



CEEP Working Paper Series
Working Paper Number 33

August 2024

Electricity Consumption: The Role of Grid Reliability in Appliance 
Ownership and Usage in Rwanda

Joel Mugyenyi, Gabriel Gonzalez Sutil, and Vijay Modi

https://ceep.columbia.edu/sites/default/files/content/papers/n33.pdf



Electricity Consumption: The Role of Grid Reliability in
Appliance Ownership and Usage in Rwanda*

Joel Mugyenyi† Gabriel Gonzalez Sutil‡ Vijay Modi§

This version: August 5, 2024

Abstract

This study investigates household-level electricity consumption in Rwanda, focusing on
the relationship between electricity reliability, residential appliance ownership and usage be-
haviors. Leveraging a unique dataset and employing instrumental variables for reliability, we
explore how households adjust their appliance inventory in response to unreliable grid condi-
tions. Our findings reveal that while electricity reliability affects the types of appliances owned,
it does not significantly impact the total number of appliances. Specifically, unreliable electric-
ity reduces, on average, the likelihood of owning low-consumption, affordable devices such as
smartphones, TVs, and decoders. Higher-income households in areas with low reliability are
more likely to invest in alternative appliances that are less dependent on the grid, such as mu-
sic systems, while lower-income households tend to favor appliances like sewing machines.
Furthermore, our analysis of the conditional electricity demand suggests that reliability has
minimal impact on appliance usage among households already possessing appliances. Impor-
tantly, income emerges as a major barrier to both appliance ownership and usage. These results
suggest that while electricity reliability is an important factor, its impact on residential electric-
ity consumption is limited when affordability constraints due to low income are prominent.
This study offers valuable insights for policymakers aiming to enhance residential electricity
consumption in Sub-Saharan Africa, emphasizing the need to focus reliability interventions in
higher-income areas to maximize benefits.

JEL Codes: Q41; O13; D12
Keywords: Energy; Electricity Demand; Grid Reliability; Electric Appliances; Rwanda

1 Introduction

Access to electricity can significantly enhance the well-being of households in Sub-Sahara Africa
but only if they acquire and actively use electric appliances (Lenz, Munyehirwe, Peters, & Sievert,
2017; Richmond & Urpelainen, 2019). Residential electricity consumption is driven by preferences
for energy services, which in turn depend on the availability and usage of electric appliances
(Auffhammer & Wolfram, 2014; Dubin & McFadden, 1984; Nielsen, 1993). However, the unfortu-
nate reality is that households in Sub-Saharan Africa own few and a limited variety of appliances,
even years after electrification efforts (Adesina et al., 2020; Lenz et al., 2017). These deficiencies
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not only diminish the impact of electrification programs on households’ well-being but also pose
challenges for the financial viability of distribution utilities due to low residential electricity con-
sumption (Blimpo & Cosgrove-Davies, 2019).1 This reality underscores the importance of not only
expanding electricity access but also increasing the ownership and active utilization of a diverse
range of appliances by households in Sub-Saharan Africa. This paper examines the demand for
electric appliances, emphasizing their critical role in residential electricity consumption.

While low income is a key variable explaining low appliance ownership, economic theory
suggests that an unreliable electricity supply reduces the incentive to acquire new appliances
(Hashemi, 2022; McRae, 2010; Meeks, Omuraliev, Isaev, & Wang, 2023). Theoretical models in-
dicate that the demand for durable goods, like appliances, stems from the services they provide
through ownership (Dubin & McFadden, 1984). Thus, households are likely to respond to an unre-
liable service by refraining from purchasing certain appliances, anticipating that frequent outages
will hinder their regular use.2 Since the current state of the electricity sector in most African coun-
tries is characterized by pervasive reliability challenges (Blimpo & Cosgrove-Davies, 2019; Day,
2020; IEA, 2022), the quality of the electricity service can then be a factor contributing to the lack of
appliance ownership in Sub-Saharan Africa. However, adoption patterns are less straightforward
in poorer and rural contexts typical of Sub-Saharan Africa. First, low reliability might only de-
crease ownership indirectly by reducing households’ income rather than having a direct effect, as
households may not fully internalize the quality of the service when deciding on appliance pur-
chases (Dang & La, 2019). Second, households might not conform to theoretical predictions if they
are rule-of-thumb, myopic, or bounded rational consumers (Himarios, 2000).3 Lastly, appliance
ownership might not solely be driven by the demand for energy services; social status could also
play a role (Ramakrishnan, Kalkuhl, Ahmad, & Creutzig, 2020). Nonetheless, empirical studies
on how service reliability impacts appliance ownership are limited due to challenges in accessing
reliability data. In this context, the central question remains: How does reliability affect appliance
ownership in Sub-Saharan Africa, and consequently, how can investments in reliability influence
electricity consumption?

In order to contribute to the literature we assess how the state of electricity reliability impacts
ownership of a wide range of appliances in Rwanda using a unique data set and state-of-the-
art instrumental variables for reliability. According to the Rwanda electricity distribution plan
(REG, 2021), the distribution network suffers from poor reliability and quality of supply which
is attributed to under-investment. We follow previous literature and evaluate two outcome vari-
ables: a count of electric appliances (size) and the ownership of specific appliances (composition)
(see Richmond and Urpelainen (2019) and Matsumoto (2016a)). We use conditional fixed-effects
Poisson models and linear fixed-effects probability models to investigate the household appliance
stock. Appliance data at the household-level was obtained from the Integrated Household Living
Conditions Surveys (EICV). Our key explanatory variable is grid reliability which we measure
with the frequency of outages per day. We use administrative reliability data from the Rwanda
Energy Group (REG) which we link with house locations using non-public GPS location of inter-
viewed household, accessible via an agreement with the National Institute of Statistics of Rwanda
(NISR). Additionally, we instrument our reliability measures with lightning activity, specifically,

1This reality, as a consequence, diminishes the incentives to connect households and invest in grid expansion. In
Rwanda, the main principle adopted for financing transmission lines was an ”80-10-10” shared financing policy. Under
this policy, 80% of the capital requirements would be sourced from the government and the development partners; 10%
from the utility’s retained earnings, and 10% from customer connection charges.

2An outage is a complete stoppage within the distribution system, preventing end users’ consumption of electricity
services. Planned outages are either for regular repairs and maintenance, which are typically of limited duration and
scheduled for off-peak months. Unplanned outages are typically due to infrastructure breakage, malfunction, and
overloaded distribution systems.

3For some reason, consumers might not able to account for the future or form expectations with available informa-
tion (Himarios, 2000)
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lightning radiance and strikes frequency. Our models also include household control variables
and fixed effects in an additive approach.

Our results demonstrate that households adapt to low reliability levels in Rwanda. A larger
frequency of outages per day is associated with a decreased probability of households owning cer-
tain appliances, such as smart-phones, TVs, and decoders. These results highlight the significant
influence of unreliable electricity supply on household decisions, with families likely factoring in
potential disruptions that could affect regular appliance usage. Additionally, our analysis reveals
distinct patterns across different income brackets. Higher-income households in low-reliability ar-
eas demonstrate a higher likelihood of owning appliances like music systems, while lower-income
households in thse areas have a higher probability of owning items such as sewing machines.
These appliances rely less on electricity from the grid and are less affected by an intermittent
power supply. Interestingly, the frequency of outages does not significantly impact the total num-
ber of appliances owned by the household. This underscores that the influence of reliability on
the ownership of key appliances primarily affects the type of appliance rather than the overall
quantity. These results support the notion that households exhibit forward-thinking behavior in
their decisions regarding appliance ownership and that households weigh factors like reliability
when making adoption choices. Such insights are crucial for policymakers and utility providers
seeking to improve electricity consumption in Rwanda and similar contexts.

