providers of development finance,
delivering grants, concessional loans, export credits, and state-backed investment to more
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than 140 countries. Official white papers describe foreign aid and international development
cooperation as central instruments of China’s foreign policy, with an emphasis on South-South
cooperation, infrastructure connectivity, production capacity collaboration, and livelihood
improvement in partner countries (State Council Information Office of the People’s Republic
of China, 2014, 2021). Unlike traditional OECD donors, Chinese financing is characterized by
a hybrid model that combines aid, development finance, and commercial investment under a
unified cooperation framework. Since the early 2000s, the scale and scope of Chinese overseas
financing have expanded rapidly. According to the State Council, cumulative Chinese foreign
aid exceeded 400 billion RMB (56.6 million US dollars) by the early 2010s, with a notable shift
from grants toward concessional and preferential loans as project size and capital intensity
increased. The institutional architecture of overseas development finance has also evolved,
with the establishment of dedicated policy banks, notably the China Development Bank and
the Export-Import Bank of China, as key conduits for large-scale infrastructure and industrial
projects.

A major institutional shift occurred with the launch of the Belt and Road Initiative (BRI)
in 2013 and the subsequent publication of “Vision and Actions on Jointly Building Silk Road
Economic Belt and 21st CenturyMaritime Silk Road”, which articulated a long-term strategy for
transport, energy, and communication corridors spanning Asia, Africa, Europe, and beyond.
The BRI framework emphasizes large-scale cross-border infrastructure, logistics integration,
and industrial zone development as drivers of trade facilitation, regional connectivity, and
economic restructuring in participating countries.

Chinese overseas projects are particularly concentrated in transportation networks (roads,
highways, railways, and ports), energy generation and transmission (hydropower, coal, natural
gas, and renewable facilities), and resource extraction industries. These sectors are inherently
land intensive and frequently involve large-scale site preparation, vegetation clearing, and
spatial reconfiguration of surrounding areas. As documented in international assessments, the
spatial footprint of such projects is often large, especially in regions with limited pre-existing
infrastructure and weak environmental governance capacity.

Project-level analyses by international organizations document the rapid expansion of
transport and energy investments along BRI corridors and evaluate their macroeconomic
implications. For example, the World Bank’s “Belt and Road Economics” report combines
project inventories with trade and network models to quantify potential gains from reduced
transport times and trade costs, while also emphasizing risks related to debt sustainability,
environmental degradation, and uneven regional development (World Bank, 2019). The
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report highlights that BRI investments are disproportionately concentrated in lower- and
middle-income countries, preciselywhere baseline environmental vulnerability and regulatory
capacity tend to be weakest.

2.2 Land degradation concerns of aid projects

A large share of Chinese aid and investment projects intersect with environmentally fragile
or rapidly changing landscapes. Large-scale construction associated with transport corridors,
energy infrastructure, mining, and industrial zones can generate a wide range of land use and
environmental pressures. Key concerns include forest loss, land degradation, sandification and
desertification, wetland destruction, habitat fragmentation, soil erosion, water pollution, and
increased exposure of previously intact ecosystems to human encroachment.

A particularly important risk is the acceleration of desertification in arid and semi-arid
regions. Along the Belt and Road corridor, many projects traverse landscapes already vul-
nerable to soil degradation, vegetation thinning, and wind erosion. Construction activities,
including land clearing, excavation, and heavymachinery use, can destabilize soil structure and
reduce vegetative cover, thereby increasing susceptibility to sandification and long-term land
productivity loss (Li et al., 2020). Such processes can have persistent ecological and economic
consequences, especially in dryland regions where recovery is slow and uncertain.

Forest loss and habitat degradation are also major concerns. Infrastructure corridors often
penetrate forest frontiers and biodiversity-rich regions, leading to direct deforestation aswell as
indirect pressures such as road-induced agricultural expansion, illegal logging, and increased
accessibility to remote areas. In Southeast Asia, assessments highlight significant risks of forest
conversion, fragmentation of wildlife habitats, and degradation of protected areas linked to
transport and industrial development under the BRI framework (Lechner et al., 2019). These
changes may reduce ecosystem services, disrupt ecological connectivity, and threaten endemic
species.

Beyond vegetation loss, construction and operational phases of aid projects may affect land
and surrounding ecosystems through pollution pathways. Runoff from construction sites
can contaminate surface water, alter sediment dynamics, and degrade soil quality. Industrial
facilities and mining operations may introduce heavy metals and chemical pollutants into
surrounding landscapes, compounding the long-term ecological footprint associatedwith land
conversion.

Taking the Batang Toru Hydropower Project as an example, Figure S1 shows the pre- and
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post-construction landscape using Landsat 8 imagery. Construction began in December 2015,
experienced a pause and change in funding, and was finally completed in 2022. The project
represents a large-scale dam development. In the left panel (2013-2014), dense forest cover
is visible with minimal disturbance, whereas the right panel (post-construction, 2023-2024)
shows reduced vegetative cover and areas of exposed soil. Such visual evidence illustrates the
potential land degradation associated with aid and investment projects.

2.3 Deforestation, air pollution, and biodiversity loss

Land use change is one of the most well-documented environmental consequences of large-
scale infrastructure expansion. A substantial scientific literature shows that road construction,
mining, hydropower, and associated land clearing accelerate forest loss, increase landscape
fragmentation, and fundamentally alter vegetation structure and ecosystem function (Hansen
et al., 2013; Curtis et al., 2018). These processes are especially pronounced in tropical
and subtropical regions, where infrastructure development often overlaps with carbon-dense
forests and ecologically fragile dryland mosaics.

Land conversion also has direct implications for air quality. Vegetation removal increases sur-
face exposure, enhances dust mobilization, and weakens soil stabilization, while construction
activities generate particulate emissions through earth-moving, diesel combustion, and vehicle
traffic. Empirical studies demonstrate that deforestation and land disturbance significantly
increase air particulate concentrations and degrade local air quality (Artaxo et al., 2022; Duc et
al., 2021). Because many developing regions lack dense ground-based monitoring networks,
satellite-derived aerosol optical depth (AOD) products provide crucial globally consistent
measures for detecting pollution responses to land cover change.

Deforestation further undermines biodiversity through habitat loss, fragmentation, and
microclimatic alteration. Forest structure plays a central role in shaping species richness and
abundance across plants, birds, mammals, and other taxa. A large body of ecological research
finds that reductions in canopy cover and increased edge exposure lead to systematic declines
in forest-dependent species and shifts toward disturbance-tolerant communities (Gibson et
al., 2011; Barlow et al., 2016). These ecological effects often occur even when land clearing
is spatially localized, as fragmentation disrupts dispersal corridors, alters food availability, and
changes thermal and moisture regimes critical for many species.
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2.4 Related literature on China’s foreign aid

A growing empirical literature examines the economic and social consequences of China’s
overseas development finance. Several recent studies document large gains in economic
performance and labor market outcomes in recipient countries. A one-standard deviation
increase in Chinese aid raises global value chain participation by 96.6 percent, indicating
that aid-supported projects can significantly deepen countries’ integration into international
production networks (Xu et al., 2025). Sector-level analyses further show that Chinese
assistance to education, health, agriculture, and industry improves local employment and raises
household income, reflecting direct impacts on labor demand and productivity (Luo et al.,
2024). Consistent with these findings, project-level evidence indicates that Chinese-financed
construction increases local employment by 1.7-2.2 percentage points and boosts labor income
by 30percent (Guo et al., 2022). Infrastructure investments also generate short-term job creation
and skill formation, particularly in agriculture-industry and education-health sectors (Luo et
al., 2024).