From a policy perspective, our results suggest that residential electricity consumption in Rwanda
could be influenced through investments in reliability. While our study indicates that the direct
effect of outage frequency on appliance ownership is relatively modest - such as a 4% reduction
in the probability of owning a television, a 5% reduction for decoders, and a 6% reduction for
smartphones with each additional outage per day- these small changes in ownership can poten-
tially translate into substantial impacts on overall electricity consumption. 4 This is especially
true if the affected appliances are crucial contributors to residential energy demand. Moreover,
investments in reliability can indirectly influence electricity consumption through other channels,
such as encouraging the use of newly adopted and existing appliances. Our extended analysis,
which models electricity consumption as a conditional demand function, allows us to estimate
mean consumption for appliances for the average household Larsen and Nesbakken (2004) while
identifying the drivers of appliance usage (Matsumoto, 2016a). We use data from the Integrated
Household Living Conditions Surveys (EICV) and complement it with non-public administrative
data from the Rwanda Energy Group.

Our extended analysis reveals that the frequency of power outages does not significantly im-
pact appliance usage among households that already own appliances. This finding can be inter-
preted in a couple of ways. First, households may adapt to unreliable electricity by adjusting their
consumption patterns, utilizing appliances primarily when electricity is available. This adaptive
behavior suggests that while outage frequency may disrupt usage patterns temporarily, it does
not fundamentally alter the overall utilization of appliances over time. Secondly, our results could
indicate that the duration of outages, rather than their frequency, could play a more critical role
in influencing appliance usage. Longer outages may pose greater challenges to households, im-
pacting their ability to use appliances effectively even if outages occur infrequently. Therefore,
reducing the frequency of outages would have limited impact in augmenting household-level
consumption for those already possessing appliances. We leave the study of the mechanisms be-
hind our results for future research.

We contribute to the literature in several ways. The existing literature on households’ appli-
ance ownership has predominantly examined the relationship between household’s income and

4It is important to note that the modest impact of outage frequency on appliance ownership may stem from several
factors. For instance, households might not heavily prioritize future reliability when making decisions. Additionally,
they may have inaccurate expectations about grid reliability or face budget constraints that limit their ability to invest
in appliances despite improvements in reliability.
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the adoption of specific appliances, anticipating their role in driving household electricity demand
growth (see Auffhammer and Wolfram (2014) and Gertler, Shelef, Wolfram, and Fuchs (2016)).
Nonetheless, considerable variability in appliance ownership persists across income levels, and
non-income factors play a crucial role (Debnath, Bardhan, & Sunikka-Blank, 2019; Rao & Ummel,
2017). Our findings not only shed light on the influence of reliability on appliance ownership but
also present descriptive evidence highlighting the impact of non-income drivers, such as gender,
household composition, education, and dwelling characteristics. In particular, we find that demo-
graphic characteristics of the households, specifically the age of the members and the gender of
the head of household, also shows a significant relationship with ownership of key appliances.

We also contribute to a small but growing literature on households’ response to electricity re-
liability improvements. Despite increased electricity access in the 21st century, many developing
countries still face challenges in ensuring satisfactory service quality (Blimpo & Cosgrove-Davies,
2019; Burgess, Greenstone, Ryan, & Sudarshan, 2020; Meeks et al., 2023). In this sense, understand-
ing residential consumers’ responses to experiencing changes in electricity quality has attracted
attention by researchers. Meeks et al. (2023) explores appliance ownership and reliability in Nepal,
Hashemi (2022) investigates the same in Kyrgyz Republic, and McRae (2010) in Colombia. These
studies indicate that households in middle-income countries significantly respond to unreliable
services by refraining from purchasing certain appliances. Our study extends this inquiry to low-
income countries, specifically analyzing appliance ownership in Rwanda. The adoption patterns
in low-income rural settings are nuanced. Moreover, our study sets itself apart by leveraging novel
administrative data and instrumental variables to enhance identification. Finally, we explore the
role of reliability on appliance ownership. Previous studies have only analized the role of fam-
ily structure and economic status of households in determine appliance usage (see Matsumoto
(2016a)).

Understanding residential consumers’ responses to experiencing changes in electricity quality
is also important for electricity planning and demand forecasting. In practice, residential elec-
tricity demand once households connect to the grid is rarely estimated and residential electricity
demand projections typically involve assumptions about average electricity use per consumer or
estimate this applying a constant average income elasticity of demand estimates for developing
countries (Kemausuor, Adkins, Adu-Poku, Brew-Hammond, & Modi, 2014; Pachauri et al., 2013;
Ramana & Kumar, 2009). However, our results suggest that reliability measures should be ac-
counted for in demand and planning models in low-income countries. Indeed, average estimates
mask vast heterogeneity.

The subsequent sections of the paper are organized as follows. In the next section, we delve
into the existing literature. Section 3 provides an overview of the data employed in our analysis of
appliance ownership. In section 4, we outline our methodology and present the ensuing results.
Section 5 delves into the examination of the impact of reliability and other factors on appliance-
level electricity consumption, elucidating key implications for policy. Finally, in section 6, we
present our conclusions.

2 Electric Appliances and Residential Electricity Consumption

This paper examines the demand for electric appliances, emphasizing their critical role in resi-
dential electricity consumption (see Figure 1). Electricity itself does not directly enters into house-
holds’ utility functions; rather, it serves as a critical input that enables electric appliances to pro-
vide essential energy services for individuals (Atkeson & Kehoe, 1999; Dubin & McFadden, 1984;
Sievert & Steinbuks, 2020). Essentially, households own appliances and utilize them to obtain
”necessary” energy services at varying intensities (Dubin & McFadden, 1984; Nielsen, 1993), as
illustrated by arrow (A) in Figure 1. It is essential to note that appliance ownership is a prereq-
uisite for appliance use; households cannot utilize appliances they do not own or have access

4



to, depicted by arrow (c) in Figure 1-. Moreover, appliances continue to consume energy pas-
sively, even when not actively used, a phenomenon termed energy vampire consumption. This
indirect consumption is represented by arrow (B) in the bottom-right of Figure 1. These insights
underscore the pivotal role of appliance ownership in shaping patterns of residential electricity
consumption.

Figure 1: Determinants of household’s electricity consumption

The economic theory of demand for durable goods posits that demand for appliances arises
from the flow of services provided by using them, where utility is best characterized as indirect
(Dubin & McFadden, 1984). Additionally, households face fixed costs associated with acquiring
appliances. Therefore, the optimization problem becomes complex: households must weigh the
benefits of each appliance against expectations of future usage, energy prices, and other consider-
ations. Consequently, appliance ownership is expected to be influenced by a multitude of factors
in a complex interplay, with various variables impacting households’ decision-making processes
when purchasing appliances (Lenz et al., 2017). The following section delves into the current
understanding of how different socioeconomic and other factors influence household appliance
demand, while also highlighting the unresolved questions pertinent to our study.

2.1 Factors Driving the Demand for Electric Appliances

Early work (see Farrell (1954)) assumed an S-shaped relationship between income and the share
of households who own appliances in a model based on a log-normal distribution of “acquisition
thresholds”. A household must save to acquire the appliance, and this delays the appliance acqui-
sition to a higher income. Past a certain income threshold, households become much more likely
to acquire appliances5. Gertler et al. (2016) show that a rise in income has a linear relationship
with ownership of low-level (i.e. low cost) appliances, and the non-linear relationship is only for
major appliances as for example refrigerators (i.e high costs). This suggests that households wait

5Low-income households do not allocate additional income to acquire energy-using assets
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until they have enough income to purchase high cost and long lifespan appliances which are not
replaced frequently, but not low cost appliances. This intuition is similar to the one introduced by
Khandker, Barnes, and Samad (2009), where households are more likely to adopt simple electric
lighting appliances initially and invest in more energy-intensive appliances over time as house-
holds are able to save up for appliance purchases.

While most studies examine the impact of total household income on appliance ownership,
Matsumoto (2016a) analyses households’ income structure and its effect on appliance ownership.
The author finds that in double-income households, non-labor income, such as pension income,
lowers the likelihood of dishwasher ownership; yet, labor income raises it. Moreover, wives’
income, and non-labor income, increase the number of televisions while a husband’s income de-
creases it. Finally, Wolfram, Shelef, and Gertler (2012) explains that households at very low levels
of income are less able to self-finance the appliance, and credit constraints is hence important
barrier to appliance adoption at lower income levels.

Income is a key predictor of appliance take-up, but non-income drivers might matter as well.
Recent evidence from other studies suggests that appliance diffusion can remain low despite ris-
ing incomes (Debnath et al., 2019), and that non-income drivers can be important determinants of
appliance choice (see Richmond and Urpelainen (2019) for a review). In this context, understand-
ing these drivers can be helpful to identify barriers to appliance ownership and residential energy
demand growth within countries. Yet, empirical evidence of these drivers are limited, and since
adoption patterns can be less straightforward among relatively poorer rural households, empiri-
cal evidence on appliance ownership is important to guide policy-makers and utilities, specially,
in Sub-Saharan Africa..

First, ownership of key appliances is expected to be limited under poor housing conditions.
Matsumoto (2016a) finds that households owning a detached house have more appliances, ex-
cluding PCs and cellular phones. In addition, the authors find that home ownership has a pos-
itive impact on the ownership of appliances in Japan. In a similar way, O’Doherty, Lyons, and
Tol (2008) found that homeowners are more likely to have more appliances. In certain situation,
adoption of appliances might depend on the context and exogenous variables to the household
(McNeil & Letschert, 2010). For example, the usefulness of an fan or air conditioner is climate
dependent. That is, adoption might depend on climate and geographic variables. Yet, dwelling
size and structure has not been extensively studied.

Second, household willingness to adopt appliances is not necessarily straightforward if they
wrongly perceive the benefit of using the appliance and have limited information about them. Bos,
Chaplin, and Mamun (2018) reviews several electrification programs over different period of times
and found that sometimes it takes several years for household to internalize the value of appliance
usage. However, households can be persuaded by those individuals already using appliances
(Hanna & Oliva, 2015). This effect is know as the ”demonstration effect” (Bos et al., 2018). In
this context, education might affect ownership of key appliances as more educated household
might have more information. Dhanaraj, Mahambare, and Munjal (2018a) recently found that
refrigerator ownership was higher among more educated households.

Finally, appliance ownership is expected to be driven by demographic variables, but the evi-
dence of how gender and households’ demographics affect appliance ownership is scant on the
literature. Rao and Ummel (2017) found that race and religion together, among other household
characteristics, help explain the heterogeneity in appliance ownership at lower income levels in
Brazil and South Africa. However, religion was not found significant at all by Richmond and
Urpelainen (2019) who studies appliance uptake in India. In addition, the author finds that gen-
der of the decision maker is a significant factor affecting appliance choice.

This study focus on the role or power reliability as a key factor driving the demand for elec-
tric appliances. Theory suggests that a principle barrier limiting ownership of key durable goods
might an unreliable electricity service (McRae, 2010). Indeed, a low quality electricity service
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limits appliances usefulness, which can reduces the demand for them (McRae, 2010). Previous ev-
idence for middle income countries corroborate this claim (see Meeks et al. (2023), Hashemi (2022),
and McRae (2010)). However, such patterns might not be the same for Sub-Saharan African coun-
tries. First, low service quality could decrease the ownership of electricity appliances only through
lower household’s incomes as affordability is a main constraint (Dang & La, 2019). Moreover,
previous literature has found that there is a large share of rule-of-thumb, myopic, and bounded
rational consumers in general (Himarios, 2000), and hence, one can expect that adoption patterns
are not the same in low-income countries. Indeed, Ramakrishnan et al. (2020) shows that end-
users base their consumption decisions not only on available budget and direct use value, but also
on their social environment. They find that while income and household demographics are pre-
dominant drivers of appliance take-up, household’s perception of status emerges as a key social
dimension influencing the take-up in India. The main goal of this paper is to provide empirical
evidence of the role of reliability on households’ appliance demand in low-income settings. We
do this by studying appliance ownership in Rwanda leveraging a combination of household level
survey data and electricity utility data.

3 Data Description

Estimating the relationship between electricity service quality and household outcomes is typi-
cally challenging. Measuring electricity relability is difficult due to common data limitations: util-
ities may not record outages and, if they do, they may lack incentives to share such data (Meeks
et al., 2023). As a result, most prior economics research on electricity quality has either employed
data on self-reported electricity quality, which is prone to misreporting, or used electricity short-
ages as a proxy for outages (Meeks et al., 2023).6 We overcome these data challenge through
a novel dataset which combines public data with proprietary data on electricity outages at the
feeder level obtained directly from the Rwanda Energy Group (REG).7

The proprietary reliability dataset comprises information on electricity outages for feeder lines
from 2016 to 2020, encompassing details such as outage duration, date of occurrence, underly-
ing cause of the outage, and the substation and feeder line implicated.8 The electricity network
consists of many long radial feeder lines in Rwanda; in extreme cases, these lines are longer than
300 km.9 Faults on such feeders would result in wide-spread outages affecting many households.
Complementing this information, the Ministry of Infrastructure collects data for a collection of
52,418 low voltage electricity conductor lines. Each of these lines is characterized by attributes
including its parent substation and feeder line, as well as its inherent nature (whether it is under-
ground or overhead), length, and voltage capacity. By leveraging the corresponding substation
and feeder line designations, we link outages at the feeder lever with low voltage conductor lines
which we use to estimate outages for each individual low voltage line. The geographical distribu-
tion of these lines is visually depicted in Figure 2.

6A power outage entails the temporary disruption of electricity supply, affecting either a portion or the entirety of
a power grid. Various factors, such as an imbalance between demand and supply, can contribute to the occurrence of
a power outage. In contrast, a power shortage occurs when the existing electricity supply falls short of meeting the
overall demand.

7Rwanda Energy Group Limited (REG), is a government-owned holding company responsible for the import, ex-
port, procurement, generation, transmission, distribution and sale of electricity in Rwanda

8The number of unique feeders in each year are as follows: 53 in 2016, 63 in 2017, 73 in 2018, 92 in 2019 and 77 in
2020. The reason for these changes is that grids are updated every year meaning that new feeders are getting added, or
long feeders are being divided.

9An electricity feeder line is a power line that carriers electricity from a substation to individual customers or smaller
substations.
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Figure 2: Distribution Feeder lines

Note: In the plot, the lines sharing the same feeder affiliation are represented by the same color, and a bounding box
is drawn around them to show each feeder’s coverage area. The areas of coverage of feeders further from the capital,
Kigali, which is at the center of the country, tend to be larger than those closer to Kigali. The smallest feeder has an
area of 1.25km2 while the largest feeder covers an area of 3320km2.

In the last step, we assign the grid reliability statistics to each household. For this, a collabora-
tive effort was initiated in conjunction with the National Institute of Statistics of Rwanda (NISR).10

The primary objective of this collaborative endeavor was to establish a closest-distance associa-
tion between the geographical locations of households and the network of low-voltage lines. To
realize this objective, a meticulous process was undertaken wherein household GPS coordinates
were matched to the nearest low-voltage distribution line within a proximity range of 800 meters.
This specific range was determined in alignment with the prevailing connection policy enforced
by the utility company, which delineates that low voltage connections are confined to within an
800-meter radius of the nearest distribution transformer (REG, 2020). In case the GPS locations
of a low-voltage line are missing, we use the closest medium-voltage line that would supply a
low-voltage line connection to a household. After this proximity-based matching process, each
individual household was duly assigned the pertinent outage statistics attributed to the matched
feeder line.