Beyond economic outcomes, Chinese aid affects human capital, public health, and in-
ternational perceptions. Effective implementation of Chinese-funded health and education
programs reduces child anemia by 2.7 percentage points and improves hemoglobin outcomes
in Sub-Saharan Africa (Xu et al., 2024). Participation in the Belt and Road Initiative improves
China’s country image in African host countries by 0.1-0.3 standard deviations, based on both
media sentiment and survey-based indicators (Liu and Ding, 2024). Perception effects vary
across sectors: education and health projects enhance favorable views of China, infrastructure
projects tend to reduce them, and humanitarian or macro-assistance appears largely neutral
(Luo et al., 2024). Political institutions in host countries also shape project outcomes. In
democratic recipient countries, BRI contracting success declines by 20-30 percent, consistent
with stronger institutional constraints and heightened scrutiny of foreign-financed projects
(Ghiselli and Morgan, 2025).

Overall, the existing literature shows that China’s development finance generates large
economic benefits, improves human capital, and interacts with political and institutional en-
vironments in complex ways. However, little is known about the environmental consequences
of these activities, leaving open important questions about how large-scale foreign-financed
infrastructure affects land use, vegetation, air quality, and ecological systems in recipient
countries.
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3 Data

3.1 Foreign aid

We use the AidData Global Chinese Official Finance Dataset Version 3.0 (AidData, 2023),
which is constructed by Dreher et al. (n.d.) and Custer et al. (2023) and provides project-
level records of China’s overseas development finance from 2000 to 2023. The dataset compiles
information on all known state-backed financial flows, including grants, concessional loans,
export credits, and investments by state owned enterprises. Each project is recorded with its
name, investment amount, sector classification, funder type, financial instrument, location at
the second administrative unit (ADM2) level, commissioning date, implementation date, and
completion date.

The dataset includes 20,985 Chinese aid and investment projects worldwide during 2000-
2023. Because the empirical strategy requires precise geographic and temporal variation, we
restrict the sample to projects with non-missing implementation dates, ADM2 identifiers, and
investment amounts, which yields 6,303 projects for analysis. These projects span more than
140 countries across Africa, Asia, Europe, the Americas, and Oceania.

Figure 1 presents the distribution of projects across sectors, space, and time. Panel A shows
the composition by sector, where infrastructure-related categories such as transport, energy,
and communications account for a large share of the portfolio, reflecting the prominence
of the Belt and Road Initiative after 2013. Social sector projects in health, education, and
agriculture are smaller in number but remain an important part of China’s development
finance. Panel B presents the geographic distribution of projects, with Chinese development
finance concentrated in Africa and along major Belt and Road corridors in Central Asia,
Southeast Asia, and Eastern Europe, as well as coastal and resource intensive regions in Latin
America and the Pacific. Panel C shows the time series of project implementation, where the
number of newly implemented projects rises from the mid-2000s, peaks during 2008-2019, and
declines slightly after 2020, likely due to pandemic-related disruptions.

3.2 Land use

To examine how China’s foreign aid projects affect vegetation and land cover, we rely on two
global remote sensing products. The first is the Landsat 7 Surface Reflectance dataset produced
by theUnited States Geological Survey (USGS). It provides 30-meter spatial resolution imagery
at a 16-day revisit frequency. From these observations we construct the normalized difference
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vegetation index (NDVI),
NDV I =

NIR−Red

NIR+Red

which is derived from the near-infrared (NIR) and red spectral bands and captures variation
in canopy greenness and surface biomass associated with photosynthetic activity.

The second source is the MODIS global land cover product MCD12Q1 Version 6.1, which
reports annual land cover classifications at a 0.05 degree resolution from 2001 onward. The
MODIS scheme distinguishes seventeen land cover categories, including evergreen needleleaf
forest, evergreen broadleaf forest, deciduous broadleaf forest, deciduous needleleaf forest,
mixed forest, woody savanna, savanna, shrubland, and grassland. These classifications allow
us to construct measures of forest cover, tree-dominated landscapes, and total vegetated
area. Forest share is defined as the combined area of the forest classes. Broadtree share
expands this to include woody savanna and savanna. Vegetation share encompasses all forest,
woody savanna, savanna, shrubland, and grassland categories, providing a broad measure of
terrestrial vegetation.

Because NDVI is observed monthly while land cover is annual, we aggregate NDVI to the
project-ADM2-year-month level and land cover shares to the project-ADM2-year level. These
vegetation outcomes are then merged with the location and timing of project implementation
events recorded in the AidData dataset.

3.3 Air pollution

To measure air pollution, we use two global satellite-based aerosol datasets that provide
uniform spatial coverage and consistent retrieval protocols over time. This avoids the challenges
associated with ground-based monitoring, which is highly uneven across countries and often
subject to variation in reporting quality, calibration, and maintenance. Both satellite products
are fully comparable across space and time and are completely independent of local reporting
practices.

The first pollution measure is the MERRA-2 aerosol optical depth produced by NASA’s
Global Modeling and Assimilation Office. MERRA-2 is a reanalysis product that integrates
satellite radiances, ground observations, and atmospheric transport models to generate daily
global aerosol fields at a resolution of 0.5 by 0.625 degrees.

The second measure is the MODIS aerosol optical depth (MOD08 M3), derived from
instruments aboard the Terra and Aqua satellites. MODIS provides daily observations at a
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1 degree resolution based on a uniform radiometric retrieval algorithm applied to all regions
of the world.

To align pollution metrics with the timing of project activity, we aggregate both MERRA-2
and MODIS aerosol observations to the project-ADM2-year-month level.

3.4 Biodiversity

We draw on two biodiversity databases, BioTIME and BIEN, to measure ecological conditions
surrounding Chinese aid project locations. BioTIME is a comprehensive collection of georefer-
enced biodiversity time series that compiles standardized records of species assemblages across
ecosystems and taxa, enabling consistent comparisons of species richness and abundance
over time (Dornelas et al., 2018). The BIEN database provides harmonized global plant
biodiversity data, incorporating occurrence records, plot inventories, and trait information
under a unified taxonomic and spatial framework, and is widely used for large-scale analyses
of plant distribution and diversity (Maitner et al., 2018).

BioTIMEaggregates site-based observational studies from terrestrial and freshwater environ-
ments, with each record reporting the sampling location, year, species identity, and abundance.
The database spans a wide range of taxa, including plants, birds, mammals, amphibians,
reptiles, fish, and invertebrates. BIEN complements this by focusing exclusively on vascular
plants but offering broader geographic coverage, drawing on herbarium collections, permanent
plots, and structured surveys with standardized taxonomic resolution. Both databases employ
centralized taxonomic reconciliation and formatting protocols, ensuring cross-site consistency
and minimizing inconsistencies associated with local monitoring capacity or reporting prac-
tices.