We combine this data with public information on household characteristics and appliance
ownership. The Integrated Household Living Condition Survey (EICV) is a nationwide cross-
section survey initiated in 2000 and conducted every five years. We used the most recent survey,
which was completed in 2016/2017. The data was gathered using questionnaires conducted over
a 12-month cycle from October 2016 to October 2017.11 At the national level, there were 1,260
sample villages and 14,580 sample households.12 In the urban strata, there are 245 sample villages
and 2,526 sample households; in the rural strata, there are 1,015 sample villages and 12,054 sample
households. 540 households are sampled from the 3 districts comprising the capital city Kigali.
From the remaining 27 districts in the country, 480 households are sampled.

10The National Institute of Statistics of Rwanda (NISR) does not disclose household GPS coordinates in the public
domain. Therefore, a dedicated visit to their headquarters in Kigali, Rwanda, was essential to securely execute this
alignment procedure within their internal systems

11The 2016/2017 EICV data was collected in 10 cycles in order to represent seasonality in the income and consump-
tion data.

12The 2023 census has found more than 3 million households in Rwanda.
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The EICV inquiries surveyed households about the following appliances: radio, mobile phones,
televisions, satellite dishes, decoders, music systems, computers, printers, laundry machines, elec-
tric fans, fridges, hotplates, and cookers. We study appliance ownership for grid-electrified house-
holds. The survey defines electricity access as a household with a grid connection or access to
another technology, including solar, batteries, etc. In the survey, 9,775 households do not have
access to electricity, and 4,799 households have access to electricity (33% of surveyed households).
Of those with access to electricity, 3,600 are connected to the electricity grid. Over 70% of sampled
households in Kigali report having access to an electricity source, but the electricity access rate is
much lower in the rest of the country, as shown in Figure 3.

Figure 3: Spatial distribution of survey

(a) Share rural households (b) Share electrified households

Note: Figure (a) presents the concentration of rural households by district, and figure (b) shows the electrification rate
of the sampled households by district. The dots show major cities in the country; the capital city, Kigali, is at the center
of the country. Households sampled from the three districts comprising the capital, Kigali, are predominantly urban
(Kicukiro, Gasabo, and Nyarugenge). Rubavu district, which hosts Gisenyi, a major commercial hub bordering the
Democratic Republic of Congo, has the next highest concentration of urban households outside of the capital, Kigali.
The rest of the districts in the country are predominately rural.

Using this data, we constructed several appliance ownership measures following Richmond
and Urpelainen (2019) and Matsumoto (2016a). First, we calculated the total number of appliances
owned by each household. Second, appliances were categorized according to the service provided
(i.e., household usage), capital cost, and wattage level.13 The categorizations are shown in Table
1. Note that these categories are also associated with electricity consumption. Appliances in cate-
gory 4 are expected to consume more electricity due to higher wattage requirements. Finally, we
generated two distinct variables to capture aspects of household appliance ownership: a binary
variable indicating whether a household possesses a particular appliance and a numeric variable
representing the quantity of each type of appliance owned by the household. The utilization of
the binary variable is motivated by the understanding that ownership of at least one unit of each
appliance type reflects the household’s inclination to invest in that specific category. Concurrently,
the second variable quantifies the extent of ownership for each appliance within the household.

13The wattage of an appliance refers to the amount of electrical power it consumes or uses. It is measured in watts
(W)
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Table 1: Appliance Categories

Category Appliance(s) Cost Use Wattage

0 No appliances - - -

1 Analogue phones Smart phones Low Communication Low
Radio

TVs Decoders
2 Satellite dish DVD player Medium Entertainment Low

Music system Camera

3 Computer Printer Medium Productivity Medium
Sewing Machine

Fridge Laundry machine
4 Hotplate Cooker High Convenience High

Fan Water Filter

The EICV survey contains information on households’ well-being and expenditure, includ-
ing living conditions, education, health, housing conditions, consumption, deposits, and loans.
We use this information to construct income and non-income drivers at the household level, in-
cluding household composition (number of females, children, seniors, and age and nationality
of the head of household), house ownership (type of house, years in the dwelling and whether
the household is the owner or not of the house), as well as several income variables including
expenditure, savings, and job stability.

Simultaneously, we use information on house locations, particularly access to markets and ma-
jor cities. The key issue in accessibility measurement is the definition of the cost distance, which
employs the geographic principle of ”friction of distance”, which posits that there is a cost associated
with traversing any location, and this cost correlates with distance. We compute the distance from
each household to the nearest major city and market to operationalize this concept. Geospatial
data about economic infrastructure facilitate this calculation, encompassing commercial centers
and major cities, as illustrated in Figure 4, sourced from the Ministry of Infrastructure of Rwanda.
In our analysis, we opt for the Euclidean distance, representing an unconstrained straight line,
as opposed to alternative measures like Geodesic distance, where travel is constrained to the sur-
face of a sphere. This choice is deliberate, as these alternative measures exhibit a high degree of
correlation with the Euclidean distance and convey an equivalent amount of information.

Figure 4: Transport and major towns in Rwanda

Finally, we use rainfall and lightning data to characterize weather and lightning activity in
different country regions. We obtained rainfall data from the Rwanda Meteorology Agency, which
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monitors and maintains datasets on weather and climate patterns in Rwanda. The agency has a
data request portal through which researchers and other academics can request datasets spanning
the last forty years. Through the data request portal, we obtained forty years of daily rainfall
data from eighteen rainfall stations spread across the country. We calculated the average rainfall
at each point in the country using geostatistical interpolation technique explained in Appendix I.
The locations of the rainfall stations and the resulting distribution of average rainfall are presented
in Figure 5 (a). We observe that the east is drier than the west, where rainforest is more common.
These results are consistent with the values reported by the Rwanda Meteorological Agency14.

Instrumental variables for assessing reliability were derived from lightning data, utilizing the
Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS) satellite dataset.15

Specifically designed to observe and analyze lightning activity in tropical regions, the TRMM mis-
sion, a collaborative effort between NASA and the Japan Aerospace Exploration Agency (JAXA),
was operational from 1998 to 2015 (Blakeslee, 1998). For this study, we use the last three years of
lightning data from 2013 to 2015 to obtain the frequency, location, and intensity of lightning events
across Rwanda.

Our dataset contains 592 lightning events, including all the flashes (strikes) recorded by the
imaging sensor. Figure 5 (b) visually presents the distribution of lightning strikes across Rwanda
during 2013-2015, illustrating the widespread occurrence of strikes throughout the country. Lever-
aging this data, we allocated lightning event statistics to the feeder region using bounding boxes
as depicted in Figure 2. We calculated the average yearly number of strikes in the area and the
average radiance (intensity) of all the flashes in the area. We then assign these values to each
household in the feeder region, and hence, our lightning data measures lightning activity in the
grid area, which serves electricity to the household.

Figure 5: Rainfall and lightning activity

(a) Mean annual rainfall (mm) (b) Lightning Events (2013-2015)

Note: Figure (a) presents the mean rainfall in Rwanda. Each dot is one weather station recording data on rainfall.
Figure (b) presents all the lightning strikes in Rwanda. Each dot is a unique lightning flash recorded by the satellite
TMMR, while the color shows the strike’s intensity.

14https://www.meteorwanda.gov.rw/index.php?id=30
15Instrumental variables are used in statistical analysis to address endogeneity by providing a substitute variable

that is correlated with the endogenous explanatory variable but uncorrelated with the error term, ensuring consistent
estimation of regression coefficients.
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3.1 A Closer Look

From October 2016 to October 2017, our sample of 3,600 grid-electrified households owned a total
of 15,510 appliances recorded in the data. Figure 6 shows the composition of this stock of appli-
ances. We categorize mobile phones with internet access as smartphones and those without as
analog phones. Figure 6 shows that our sample’s total stock of appliances is mainly composed of
mobile phones, radios, and televisions(TV). This observation is consistent with previous literature
for Rwanda and Sub-Sahara Africa (Bos et al., 2018; Lenz et al., 2017; Muza & Debnath, 2021).