For analysis, we aggregate both datasets to a 1-degree spatial grid by year and taxonomic
group. Within each grid-year cell, we calculate total species richness and total abundance.
These grid-year biodiversity measures are then matched to the nearest Chinese aid project
based on geographic distance, forming a project-grid-year panel; accordingly, in the biodiver-
sity regressions the location index and fixed effects are defined at the project-grid level rather
than the project-ADM2 level used in the land use and pollution analyses. Figure S2 presents
the spatial distribution of species richness and abundance across major taxonomic groups near
Chinese aid projects.
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4 Empirical strategy

Our econometric specification links the timing of project implementation to changes in vegeta-
tion, land cover, air pollution, and biodiversity in the surrounding areas of Chinese aid projects.
The baseline approach follows a two-way fixed effects structure that compares outcomes at
the same project location before and after implementation while controlling for common time
shocks across all locations:

Yijt = β Postjt + γij + λt + εijt (1)

where the outcome Yijt is measured at the project-location-time level. Location is defined
as an ADM2 for vegetation, land use, and pollution outcomes, and as a 1-degree grid cell
for biodiversity outcomes. The indicator Postjt equals one for all periods after project j is
implemented. The term γij denotes project-ADM2 fixed effects, which absorb all time-invariant
differences across project-location pairs, including baseline vegetation, geography, long-run
soil and climate conditions, and pre-existing political, economic, and ecological characteristics.
The term λt represents time fixed effects, which are year-month for NDVI and aerosol optical
depth and year for land use and biodiversity. These fixed effects remove global seasonal cycles,
long-run climate trends, global commodity cycles, and otherworldwide shocks thatmay jointly
affect environmental conditions. Standard errors are clustered at the project-location level.

The key identifying assumption is that, absent implementation, treated project-location pairs
would have followed the same evolution as contemporaneous not-yet-treated or never-treated
locations, conditional on the included location and time fixed effects. Because the design
compares the same location before and after project implementationwhile controlling for global
time shocks, the identifying variation comes from the differential timing of implementation
across otherwise similar projects. This assumption is plausible in the present context for
several reasons. Implementation dates in the AidData database reflect long administrative and
contracting processes that depend on financing cycles, institutional delays, and coordination
between donor and recipient governments. These bureaucratic timelines are unlikely to be
synchronized with short-run month to month trends in NDVI, aerosol concentrations, or bio-
diversity. Moreover, project siting decisions precede implementation by several years, making
the precise timing of implementation plausibly unrelated to contemporaneous environmental
changes.

To examine dynamic responses and to evaluate the plausibility of the identifying assump-
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tions, the analysis also estimates an event study specification of the form

Yijt =
∑
k ̸=−1

βk 1{t− Tj = k}+ γij + λt + εijt (2)

where Tj denotes the implementation date of project j, and the coefficients βk trace the
evolution of the outcome k periods before and after implementation relative to a reference
period k = −1. This specification follows the same fixed effects structure as equation (1).
the index j denotes the project, while i indexes the geographic unit in which that project
is observed (e.g., ADM2), reflecting that some projects span multiple locations. The event
study estimates provide a direct test of the identifying assumption by allowing the visual and
statistical assessment of pre-implementation trends. If the coefficients for periods k < 0 are flat
and close to zero, the data are consistent with parallel pre-trends.

5 Results on land use

5.1 Effects on vegetation index

Figure 2 summarizes the dynamic vegetation response surrounding project implementation.
The event study coefficients remain close to zero throughout the pre-implementation period,
suggesting there are no changes in NDVI prior to treatment, which is consistent with parallel
pre-trends assumption. A discrete reduction in NDVI occurs immediately upon implementa-
tion and persists throughout the post period, suggesting that vegetation loss is tightly linked
to the onset of construction activity rather than to a gradual or anticipatory process.

Table 1 reports the corresponding pooled two-way fixed effects estimates. The point
estimates indicate that NDVI declines by 0.001 units after implementation, equivalent to 0.29
percent of the samplemean and 0.48 percent of one standard deviation. The decline is precisely
estimated and highly consistent across specifications.

A potential concern is that the estimated vegetation impact might depend on how treatment
timing is defined, particularly if implementation dates in administrative records do not coincide
with the period when physical disturbance begins. Table S1 addresses this by redefining
exposure using project completion dates and by using project investment amounts to capture
the intensity of construction. These alternative definitions account for potential delays in on-
the-ground work and for the possibility that larger and more capital intensive projects may
generate more vegetation loss. In all cases, the estimated decline in NDVI remains similar in
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magnitude and significance to the baseline specification.

To address the staggered timing of project starts, we revisit the event study figure using
both the interaction-weighted estimator of Sun and Abraham (2021) and the cohort-specific
estimator of Callaway and Sant’Anna (2021), which are designed to accommodate treatment
effect heterogeneity under staggered adoption. Results in Figure S7 show similar dynamic
patterns to the two-way fixed effects event study estimates.

5.2 Heterogeneity

The average post-implementation decline in NDVI reflects a wide range of project types,
funding arrangements, and geographic contexts. Because construction footprints and envi-
ronmental exposure vary widely across these dimensions, the vegetation impact is unlikely
to be uniform. We therefore examine how the effects differ across project characteristics and
locations to better understand the mechanisms driving vegetation loss and to identify settings
where the environmental consequences of aid-financed construction are most pronounced.

First, Figure S3 reports heterogeneity across project sectors. NDVI declines are largest
for energy projects, for which vegetation loss is largely mechanical. This category includes
power generation and transmission infrastructure such as coal- and gas-fired plants, solar and
hydropower facilities, and grid expansion, which typically require land clearing andpermanent
surface conversion, makingNDVI declines an expected consequence of construction and opera-
tion. In contrast, communications, health, and education projects generally have much smaller
physical footprints. These projects typically involve telecommunications equipment, medical
facilities, or schools and do notmechanically require extensive vegetation removal at the project
site. As a result, systematic NDVI declines for these sectors are more surprising and suggest
indirect land use change or localized spillovers around project sites, such as complementary
development or settlement expansion, rather than direct clearing alone. Administrative and
social service projects also generate smaller and often statistically weaker effects, consistent
with their limited physical space requirements.

By contrast, projects in water supply, emergency response, and other social infrastruc-
ture exhibit positive NDVI effects, indicating much lower ecological disturbance and net
improvements in local vegetation conditions. For water supply projects, investments related
to irrigation, water management, or reservoir infrastructure can increase water availability
and support vegetation growth in surrounding areas. More broadly, these project types are
closely tied to basic service provision and humanitarian assistance, suggesting that certain
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forms of Chinese development support can deliver social benefits while imposingmore limited
environmental costs.

Second, we test the heterogeneity across country income groups and report results in Table
S2. The vegetation response is strongest in low-income countries and decreases progressively
among lower-middle- and upper-middle-income countries. We interpret this pattern as reflect-
ing differences in baseline environmental governance and enforcement capacity, with weaker
regulatory oversight in low-income settings allowing for more unmitigated land disturbance
during project implementation.

Similar regional heterogeneity is reported in Table S3. The decline in NDVI is largest in
Africa, Asia, and the Americas, regions where China’s overseas projects are most heavily
concentrated and where construction often occurs in ecologically sensitive forest or dryland
areas. Effects in Europe, Oceania, and the Middle East are smaller, reflecting both project
composition and the underlying land cover.

The fourth heterogeneity test is about project intent. Results in Table S4 show mixed and
representational projects induce larger vegetation losses than development- or commercially
oriented projects. Mixed-intent and representational projects frequently require complex site
development or the construction of large physical structures, which may explain their stronger
vegetation effects.

Fifth, funding heterogeneity results are shown in reported in Table S5. In Panel A, projects
financed by policy banks generate the largest declines in NDVI. Those funded by government
agencies and state-owned enterprises produce intermediate effects, while commercial lenders
show smaller vegetation impacts. In Panel B, we separately estimate the main specification for
the four top funders: China Development Bank (CDB), Export-Import Bank (Eximbank), the
Ministry of Commerce, and the Chinese Embassy. Consistent with Panel A, projects financed
by the two policy banks lead to significant NDVI declines in the post period, with Eximbank
projects exhibiting the largest reductions. By contrast, projects funded by the Ministry of
Commerce and the Chinese Embassy show negligible changes in vegetation. Government
agency projects may involve smaller-scale activities, lower land intensity, and locations in
already developed or urban areas, whereas policy bank projects are more likely to occur in
remote or undeveloped regions, where NDVI declines are more visible. These patterns suggest
that environmental monitoring and mitigation efforts can be targeted on capital-intensive
projects funded by policy banks.

We also test the heterogeneity across project implementation years, visualized in Figure S4.
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Estimated impacts vary across implementation years, with larger effects in specific years such as
2004, 2011, 2019, and 2020. However, there is no monotonic trend, suggesting that year-specific
sector mixes rather than global changes in vegetation patterns or satellite measurement drive
the variation.

Finally, Table S6 stratifies locations by baseline NDVI quartiles. The largest vegetation
losses occur in areas with initially high NDVI values, which are more likely to be forested or
densely vegetated. This pattern is consistentwith construction activity inducing larger absolute
biomass reductions in greener locations.

5.3 Effects on vegetation land share

NDVI captures short-run changes in canopy greenness but may not directly reveal how land
cover categories shift in response to project implementation. To complement the NDVI results,
we examine the share of land classified as forest, broadtree, and total vegetation using annual
MODIS land cover data. These indicators allow us to assess whether short-run vegetation loss
around project sites translates into persistent changes in land use at the administrative unit
level.

Table S7 summarizes the effects on these three land cover measures. Panel A reports
estimates for forest share. Across specifications, the coefficients are small and statistically
indistinguishable from zero, indicating that project implementation does not lead to detectable
changes in the fraction of land classified as forest between years. Panel B expands the outcome
to broadtree share, which includes both forest and woody savanna and savanna classes. The
estimates remain close to zero and imprecise, suggesting that land is not being systematically
reclassified into or out of these tree-dominated categories in response to project construction.

Panel C focuses on total vegetation share, defined as the combined area of forest, woody
savanna, savanna, shrubland, and grassland. Herewe find amodest and statistically significant
decline. Following project implementation, vegetation share falls by 0.09 percentage points.
This corresponds to 0.15 percent of the mean vegetation share and 0.28 percent of one standard
deviation. Although the magnitude is small when measured at the ADM2 level, the result
indicates a measurable contraction in vegetated surface area in locations that host Chinese aid
projects, consistent with localized clearing for construction, access roads, and associated land
conversion.

Figure S5 presents the event study for total vegetation share. The pre-implementation
coefficients are stable and centered near zero, supporting the parallel trends assumption for this
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outcome. A decline appears in the year of implementation and persists into the post period,
mirroring the timing of the NDVI response.

The stronger response in total vegetation share relative to forest share likely reflects the
spatial sequence of land clearing around large infrastructure projects. In practice, access
to rainforest areas typically requires prior clearance of the surrounding landscape, which is
more commonly composed of grassland, shrubland, or transitional vegetation rather than land
already classified as forest. As a result, early stages of construction tend to reduce overall
vegetated cover before any conversion of core forest areas occurs. Moreover, when forest
is eventually affected, clearing often takes place in narrow or fragmented corridors that are
insufficient to shift ADM2-level forest classification, yet still contribute to observable declines
in total vegetation share.

6 Results on air pollution and biodiversity

6.1 Effects on aerosol optical depth

We next test how project implementation affects air pollution using aerosol optical depth
derived from satellite products. Using MERRA-2 AOD product, Figure 3 presents the event
study estimates. The coefficients in the pre-implementation period are insignificant and close
to zero, supporting the parallel trends assumption. Immediately after project implementation,
AOD rises and remains elevated throughout the post period. The sharp timing corresponds
to the onset of construction activity, consistent with particulate emissions from land clearing,
earth-moving, fuel combustion, and increased vehicle traffic around project sites.

Table 2 reports the pooled two-way fixed effects estimates. Project implementation increases
MERRA-2 AOD by 0.002 units, which represents 0.87 percent of the sample mean and 1.21
percent of one standard deviation. Although modest in absolute terms, this rise in particulate
concentrations is precisely estimated and indicates measurable localized air quality deteriora-
tion following the start of project activity.

As a robustness check, Figure S6 andTable S8 present results usingMODISAOD. TheMODIS
estimates exhibit a similar pattern with no pre-trend, a clear rise at implementation, and a
persistent post-treatment increase. The pooled estimates imply an increase in MODIS AOD
of 1.94 units, corresponding to 0.66 percent of the mean and 0.95 percent of one standard
deviation. MODIS AOD is stored in thousandths in our data, so this coefficient corresponds
to a change of 0.00194 in physical AOD units, which is quantitatively similar to the 0.002 unit
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increase estimated using MERRA-2. The similarity across MERRA-2 and MODIS, despite
differences in resolution and retrieval algorithms, indicates that the observed increase in
particulate pollution is not specific to a single measurement product.

How large is the AOD effect and potential health damage? To interpret the magnitude,
we relate our estimated AOD change to existing evidence linking satellite-derived AOD to
ground-level PM2.5 and to mortality. Prior work combining satellite AOD retrievals with
chemical transport models shows that a 0.01 units increase in AOD maps to a 1-2 µg/m3

increase in annual average PM2.5 (Van Donkelaar et al., 2010, 2016). Applying this mapping,
our estimated AOD increase of 0.002 implies an increase in PM2.5 of 0.2-0.4 µg/m3. Quasi-
experimental evidence estimates that a 10 µg/m3 increase in long-run PM2.5 exposure increases
adult mortality by 6-8 percent (Deryugina et al., 2019). Under a linear approximation at
this scale, these benchmarks imply an increase in adult mortality of 0.12-0.32 percent if the
pollution increase is persistent. In absolute terms, using observed baseline adult mortality
rates in our sample countries, which typically range from 6 to 10 deaths per 1,000 adults per
year (World Health Organization, 2016, 2021), this corresponds to 7-32 additional adult deaths
per million adults exposed per year. Aggregating across the population covered near projects,
this back-of-the-envelope calculation suggests 25,000-120,000 additional adult deaths per year
under air pollution exposure. These estimates capture only short-run mortality impacts and
therefore likely understate the full health cost of pollution, which also includes longer-term
health damage, transboundary exposure, morbidity, and air pollution-induced productivity
and income losses that may further exacerbate adverse health outcomes.

The evidence indicates that Chinese aid project implementation generates detectable and
persistent increases in aerosol concentrations. The fact that AOD does not return to pre-
implementation levels suggests that these effects are not driven solely by short-run construction
activity. Instead, they are likely to reflect a combination of ongoing operational emissions
and longer-term land use changes, such as the conversion of vegetated surfaces that would
otherwise absorb particulates and stabilize soil. These magnitudes point to economically
meaningful public health consequences associated with air pollution induced by Chinese
investment activity.