Figure 6: Composition of appliance stock Rwanda

Note: This figure represents the share of appliances owned by a sample of 3,600 grid-electrified households in
Rwanda. ”Other” appliances include printers, cameras, electric fans, hotplates, music systems, and laundry
machines.

Figure 6 provides no insights on household appliance ownership. For this reason, Table 2
presents the number of grid-electrified households that own at least one appliance. The table
shows that almost 4% of the households own no appliances, signifying a noteworthy yet modest
fraction reliant solely on electricity for lighting in their residences. Among households with at
least one appliance, the data indicates an average ownership of 4 appliances, with a maximum of
27 appliances owned by a single household. Remarkably, 86.70% of the households possess more
than one appliance. The table also shows the penetration rates and the number of units owned
for various appliances identified in the EICV dataset. Radios and mobile phones are prevalent
possessions among households; however, other appliances exhibit lower ownership rates. Addi-
tionally, for households owning a particular appliance type, the average ownership is typically
one unit, except for mobile phones, where the average ownership is nearly 2 per household. This
observation will be important in determining the approach to modeling appliance ownership.

Table 2 shows that appliance ownership is limited both in quantity and variety in Rwanda.
To understand this reality, Figure 7 presents the composition of appliances owned by households
across the different appliance categories defined in Table 1. Figure 7(a) shows the share of house-
holds who own at least one appliance for each category; Figure 7(b) presents the distribution of
units per category for those households who own at least one appliance for each category. Both
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Table 2: Appliance distribution among electrified households

Penetration Households who own the appliance

Number % Mean St. Dev. Min. Max. HHs > 1 (%)

Any 3, 480 96.670 4.440 3.330 1 27 86.70
Analogue Phones 2, 955 82.080 1.840 1.100 1 11 52.83
Radio 2, 324 64.560 1.150 0.430 1 5 13.08
Smart Phones 1, 976 54.890 1.770 1.100 1 10 49.04
TV 1, 322 36.720 1.030 0.190 1 3 3.03
Decoder 982 27.280 1.050 0.230 1 4 4.28
DVD player 897 24.920 1.060 0.400 1 10 3.90
Computer 520 14.440 1.360 0.710 1 6 26.35
Cooker 301 8.360 1.050 0.270 1 4 4.65
Fridge 242 6.720 1.040 0.240 1 3 3.31
Satellite Dish 198 5.500 1.040 0.190 1 2 3.54
Water Filter 146 4.060 1.000 0.000 1 1 0.00
Sewing Machine 109 3.030 1.370 1.020 1 8 18.35
Camera 79 2.190 1.130 0.430 1 4 10.13
Hotplate 73 2.030 1.030 0.160 1 2 2.74
Music System 71 1.970 1.060 0.290 1 3 4.23
Electric Fan 30 0.830 1.000 0.000 1 1 0.00
Printer 24 0.670 1.120 0.340 1 2 12.50
Laundry Machine 11 0.310 1.090 0.300 1 2 9.09

Note: The values in this table were calculated using the 3,600 grid-electrified households in the EICV
sample. The number of appliances was only calculated for households with at least 1 appliance of each
category.

plots illustrate a clear dominance of communication and entertainment appliances over other cat-
egories. This suggests that a few households have ascended the appliance ladder towards more
expensive and electricity-consuming devices. Few households possess convenience and produc-
tivity appliances, and the number of units owned by those households is also lower for these two
categories compared to communication and entertainment appliances.
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Figure 7: Ownership by appliance category

(a) Share of households (b) Number of units

The aforementioned adoption patterns suggest that limited affordability is pivotal in constrain-
ing households from acquiring more expensive appliances. This outcome is unsurprising, given
the prevalence of extreme poverty among several households in Rwanda (Sievert & Steinbuks,
2020). To contextualize, the average prices for cookers and ovens stood at 410 USD in 2018, while
refrigerators and washing machines commanded average prices of 540 USD and 420 USD, respec-
tively (Source: Statista Market Insights16). Considering that the average annual income in 2018
was 780 USD (Sally Smith & Prates, 2020), a substantial portion of the monthly income is neces-
sitated to acquire these appliances. For some households, this financial constraint translates into
the limited use of electricity solely for lighting purposes. Consequently, it stands to reason that
higher incomes and improved access to credit could potentially enhance appliance ownership in
the country, subsequently contributing to increased electricity consumption.

This paper analyzes non-income factors, specifically reliability, which might be important in
explaining residential appliance take-up. Despite having better measures than other African coun-
tries, low electricity grid reliability could contribute to limited adoption patterns of certain appli-
ances in Rwanda. Figure 8 presents three statistics characterizing grid reliability at the district
level in Rwanda. These variables are the total annual outage time in hours, the average daily
outage frequency, and the duration per outage in hours. Note that figure 8 presents district av-
erages for the exposition, but there is significant within district variation which we exploit in our
statistical models.

16https://www.statista.com/outlook/cmo/household-appliances/major-appliances/rwanda#price
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Figure 8: Average Reliability metrics per district - 2017

(a) Annual outage time (hrs) (b) Frequency (number per day) (c) Duration per outage (hrs)

Figure 8 reveals large geographic heterogeneity in reliability quality in 2017. Districts located
at the nation’s geographical center tended to experience a higher availability of electricity, coupled
with a reduced frequency of outages in this particular region. On the other hand, households in the
southern and northern districts suffered the most frequent outages, while households in the south-
central and western parts of the country suffered the longest outages. We are missing reliability
data for the two most northern districts in our data set. There are 144 grid-connected households
in these two districts, which we dropped from our regression analysis due to this missing data.

In this context, it can be expected that improvements in reliability would increase incentives
to buy and/or use appliances, and hence, electricity consumption and welfare impacts from elec-
tricity access would increase. Indeed, households could be adapting to low reliability by buying
fewer appliances. Moreover, the stock of appliances owned by households might depend on the
reliability level in the area where the household lives; for example, household in low reliability
ares could favor appliances which rely less on the grid over other type of appliances. The next
section explain our empirical strategy to study the role of reliability on appliance ownership.

4 Appliance Ownership and Reliability

In this section, we study the role of reliability in appliance ownership. Ideally, we would model
how the probability of buying a given appliance changes as the grid reliability faced by each
household changes over time (see Meeks et al. (2023) for an example). Regrettably, the nature of
our available data precludes the execution of such a longitudinal study. Instead, we conduct a
cross-sectional analysis comparing appliance ownership across regions with different reliability
levels. We also analyze other drivers, including income, demographics, education, gender, and
dwelling characteristics.

4.1 Research Design

Our research design follows Richmond and Urpelainen (2019) and (Matsumoto, 2016a), but it also
considers the intricacies of our particular case, appliance ownership in Rwanda, characterized by
its limited prevalence, resulting in certain appliances being owned by only a few households and
consequently generating an abundance of zeros in our dataset. This section explains our empirical
strategy.

First, we analyze the role of reliability on the total number of appliances owned by households
by studying the intensity at which households invest in appliances with a conditional fixed-effects
Poisson model. Let yij be the total number of household-owned appliances i in district j. Under
the Poisson assumptions, the probability of owning yij units of appliances is given by17

17The Poisson model relies on two strong assumptions. First, an event happening in a period of time has a constant
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Pr(Y = yij |Xij , Zij , αj) =
(E[Y |Xij , Zij , αj ])

yij · e−E[Y |Xij ,Zij ,αj ]

yij !
(1)

where E[Y |Xij , Zij , αj ] = eXijβ+Z′
ijΓ+αj represents the anticipated number of appliances, de-

pendent on a series of variables. Here, Xij is the grid reliability; Zij is a vector of control variables
that include both income and non-income drivers; αj are district fixed effect to capture common
characteristics for households within the district. We do not use village fixed effects since villages
are generally very small, so our data won’t have enough within-village variation. Note that even
though Poisson models are inherently nonlinear, using the linear index and the exponential link
function leads to multiplicative separability, allowing us to estimate the model with fixed effects.
We employ the conditional maximum likelihood methodology proposed by Hausman, Hall, and
Griliches (1984) to estimate this model.