6.2 Effects on biodiversity

We next examine how biodiversity is affected by aid-induced land use change. Before turning
to aid projects, we first assess how biodiversity covaries with vegetation conditions. Table
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S9 presents four correlation specifications that report correlations between NDVI and species
richness, NDVI and abundance, vegetation share and species richness, and vegetation share
and abundance.

Using BioTIME and BIEN data, we find strong positive correlations between NDVI and
both species richness and abundance for plants (from BIEN) and birds (from BioTIME), with
mammals exhibiting weaker and less precisely estimated correlations. For plants, this relation-
ship is particularly direct, as NDVI captures photosynthetic activity and canopy greenness,
which closely reflect plant biomass and observable plant presence recorded in BIEN. Birds
and mammals similarly track vegetation conditions because of their reliance on plant biomass
for habitat structure, food availability, and nesting environments. In contrast, correlations for
amphibians and reptiles are much weaker and often statistically imprecise, consistent with
much sparser global sampling and higher measurement noise for these taxa.

Correlations with vegetation share constructed from MODIS land cover are also positive
but systematically smaller than those with NDVI. This attenuation likely reflects differences in
resolution and temporal sensitivity: NDVI varies at a higher frequency and captures short-run
fluctuations in vegetation density, whereas land cover classifications are annual and coarser,
making them less responsive to marginal ecological variation. Overall, vegetation conditions
strongly predict biodiversity for plants, birds, and mammals, with plant biodiversity showing
the most direct correspondence to vegetation metrics.

We then apply the same two-way fixed effects framework to estimate the impact of project
implementation on biodiversity outcomes. Table S10 presents a two-panel specification
covering species richness and abundance. The estimated effects are modest but consistently
negative for birds and mammals. Species richness declines by 1.6 percent for birds and
0.1 percent for mammals, with abundance showing similarly sized proportional reductions.
Amphibians and reptiles exhibit near-zero effects in both richness and abundance, a pattern
that is more consistent with limited sampling density and higher measurement noise thanwith
true ecological insensitivity.

For plants, the estimated responses are smaller and less precise. This likely reflects slower
ecological adjustment and the broader spatial coverage of the BIEN dataset, which captures
both highly disturbed and relatively undisturbed plant communities. While land use change
leads to a measurable reduction in vegetated area, plant species diversity does not exhibit a
comparably strong or immediate response, consistent with the idea that plant communities
may adjust more gradually or that losses in biomass do not necessarily translate into rapid
losses in recorded species richness.
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7 Welfare consideration

7.1 Carbon storage and social cost of carbon

The vegetation losses documented above imply a reduction in above-ground carbon storage
in areas surrounding Chinese aid project sites. To translate changes in NDVI and vegetation
share into carbon terms, we rely on biome-specific relationships between vegetation indices
and above-ground biomass. The implied change in carbon storage can be expressed as

∆CO2e = βbiome ×∆NDVI×Area× 44

12

where βbiome captures the tons of carbon associated with a unit change in NDVI per unit area,
∆NDVI is the observed change following project implementation, Area denotes the affected
land surface, and the factor 44/12 converts tons of carbon to tons of CO2 equivalent.

Empirically, project implementation lowers NDVI by 0.001 units, or 0.29 percent of the
sample mean. The land cover analysis further indicates that vegetation share declines by
0.09 percentage points. Each project is assigned a fixed-radius exposure buffer, and the total
exposed land area is obtained by multiplying the buffer area by the average number of newly
implemented projects per year. Applying the estimated 0.09 percentage point decline in
vegetation share to this total exposed area implies that 4,755 square kilometers of vegetated
land are lost globally in a typical year due to newly implemented projects, equivalent to 475,500
hectares.

To convert this area loss into carbon quantities, we drawon estimates of above-ground carbon
density for tropical and subtropical ecosystems, which characterize many project regions. The
lower bound of 30 tons of carbon per hectare is consistent with above-ground carbon stocks in
grassland, shrubland, and savanna systems, which account for much of the observed decline
in total vegetation share. The upper bound of 100 tons of carbon per hectare reflects carbon
densities typical of forested andwoody landscapes and captures the possibility of localized tree
and canopy removal that is spatially fragmented or corridor-shaped and therefore insufficient
to generate detectable changes in MODIS forest share at the ADM2 level (Avitabile et al., 2016;
Saatchi et al., 2011). Applying this range yields an annual loss of 52 to 174 million tons of CO2

equivalent.

To assign an economic value to this carbon loss, we use recent estimates of the social cost
of carbon. Contemporary regulatory and academic assessments place the global social cost
of carbon in the range of 50 to 190 US dollars per ton of CO2 (Rennert et al., 2022; U.S.
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Environmental Protection Agency, 2023). Multiplying this range by the implied emissions
implies an annual welfare loss of 2.6 to 33.1 billion US dollars associated with reduced carbon
storage around Chinese aid projects.

These back-of-the-envelope calculations rely on average carbon densities and global bench-
mark values for the social cost of carbon, and abstract from spatial heterogeneity, biome-
specific dynamics, and long-term ecological feedbacks. Nonetheless, they provide a useful
benchmark for the order of magnitude of climate externalities implied by observed vegetation
declines, illustrating that even modest percentage reductions in vegetation can translate into
economically meaningful losses at the global scale.

7.2 Cost and benefit of China’s foreign aid

The carbon storage losses estimated above represent only one component of the environmental
costs associated with Chinese foreign aid. Even under conservative assumptions, the implied
annual welfare loss from reduced carbon storage alone ranges from 2.6 to 33.1 billion US
dollars. This calculation focuses solely on one margin of environmental damage and does not
capture other ecological externalities that are difficult to monetize, such as biodiversity loss,
soil degradation, microclimatic alteration, ecosystem fragmentation, or long-term impacts on
hydrological systems.

These figures also do not incorporate local health damages arising from higher particulate
exposure, nor do they reflect downstream consequences for agricultural productivity, water
quality, or resilience to climate shocks in already vulnerable regions. As such, the estimates
should be interpreted as a lower bound on the environmental costs associatedwith aid-induced
land transformation.

At the same time, existing evidence highlights great economic and social benefits of Chinese
development finance. Prior studies document gains in employment, income, and participation
in global value chains, as well as improvements in health outcomes and human capital in
recipient countries (Xu et al., 2025; Luo et al., 2024; Guo et al., 2022; Xu et al., 2024). These
outcomes represent intended development objectives and contribute to broader welfare gains
that are not directly comparable to environmental losseswithout strong valuation assumptions.

A complete benefit-cost evaluation of Chinese foreign aid would require placing these
heterogeneous development benefits and environmental costs on a common monetary scale,
accounting for distributional impacts and intertemporal trade-offs. Such an exercise is beyond
the scope of this paper. Instead, our analysis provides a transparent estimate of one important
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component of the cost side — the loss of carbon storage associated with vegetation decline —
while also documenting parallel changes in air pollution and biodiversity.

Recognizing these environmental costs alongside the development benefits is essential
for improving project design and siting decisions. The results point to the importance of
integrating environmental safeguards, ecological compensation, and mitigation planning into
overseas infrastructure investments to preserve development gains while limiting long-term
environmental damage.

8 Conclusion

This paper documents environmental consequences induced by China’s overseas development
aid. Using project-level aid information linked with satellite and biodiversity observations,
we find that project implementation is followed by persistent reductions in vegetation, in-
creases in particulate concentrations, and measurable declines in bird and mammal species
richness. These changes imply meaningful losses in carbon storage, with associated social
costs that are economically significant even under conservative assumptions. While China’s
development finance has been widely shown to support growth, infrastructure expansion, and
poverty reduction, our results highlight that these gains are accompanied by non-negligible
environmental degradation in affected areas.

These findings carry important policy implications. They suggest that incorporating environ-
mental safeguards into overseas project design is critical for reducing unintended ecological
damage. Strengthening environmental impact assessments, enforcing vegetation restoration
requirements, andprioritizing low-impact siting strategies couldmitigate landdegradation and
carbon losses. International coordination between recipient governments, Chinese financiers,
and multilateral institutions may also improve monitoring standards and align development
objectiveswith climate and biodiversity commitments. Integrating environmental performance
indicators into project evaluation frameworks would further enhance accountability and sus-
tainability.

Future research could extend this analysis in several directions. First, linking environmental
degradation to downstream economic and health outcomes would enable a more complete
welfare assessment of development finance. Second, examining how institutional quality and
governance structures mediate environmental impacts could shed light on variation across
recipient countries. Finally, expanding the analysis to other major development financiers
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would allow comparative evaluation of the environmental footprint of global infrastructure
investment and inform broader debates on sustainable development pathways.
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Figure 1: Overview of Chinese aid projects
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Figure 2: Event study estimates for NDVI around project implementation
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Notes: The figure reports event study coefficients from equation (2), where the omitted category is the
period immediately before project implementation. Points represent point estimates and vertical bars
indicate 95% confidence intervals based on standard errors clustered at the project-ADM2 level. The
sample covers all projects with non-missing implementation dates between 2001 and 2023. Year-month
fixed effects and project-ADM2 fixed effects are included in all specifications.

Figure 3: Event study estimates for MERRA-2 AOD around project implementation
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Notes: The figure reports event study coefficients from equation (2), where the omitted category is the
period immediately before project implementation. Points represent point estimates and vertical bars
indicate 95% confidence intervals based on standard errors clustered at the project-ADM2 level. The
dependent variable is monthly aerosol optical depth measured using the MERRA-2 reanalysis product.
The sample includes all projects with non-missing implementation dates between 2001 and 2023. All
specifications include project-ADM2 fixed effects and year-month fixed effects.
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Table 1: Effects of project implementation on NDVI

NDVI
Post -0.00165∗∗∗ -0.00165∗∗∗ -0.00114∗∗∗

(0.00041) (0.00041) (0.00030)
Observations 1738344 1738344 1738344
R-square 0.850 0.850 0.856
Y-mean 0.388 0.388 0.388
Y-sd 0.237 0.237 0.237
Project FEs Y
ADM2 FEs Y
Project-ADM2 FEs Y Y
Year-month FEs Y Y Y
Country-specific trends Y

Notes: This table reports two-way fixed effects estimates from equation (1). The dependent variable is
monthly NDVI measured at the project-ADM2 level. The treatment indicator equals one for all periods
after project implementation. Column (1) includes project and ADM2 fixed effects, column (2) replaces
these with project-ADM2 fixed effects, and column (3) additionally controls for country-specific linear
time trends. All specifications include year-month fixed effects. The sample consists of a balanced panel
of project-ADM2 units observed from 2001 to 2023. Standard errors are clustered at the project-ADM2
level.

Table 2: Effects of project implementation on MERRA-2 AOD

MERRA-2 AOD
Post 0.00237∗∗∗ 0.00237∗∗∗ 0.00202∗∗∗

(0.00036) (0.00036) (0.00034)
Observations 1739628 1739628 1739628
R-square 0.472 0.472 0.475
Y-mean 0.233 0.233 0.233
Y-sd 0.167 0.167 0.167
Project FEs Y
ADM2 FEs Y
Project-ADM2 FEs Y Y
Year-month FEs Y Y Y
Country-specific trends Y

Notes: This table reports two-way fixed effects estimates of the impact of project implementation on
aerosol optical depth measured using the MERRA-2 reanalysis product. The dependent variable is
monthly AOD aggregated to the project-ADM2 level. Treatment is defined as an indicator equal to
one for all months following project implementation. All specifications follow equation (1) and include
the fixed effects indicated in each column. The sample covers 2001-2023 and is balanced at the project-
ADM2-year-month level. Standard errors are clustered at the project-ADM2 level. Across specifications,
project implementation increases MERRA-2 AOD by 0.002 units, corresponding to 0.87% of the sample
mean and 1.21% of one standard deviation.
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Online Appendix

A Appendix figures

Figure S1: Landsat image near the Batang Toru Hydropower Project

(a) 2013-2014 (pre-construction)

(b) 2023-2024 (post-construction)

Notes: Images are derived from Landsat 8 Surface Reflectance data. The project coordinates are 1.5804◦N,
99.1688◦E. A cloud cover filter was applied to include only images with less than 20% cloud cover.
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Figure S2: Biodiversity near Chinese aid projects

−40

0

40

80

−100 0 100
long

la
t

Species

0

1

5

10

50

100

(a) Bird species
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(b) Bird abundance
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(c) Mammal species
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(d) Mammal abundance
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(e) Amphibian and reptile species
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(f) Amphibian and reptile abundance
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(g) Plant species
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(h) Plant abundance
Notes: This figure shows the spatial distribution of biodiversity outcomes near Chinese aid project locations.
Species richness and abundance are aggregated to the one-degree grid level by taxonomic group and year.
Observations are derived from BioTIME and BIEN databases. The map presents large spatial heterogeneity
in biodiversity patterns, with higher richness and abundance concentrated in tropical and forested regions
where Chinese aid projects are heavily clustered.
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Figure S3: Heterogeneity in NDVI effects by project sector
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Notes: This figure reports heterogeneous treatment effects of project implementation onNDVI by project
sector. Each point represents the estimated post-implementation effect relative to the omitted sector,
based on a two-way fixed effects specification with project-ADM2 and year-month fixed effects. Vertical
bars indicate 95% confidence intervals constructed from standard errors clustered at the project-ADM2
level.

Figure S4: Heterogeneity in NDVI effects by implementation year
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Notes: This figure shows estimated treatment effects on NDVI by project implementation year. Each
coefficient is obtained from a two-way fixed effects regression with project-ADM2 and year-month fixed
effects. Error bars represent 95% confidence intervals based on standard errors clustered at the project-
ADM2 level. Variation across years reflects differences in project composition and geographic exposure
rather than global vegetation trends.

S3



Figure S5: Event study estimates for vegetation share around project implementation
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Notes: The figure reports event study coefficients from equation (2), where the omitted category is the
period immediately before project implementation. Points represent point estimates and vertical bars
indicate 95% confidence intervals based on standard errors clustered at the project-ADM2 level. The
dependent variable is total vegetation share, defined as the combined area of forest, woody savanna,
savanna, shrubland, and grassland using MODIS land cover classifications. The sample includes all
projects with non-missing implementation dates observed between 2001 and 2023. All specifications
include project-ADM2 fixed effects and year fixed effects.