We derive our measure of grid reliability, referred to as outage frequency, from the average
number of outages over the 24-month period spanning 2016 and 2017.18 Unfortunately, we lack
an extensive time series predating 2016/2017, prompting us to rely on the average for these two
years to construct variables that encapsulate grid reliability. However, it is important to note that
the stability of reliability metrics across time is a hallmark, given that outage occurrences pre-
dominantly hinge on factors like weather conditions, vegetation interference, animal disruptions,
feeder length, and various other determinants that exhibit minimal temporal variability.

In this context, our parameter of interest is β, which measures the change in the log of the
expected number of appliances owned by a household when reliability improves by one unit.
Using the point estimates, we also calculate the incidence ratio rate, which measures the increase
in the expected number of appliances owned by the household as reliability improves by 1 unit
by exponentiating the regression coefficient.

Equation 1 includes several control variables aiming to control for household characteristics.
First, we control for household income using the logarithm of the monthly expenses. Data on
expenditures are more reliable than data on income, particularly for households at the low end of
the distribution who may have substantial informal and non-monetary income. Expenditure data
is highly correlated with income. Additionally, we include a control for the total savings owned
by the household, recognizing that savings play a crucial role in determining the household’s ca-
pacity to finance appliances and signify varying levels of wealth among households. The EICV
survey contains details on household employment, such as the nature of contracts and payment
frequency. We also incorporate control variables for the average turnover of jobs across household
members, recognizing that households with frequent job changes may experience heightened un-
certainty in their income sources. Previous authors suggest that uncertainty of future income
might affect households’ electricity uptake and consumption (Blimpo & Cosgrove-Davies, 2019).

Next, we control for several demographic variables at the household level. First, we control
for the gender of the decision makers with a dummy variable, which takes value 1 if the head
of the household is female. Households with female decision-makers may exhibit distinct intra-
household dynamics, influenced by historical roles where women have traditionally been primary
caretakers with limited involvement in other facets of Rwandan society (Izabiliza, 2003). Addi-
tionally, women tend to exhibit lower levels of expenditure, which are likely to impact and curtail
appliance adoption (Richmond & Urpelainen, 2019). We also control for the number of children,

probability (stationarity). Second, the model assumes that the occurrence of an event does not affect the probability of
a second event of happening (indendependence). Under these assumption, the conditional variance is the same as the
conditional expectation (equidispersion).

18Within our dataset, these years have the worst reliability performance. Indeed, there is a substantial improvement
in grid reliability in the proceeding years (i.e. 2018,2019 and 2020). We rely on outage frequency and not outage duration
because outage frequency is highly correlated with the total hours a household does not have access to electricity in
a given year. In Rwanda, the average duration of an outage was 20 minutes in the period 2016/2017 with a standard
deviation of 7.4 minutes.
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women, and senior members in the household. Given the direct health impacts of indoor air pol-
lution from cooking, lighting, and heating in rural contexts, seniors, women, and children are par-
ticularly vulnerable. Acknowledging their heightened susceptibility, we recognize that realizing
the benefits of improved indoor air quality may require overcoming financial and informational
barriers (Richmond & Urpelainen, 2019).

The level of education and skills at the household level can be an important driver of appli-
ance ownership. (Dhanaraj, Mahambare, & Munjal, 2018b) recently found refrigerator ownership
was higher among more educated households. Enhanced education levels may afford individuals
greater knowledge about appliances and their applications. Given that these variables can exhibit
geographical variations, potentially correlated with reliability, we introduce a dummy variable
that takes the value of 1 if the head of the household has attended school. Additionally, we in-
clude two supplementary dummy variables: one indicating the presence of a business within the
household and another signifying the involvement of household members in high-skill occupa-
tions.

We also control for house characteristics and access to major towns and markets. Limited ac-
cess to major towns and markets may result in reduced exposure to household appliances and
commerce (Richmond & Urpelainen, 2019), making it more likely that households with such ac-
cess are inclined to acquire certain appliances. Firstly, we introduce a dummy variable, taking the
value of 1 if the household is located in a rural area, as these areas typically exhibit smaller expo-
sure and access to appliances compared to urban areas. Secondly, we incorporate the Euclidean
distance to the nearest major town and trade center. Furthermore, we address house character-
istics. We include the number of rooms, recognizing that larger households might possess the
same appliance multiple times. Next, we introduce a dummy variable for houses with multiple
buildings, reflecting the potential for duplicated appliances. Considering the dynamic nature of
appliance ownership, household owners are more likely to acquire less easily moved appliances,
so we incorporate a dummy variable, taking the value of 1 if the household owns the house.
Lastly, we introduce a variable controlling for the number of years the household has resided in
the current location.

We incorporate controls for mean rainfall in the household’s locality, recognizing that the uti-
lization of household members’ time can be influenced by local climatology Sakah, du Can, Di-
awuo, Sedzro, and Kuhn (2019a). Certain appliances may have varying levels of value under spe-
cific weather conditions (Cabeza, Ürge-Vorsatz, Ürge, Palacios, & Barreneche, 2018). 19 Rwanda, a
small tropical country with consistently warm temperatures throughout the year, exhibits four pri-
mary climatic regions: eastern plains, central plateau, highlands, and regions around Lake Kivu.
Although temperature variations within districts are limited due to the country’s small size, vari-
ations across disctricts are adequately captured by the district fixed effects. In contrast, rainfall
patterns exhibit considerable diversity within districts, ranging from 1,000 to 1,400 millimeters (40
to 55 inches) annually, depending on the area.20 To account for this, we introduce a control for
mean rainfall in the household’s vicinity, defined as the average across a 5kmx5km grid.

Finally, we introduce a control for the utility’s capacity to restore service, gauged by the av-
erage duration of outages in the area. Anticipated to exhibit heterogeneity across regions and
correlation with outage frequency, the utility’s proficiency in service restoration is crucial. This
proficiency, linked to the duration of outages, may influence households’ preferences for using
certain appliances (McRae, 2010). Utilizing the average duration of outages from 2016 to 2017,
we incorporate this control variable to assess the utility’s response time.21 Although the cause of

19For example, fans are more valuable in hotter regions, while some appliances, such as TV satellite dishes, can be
negatively affected by rainfall.

20The wet season months in Rwanda are from March to May and from September to December.
21Unfortunately, we could not find good instruments for the duration, and hence, we are cautious in analyzing the

coefficient for this variable. We expect this variable to be endogenous.
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a power outage can influence the restoration duration, the average outage duration is a reliable
metric for evaluating the utility’s overall responsiveness to outages.

The variables used in the analysis are summarized in Table 3. Specifically, our regression
models incorporate data from 2,706 grid-connected households for which complete variable in-
formation is available.

Table 3: Summary statistics (Number of Obs = 2,706)

Variable Mean St. Dev. Min. Max.