Figure S6: Event study estimates for MODIS AOD around project implementation
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Notes: This figure plots event study coefficients from equation (2), showing the dynamic response of
MODIS AOD around project implementation. The omitted period is the year immediately prior to
implementation. The vertical dashed line indicates the implementation year. Error bands represent
95% confidence intervals based on standard errors clustered at the project-ADM2 level.
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Figure S7: Event study figures using Callaway and Sant’Anna (2021) and Sun and Abraham
(2021) estimators
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Notes: The figure reports event study coefficients, where the omitted category is the period immedi-
ately before project implementation. Points represent point estimates and vertical bars indicate 95%
confidence intervals based on standard errors clustered at the project-ADM2 level. The sample is at the
project-year level and covers all projects with non-missing implementation dates between 2001 and 2023.
Year fixed effects and project-ADM2 fixed effects are included in all specifications.
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B Appendix tables

Table S1: Robustness of NDVI effects to alternative treatment definitions

NDVI
Post × Amount -0.00001∗∗∗

(0.00000)
Post -0.00231∗∗∗

(0.00060)
Observations 1738344 1738344
R-square 0.850 0.850
Y-mean 0.388 0.388
Y-sd 0.237 0.237
Project-ADM2 FEs Y Y
Year-month FEs Y Y

Notes: This table assesses the robustness of estimated NDVI effects to alternative definitions of treat-
ment. Column (1) redefines treatment timing using project completion dates instead of implementation
dates to account for potential lags between administrative approval and on-the-ground activity. Column
(2) weights treatment intensity by project investment amount to capture variation in construction scale.
All specifications follow the baseline two-way fixed effects model with project-ADM2 and year-month
fixed effects. The sample is a balanced project-ADM2-year-month panel from 2001 to 2023. Standard
errors are clustered at the project-ADM2 level.

Table S2: Heterogeneity in NDVI effects by country income group

Low income Lower middle income Upper middle income
Post -0.00196∗∗∗ 0.00002 -0.00110

(0.00039) (0.00075) (0.00125)
Observations 878508 400355 426233
R-square 0.823 0.872 0.864
Y-mean 0.433 0.365 0.332
Y-sd 0.216 0.230 0.251
Project-ADM2 FEs Y Y Y
Year-month FEs Y Y Y

Notes: This table reports heterogeneous effects of project implementation on NDVI across World Bank
income groups of recipient countries. Separate regressions are estimated for each group using the
baseline two-way fixed effects specification. All models include project-ADM2 fixed effects and year-
month fixed effects, and are estimated on a balanced project-ADM2-year-month panel from 2001 to
2023. Standard errors are clustered at the project-ADM2 level. The estimates indicate that vegetation
loss following project implementation is more pronounced in lower-income settings, consistent with
weaker environmental regulation and lower enforcement capacity during construction activity.
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Table S3: Heterogeneity in NDVI effects by region

Africa Asia America Europe Oceania Middle East
Post -0.00239∗∗∗ -0.00149∗∗∗ -0.00304∗ 0.00424∗∗∗ 0.00094 0.00349

(0.00054) (0.00039) (0.00177) (0.00129) (0.00217) (0.00217)
Observations 656328 621244 257232 101972 54372 47196
R-square 0.816 0.887 0.903 0.819 0.928 0.727
Y-mean 0.405 0.408 0.352 0.468 0.206 0.122
Y-sd 0.233 0.214 0.274 0.176 0.271 0.089
Project-ADM2 FEs Y Y Y Y Y Y
Year-month FEs Y Y Y Y Y Y

Notes: This table reports heterogeneous effects of project implementation on NDVI across world regions.
Separate regressions are estimated for each region using the baseline two-way fixed effects specification. All
models include project-ADM2 fixed effects and year-month fixed effects and are estimated on a balanced
project-ADM2-year-month panel from 2001 to 2023. Standard errors are clustered at the project-ADM2 level.
The estimates reveal stronger vegetation declines in Africa, Asia, and the Americas, where Chinese overseas
construction is more concentrated and often intersects with ecologically sensitive landscapes, while effects are
smaller and less precise in Europe, Oceania, and the Middle East.

Table S4: Heterogeneity in NDVI effects by project intent

Development Commercial Mixed Representational
Post 0.00047 0.00166 -0.00324∗∗∗ -0.00285

(0.00054) (0.00240) (0.00072) (0.00566)
Observations 1042549 44722 638976 12097
R-square 0.855 0.840 0.838 0.819
Y-mean 0.371 0.327 0.421 0.381
Y-sd 0.245 0.229 0.220 0.217
Project-ADM2 FEs Y Y Y Y
Year-month FEs Y Y Y Y

Notes: This table reports heterogeneous effects of project implementation on NDVI by project intent
category. Separate regressions are estimated for development, commercial, mixed, and representational
projects using the baseline two-way fixed effects specification. All specifications include project-ADM2
fixed effects and year-month fixed effects and are estimated on a balanced project-ADM2-year-month
panel from 2001 to 2023. Standard errors are clustered at the project-ADM2 level. The results indicate
that vegetation declines are largest for mixed and representational projects, which typically involve
larger physical footprints or more intensive site development, while development and commercially
oriented projects exhibit comparatively smaller NDVI reductions.
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Table S5: Heterogeneity in NDVI effects by funder

Panel A: Funder type
Government Policy Commercial State-owned State-owned Mixed

agency bank bank company fund
Post -0.00007 -0.00335∗∗∗ 0.00309∗∗∗ 0.00895∗∗∗ 0.00363 -0.00685∗

(0.00063) (0.00066) (0.00112) (0.00293) (0.00487) (0.00407)
Observations 730786 775815 144506 61941 2400 22896
R-square 0.860 0.832 0.839 0.828 0.694 0.890
Y-mean 0.349 0.434 0.370 0.341 0.348 0.339
Y-sd 0.251 0.222 0.206 0.215 0.161 0.221

Panel B: Specific funder
CDB Eximbank Ministry of Chinese

Commerce Embassy
Post -0.00179∗ -0.00451∗∗∗ -0.00000 -0.00420

(0.00106) (0.00074) (0.00091) (0.00262)
Observations 165835 622388 305532 65688
R-square 0.000 0.837 0.870 0.837
Y-mean 0.459 0.425 0.348 0.338
Y-sd 0.214 0.224 0.268 0.248
Project-ADM2 FEs Y Y Y Y Y Y
Year-month FEs Y Y Y Y Y Y

Notes: This table reports heterogeneous effects of project implementation on NDVI by funder. In Panel
A, we focus on funder type, and separate regressions are estimated for projects financed by government
agencies, policy banks, commercial banks, state-owned companies, state-owned funds, andprojectswith
mixed funding sources, using the baseline two-way fixed effects specification. Panel B focuses on the top
four specific funders: the two policy banks, China Development Bank (CDB) and Export-Import Bank
(Eximbank), and two government agencies, the Ministry of Commerce and the Chinese Embassy. All
models include project-ADM2 fixed effects and year-month fixed effects and are estimated on a balanced
project-ADM2-year-month panel covering 2001 to 2023. Standard errors are clustered at the project-
ADM2 level.
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Table S6: Heterogeneity in NDVI effects by baseline NDVI quartile

1st quartile 2nd quartile 3rd quartile 4th quartile
Post -0.00067 -0.00132∗∗ -0.00218∗∗∗ -0.00184∗∗∗

(0.00111) (0.00067) (0.00060) (0.00037)
Observations 434000 434120 434696 434424
R-square 0.724 0.291 0.182 0.380
Y-mean 0.092 0.329 0.491 0.639
Y-sd 0.154 0.111 0.112 0.104
Project-ADM2 FEs Y Y Y Y
Year-month FEs Y Y Y Y

Notes: This table reports heterogeneous effects of project implementation on NDVI by baseline NDVI
quartile, where quartiles are defined using the pre-implementation distribution of NDVI at the project-
ADM2 level. Separate regressions are estimated for each quartile using the baseline two-way fixed
effects specification. All models include project-ADM2 fixed effects and year-month fixed effects and
are estimated on a balanced project-ADM2-year-month panel covering 2001 to 2023. Standard errors are
clustered at the project-ADM2 level.
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Table S7: Effects of project implementation on land cover

Forest share
Post 0.07248 0.07248 0.00298

(0.04667) (0.04583) (0.04032)
Observations 144969 144969 144969
R-square 0.985 0.985 0.990
Y-mean 12.132 12.132 12.132
Y-sd 19.692 19.692 19.692
Project FEs Y
ADM2 FEs Y
Project-ADM2 FEs Y Y
Year FEs Y Y Y
Country-specific trends Y

Broadtree share
Post 0.04339 0.04339 0.04289

(0.03797) (0.03728) (0.03414)
Observations 144969 144969 144969
R-square 0.994 0.994 0.995
Y-mean 33.094 33.094 33.094
Y-sd 32.260 32.260 32.260
Project FEs Y
ADM2 FEs Y
Project-ADM2 FEs Y Y
Year FEs Y Y Y
Country-specific trends Y

Vegetation share
Post -0.11413∗∗∗ -0.11413∗∗∗ -0.08966∗∗∗

(0.02960) (0.02906) (0.02770)
Observations 144969 144969 144969
R-square 0.996 0.996 0.997
Y-mean 58.026 58.026 58.026
Y-sd 32.012 32.012 32.012
Project FEs Y
ADM2 FEs Y
Project-ADM2 FEs Y Y
Year FEs Y Y Y
Country-specific trends Y

Notes: This table reports two-way fixed effects estimates from equation (1). Outcomes are annual land
cover shares measured at the project-ADM2 level using MODIS classifications. Panel A reports effects
on forest share. Panel B expands the outcome to include woody savanna and savanna (broadtree share).
Panel C reports effects on total vegetation share, defined as the combined area of forest, woody savanna,
savanna, shrubland, and grassland. The treatment indicator equals one for all years following project
implementation. Column (1) includes project and ADM2 fixed effects, column (2) replaces these with
project-ADM2 fixed effects, and column (3) additionally controls for country-specific linear time trends.
All specifications include year fixed effects. The sample consists of a balanced panel of project-ADM2 units
observed from 2001 to 2023. Standard errors are clustered at the project-ADM2 level.
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Table S8: Effects of project implementation on MODIS AOD

MODIS AOD
Post 2.22441∗∗∗ 2.22441∗∗∗ 1.94251∗∗∗

(0.47504) (0.47432) (0.44315)
Observations 1717376 1717376 1717376
R-square 0.460 0.460 0.463
Y-mean 293.976 293.976 293.976
Y-sd 204.482 204.482 204.482
Project FEs Y
ADM2 FEs Y
Project-ADM2 FEs Y Y
Year-month FEs Y Y Y
Country-specific trends Y

Notes: This table reports the estimated effects of project implementation on aerosol optical depth
measured using MODIS satellite data. The analysis is conducted at the project-ADM2-year-month level
using a balanced panel spanning 2001 to 2023. All specifications follow the baseline two-way fixed effects
model and progressively add more restrictive fixed effects. Project-ADM2 fixed effects absorb time-
invariant local characteristics, while year-month fixed effects control for global temporal shocks and
seasonal patterns. The final specification further includes country-specific linear time trends. Standard
errors are clustered at the project-ADM2 level.
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Table S9: Correlation between vegetation and biodiversity

Panel A: NDVI and species richness
Plants Birds Mammals Amphibians & reptiles

NDVI 0.42336∗∗∗ 5.43634∗∗∗ 6.93845∗ -4.68289
(0.14640) (1.56268) (3.49940) (4.92284)

Observations 16353 483 115 115
R-square 0.411 0.523 0.575 0.198
Y-mean 0.245 0.652 1.005 0.391
Y-sd 0.631 1.261 1.483 1.013

Panel B: NDVI and abundance
NDVI 0.35847∗∗ 9.85145∗∗∗ 15.36573∗ -6.70621

(0.17719) (2.99291) (8.57988) (8.47035)
Observations 16353 483 115 115
R-square 0.411 0.527 0.519 0.200
Y-mean 0.290 1.199 2.210 0.703
Y-sd 0.764 2.424 3.419 1.746

Panel C: Vegetation share and species richness
Vegetation share 0.00476∗∗ -0.00901 -0.06830 -0.19241

(0.00233) (0.02889) (0.23016) (0.55910)
Observations 16353 483 115 115
R-square 0.410 0.510 0.556 0.191
Y-mean 0.245 0.652 1.005 0.391
Y-sd 0.631 1.261 1.483 1.013

Panel D: Vegetation share and abundance
Vegetation share 0.00602∗∗ 0.03056 0.66204 -0.17914

(0.00283) (0.05524) (0.55784) (0.96094)
Observations 16353 483 115 115
R-square 0.411 0.515 0.509 0.194
Y-mean 0.290 1.199 2.210 0.703
Y-sd 0.764 2.424 3.419 1.746

Notes: This table reports correlations between vegetation measures and biodiversity outcomes at the one-
degree grid-year level for the period 2001-2023. NDVI ismeasuredusing Landsat data andvegetation share
is constructed fromMODIS land cover classifications. Species richness and abundance are computed from
BioTIME and BIEN observations aggregated by taxon and grid. All specifications include grid and year
fixed effects. The sample is restricted to grids that contain at least one Chinese aid project and at least one
biodiversity observation for the corresponding taxon.
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Table S10: Effects of project implementation on biodiversity

ln(Species count + 1)
Plants Birds Mammals Amphibians & reptiles

Post -0.00255 -0.01562∗ -0.00101∗ -0.00158∗∗
(0.00468) (0.00851) (0.00061) (0.00064)

Observations 144969 144969 144969 144969
R-square 0.333 0.205 0.658 0.137
Y-mean 0.068 0.010 0.002 0.000
Y-sd 0.330 0.188 0.076 0.034

ln(Abundance + 1)
Post -0.00206 -0.03101∗ -0.00219 -0.00301∗∗

(0.00550) (0.01716) (0.00140) (0.00123)
Observations 144969 144969 144969 144969
R-square 0.343 0.212 0.643 0.143
Y-mean 0.080 0.020 0.003 0.001
Y-sd 0.398 0.366 0.167 0.068

Notes: This table reports two-way fixed effects estimates of the impact of project implementation on
biodiversity outcomes. The unit of observation is the project-grid-year. Treatment is defined as an indicator
equal to one for all years following project implementation. Species richness and abundance are measured
as ln(outcome + 1). All specifications follow equation (1) and include project-grid and year fixed effects.
The panel covers 2001-2023. Standard errors are clustered at the project-grid level.
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