Reliability
Average duration without electricity (hrs/year) 116.920 92.750 17.260 496.500
Average Frequency (outages/day) 1.069 0.837 0.064 2.91
Average Outage Duration (min/outage) 20.040 7.410 9.670 67.110

Income and employment
Expenditure (log RWF month) 11.570 0.930 8.790 14.580
Savings (million RWF) 0.250 2.320 0 99
Has business (dummy) 0.450 0.500 0 1
Job instability (number of jobs/member) 1.480 0.620 1 7
Involves in high skill occupation (dummy) 0.190 0.370 0 1

Demographics
Female (number) 2.310 1.580 0 13
Children (number) 1.860 1.640 0 9
Seniors (number) 0.140 0.410 0 3

Head of Household
Female (dummy) 0.190 0.390 0 1
Below 35 years old (dummy) 0.430 0.490 0 1
Rwandese (dummy) 0.990 0.100 0 1
Attended School (dummy) 0.250 0.440 0 1

Dwelling and ownership
Number of rooms (count) 3.760 1.610 1 10
Multiples houses (dummy) 0.180 0.380 0 1
Multiples households (dummy) 0.280 0.450 0 1
Number of years in house (count) 6.850 8.850 0 63
Own house (dummy) 0.560 0.500 0 1

Location
Rural (dummy) 0.450 0.500 0 1
Distance to major town (km) 9.600 7.900 0.050 43.860
Distance to trade center (km) 1.780 1.540 0.010 9.990
Mean rainfall (mm) 2.600 0.370 1.850 3.690

In the second part of the analysis, we empirically study the effect of reliability on the composi-
tion of appliances owned by the household, that is, the ownership of key appliances. A challenge
in studying individual appliances in our setting is that the penetration rate of most appliances is
low, and therefore, the data has an abundance of zeros, surpassing the accommodation capacity
of a typical count distribution (Hilbe, 2014).22 Indeed, the penetration rate for most appliances is
below 30% (see Table 2). In this context, we rely on the models which conceptualize the ownership
of key appliances as a hurdle model (see Feng (2021) for a discussion).23 In this model, appliance
ownership is viewed as a two-step decision: households initially determine whether to acquire
an appliance -a yes or no decision-, and among those willing to invest, they subsequently decide
on the quantity to procure. An advantage of this conceptualization is that it allows for the factors
determining the ownership of a certain device to differ from the factors influencing how many
units are owned (Ščasnỳ & Urban, 2009). Then, this conceptualization allows us to study the de-
cision of owning a certain appliance and the decision to own additional units of a particular kind
of appliance as separate decisions.

To model the willingness of a household to invest in different types of appliances, we let yℓij
22Excess of zero counts are described as zero-inflated in the statistics literature (Hilbe, 2014).
23Such a model overcomes this problem by not constraining the intensive and extensive problem to be the same.

Moreover, this model deals with the situation of many zeros
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be the number of appliances ℓ owned by the household and define qℓij = 1[yℓij > 0] as a dummy
variable which takes the value 1 if the appliance ℓ exists in the household. Although nonlinear
models are commonly employed for discrete choice outcome variables, we opt for linear models
in this context. This choice mitigates the risk of incidental parameters, which can arise due to
fixed effects and clustering, and improves the interpretability of the results.24 Although condi-
tional logit models could be used, addressing panel-fixed effects through a likelihood function
transformation (see Chamberlain (1980)), certain appliances in our dataset are owned by very few
households (see Table 2), constituting what is known as rare events in the literature. This rarity
can introduce bias in binary nonlinear models (see King and Zeng (2001)). As our primary inter-
est lies in utilizing statistical models to understand directional and relative relationships between
variables, we are less concerned about bias in our linear models with binary outcome variables.
Consequently, our fixed-effects models for each appliance type ℓ are expressed as follows:

qℓij = Xijβℓ + Z ′
ijΓℓ + αj + εij (2)

where Xij , Zij , and αj are defined as in Equation 1. Each coefficient can vary by appliance in
this specification, and we estimate this model as seemingly unrelated equations.

Apart from the question of the presence or absence of a particular appliance in the household,
we are also interested in how many appliances of a particular type the household possesses, con-
ditional on having invested in the appliance. Following the Poisson distribution, conditional on
having invested at least once in appliance ℓ, the probability of owning yℓij units of appliance ℓ is
given by

Pr(Y = yℓij |Xij , Zij , αj , q
ℓ
ij = 1) =

(E[Y |Xij , Zij , αj , q
ℓ
ij = 1])y

ℓ
ij · e−E[Y |Xij ,Zij ,αj ,q

ℓ
ij=1]

yℓij !
(3)

where E[Y ℓ|Xij , Zij , αj , q
ℓ
ij = 1] = eXijβℓ+Z′

ijΓℓ+αj . We then fit a standard fixed-effects count
model on the subsample of those who have invested in the appliance under analysis. There are
two challenges when estimating equation 3. Firstly, in our sample, households typically own few
appliances more than once (see Table 2), implying that a limited number of appliances can be ade-
quately modeled following Equation 3.25 Secondly, as previously mentioned, only a small fraction
of households own the majority of appliances. Given this scenario, the subset of households that
have invested in more than one appliance is generally too modest to effectively estimate Equation
3. Consequently, our examination of key appliance ownership mainly revolves around the binary
decision of whether the household owns a particular appliance. We exclusively present estimates
of Equation 3 for those appliances where we have sufficient observations for estimation and where
we anticipate a Poisson distribution, namely, phones, computers, and radios.

4.1.1 Identification

Estimating the relationship between electricity reliability and household outcomes is typically
challenging. Service quality is often endogenous and correlated with household characteristics.
Two key factors contribute to this complexity. Firstly, the non-random nature of household loca-
tions, influenced by regional factors such as weather and economic activity (Pawar & Jha, 2023;

24Linear panel data models use the linear additivity of the fixed effects to difference them out and circumvent the
incidental parameter problem present in nonlinear models such as the fixed-effect ordered logit model Richmond and
Urpelainen (2019).

25Following our data, these appliances are phones, computers, sewing machines, printers, cameras, and radios. Mod-
eling as count data other appliances might not be accurate since the data does not follow a Poisson distribution. Max-
imum likelihood models require fully-specified models, and misspecification leads to violations of the information
matrix equality
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Sinha, Caulkins, & Cropper, 2018). These factors play an important role in determining the reli-
ability levels of an electric system. Figure 9 shows that overcurrents, under-frequency, and earth
faults are the predominant causes of outages in our data, and these are the consequence of regional
factors such as weather, vegetation, and electricity demand. Secondly, the reliability of the grid is
dependent on utility decisions, including maintenance and grid design, demonstrating substantial
regional variations that correlate with household characteristics (Meeks et al., 2023). Indeed, the
distribution network design typically adopts radial feeders for rural areas in Rwanda, in contrast
to networked feeders commonly seen in urban locales (REG, 2021).26 Radial networks usually
have long feeder lines, making them more susceptible to outages.

Figure 9: Main causes of outages

Moreover, inevitable measurement errors occur when capturing power infrastructure quality
(Chen, Jin, Wang, Guo, & Wu, 2023). Despite possessing novel reliability data, our data set may
not precisely align with localized outages, which often go unnoticed in utility tracking. Achieving
a comprehensive match between these measured outages and household-level outages proves
challenging, particularly given extensive feeder lines that stretch over considerable distances and
branch into multiple distribution spurs serving smaller communities. This inherent limitation
poses a methodological challenge. Our use of feeder outages serves as a proxy to characterize
the “standard” service quality experienced by households. As acknowledged in econometrics
literature, measurement errors in the independent variable result in attenuation bias (Bollen, 1989;
Wooldridge, 2010).

In this context, fixed-effects can eliminate the time-invariant effects, but the endogeneity prob-
lem still cannot be solved. Similarly, our control variables fail to capture for unobserved hetero-
geneity of, for instance, differences in financing schemes within districts (across sectors), or other
unobserved variables at the household level which might be correlated with household location.
Consequently, our identification strategy relies on the use of two instrumental variables that char-
acterize the lightning activity in the different parts of the country: average radiance of lightning
strikes27 and the number of lightning strikes.28

26The distribution network can have radial or networked configurations. Radial networks lack interconnections with
alternative supply points, while networked networks boast multiple connections to diverse supply sources. Radial
networks are used in rural Rwanda due to the isolated nature of rural loads, making the use of network feeders eco-
nomically less feasible (REG, 2021).

27Radiance is used to characterize diffuse emission and reflection of electromagnetic radiation, and to quantify emis-
sion of neutrinos and other particles.

28The rank condition establishes that we need at least 1 valid instruments for the identification of the model.
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Lightning disturbances are usually a major problem for electricity networks and cause service
interruptions (Rezinkina, Babak, Gryb, Zaporozhets, & Rezinkin, 2022). For example, lightning
damage accounts for about 65% of distribution network failures in South Africa (Andersen & Dal-
gaard, 2013). The energy carried by a single lightning bolt is immense, averaging around 1 giga-
volt with a typical current of 10,000 to 30,000 amperes (Gunther, 2023). The heat produced can also
be substantial, reaching temperatures five times higher than the surface of the Sun (Rezinkina et
al., 2022). Hence, when a lightning strike hits close to the electricity network, the following events
may occur: line overvoltages that exceed the insulation capabilities; transient currents that prop-
agate through the network29; damages in transformers, poles, conductors, insulators, substations,
and transformers due to high currents, voltages, and intense heat; and temporary disruptions in
the grid due to line tripping, automatic reclosing, or protection system operations. Finally, light-
ning strikes can induce high electromagnetic fields that can affect the operation of the grid.

We instrument the outage frequency with the average frequency of lightning strikes. Previous
evidence has found that in areas with high lightning density, the frequency of power outages
is higher (Chisholm & Cummins, 2006). Additionally, we introduce a second instrument: the
average intensity of the lightning in the region measured by the average radiance of the lightning
flashes. The probability of observing a grid failure is directly associated with the intensity of the
lightning strikes. Summary statistics are presented in Table 4.

Table 4: Instrumental Variables (Number of Obs = 2,706)

Variable Mean St. Dev. Min. Max.

Average Lightning Radiance (millon uJ/sr/m2/um) 0.500 0.260 0.100 2.120
Frequency Lightning (count/year) 7.170 8.590 0.330 27

Note: Summary statistics were calculated across each household in our data. Lightning
values assigned to each household represent the ”typical” lighting activity in the region
where the household lives.

Our reduced-form equation for reliability is given by

Xij = W ′
ijΠ+ Z ′

ijΛ + αj + εij (4)

where Xij is the outage frequency, W ′
ij are our instruments, Zij are the control variables from

our structural equation, and αj district fixed-effects. Table 5 presents the results of our first-stage
reduced-form regression. As observed in the table, the coefficients are positive and significant,
which means that the average number of outages increases with the frequency and intensity of
lightning strikes. Furthermore, the results affirm the instruments’ relevance, substantiated by
both the F-statistics30 and the Cragg-Donald Wald-F statistic31.

29Transients create high-frequency harmonics and voltage spikes into the power system. They can disrupt sensitive
equipment, leading to malfunctions, faults, or even tripping of protective devices

30(Staiger & Stock, 1997) establish the rule-of-thumb for this test: if the F-statistic is less than 10, the instruments are
weak, and no valid statistical inference can be made. Hence, we use a value of 10 for the F-statistic as the threshold for
the relevance test because we want the IVs to be strongly significant (not just significant). Moreover, we want the first-
stage F-statisitc to be above 10 so that the relative bias of 2SLS, relative to OLS, is less than 10% (using the instruments
have a real advantage).

31Critical values are presented at the bottom of the table
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Table 5: First-Stage Results

Dependent variable: Frequency of Outages (number/day)
Lightning Radiance 0.463**

(0.202)
Lightning Frequency 0.069***

(0.006)
Relevance and Weak-IV Test

F-statistic 401.89
Cragg-Donald Wald-F statistica 1477.14

Overidentification
J-Statistic 0.918
χ2(1) p-value 0.3379

Observations 2,706
Number of district 26
Mean observations per group 104.1
Note: All the exogenous variables from the structural equation
are including in the first-stage regression, including the
district-fixed effects. Clustered standard error at the district
level in parenthesis. *** p<0.01, ** p<0.05, * p<0.1
a: Stock-Yogo (2005) weak IV F–test critical values for single
endogenous regressor: 19.93 (10% maximal IV size);
11.59 (15% maximal IV size);8.75 (20% maximal IV size)

Our identification assumption is that our instruments are exogenous and uncorrelated with
the structural error term, conditional on the control variables. This assumption is grounded on
the random nature of lightning, which can strike anywhere, as noted by Oceanic and Adminis-
tration) (2020) and (Gunther, 2023). The occurrence of lightning strikes depends on the specific
buildup of positive and negative charges between clouds and the ground.32 Similarly, the in-
tensity of a lightning strike depends on the electric charges inside the clouds. These factors are
random, and hence, difficult to correlate with economic and social characteristics which might
influence households location (Gunther, 2023). Our assumption, yet, would fail if there are dif-
ferences in other factors leading to thunderstorm development, and cloud formation specifically,
within the country. Factors influencing cloud formation include meteorological conditions such
as warm temperatures and strong solar radiation. Solar radiation and temperature do not present
significant differences across Rwanda, a relatively small country. For these reasons we believe our
identifying assumption is a plausible one. To support this claim, we present the J-statistic and
p-value for the over-identification test in Table 5. The results show that we fail to reject the null
hypothesis that the instruments are exogenous, meaning they are good instruments.

It’s essential to note that, for our linear models, we implement 2SLS fixed effects models. How-
ever, the 2SLS approach is not valid for nonlinear models and may not produce a consistent es-
timate. In cases where the second-stage equation involves nonlinearity, as seen in our Poisson
models, the predicted endogenous variable from the first-stage regression can become correlated
with the residuals. To address this challenge, we opt for the Control Function Approach (CFA), a
two-step process where we incorporate the predicted residuals from the first stage into the second
stage (Rivers & Vuong, 1988; Wooldridge, 1997). In this approach, bootstrap standard errors are
employed to accommodate the uncertainty stemming from the first stage.

32This allows positive charges below to attract them, creating powerful discharges of electricity known as lightning.
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4.2 Empirical Results

This section presents our empirical results. First, we discuss the role of reliability in appliance
ownership. Then, we provide descriptive evidence of other drivers of household demand for ap-
pliances. In this second part of the analysis, we are cautious about how we interpret the regression
results, as coefficients cannot be understood as casual but as a correlation.

4.2.1 The Role of Reliability in Ownership

Table 6 presents the regression results for households’ total appliance ownership, specifically high-
lighting the estimated relationship between total appliance ownership and reliability. We employ
conditional fixed-effects Poisson models to analyze the total number of appliances. Each column
presents a different specification, and we present the estimated coefficients and the incidence-rate
ratios obtained by exponentiating the coefficients. Additionally, we present the results when the
instrumental variables are used through the inclusion of the control function. Finally, we explore
an alternative model using conditional fixed-effects negative binomial regression. The assump-
tions of the Poisson regression are quite restrictive: stationarity and independence. This results in
the fact that the mean is the same as the variance. Hence, we relax these assumptions in the last
columns of Table 6 by allowing for overdispersion.

Table 6: Reliability and Total Number of Appliances

Conditional Fixed-Effects Poisson FE + CFA

Mod. 1 Mod. 2 Mod. 3 Mod. 4 Mod. 5 Mod. 6 Poisson Neg. Bin.

Frequency of Outages (number/day)

Point Estimate 0.0001 0.010 0.003 0.001 -0.010 -0.028 -0.055 -0.056
(0.052) (0.037) (0.033) (0.031) (0.023) (0.019) (0.054) (0.055)

Incidence Ratio 1.000 1.010 1.002 1.001 0.999 0.971 0.946 0.946

Control Variables
Income and employment Y Y Y Y Y Y Y
Demographics Y Y Y Y Y Y
Head of Household Y Y Y Y Y
Dwelling and ownership Y Y Y Y
Location Y Y Y
District FE Y Y Y Y Y Y Y Y

Wald 0.00 3568.56 10076.80 7987.79 25062.76 35460.09 83673.86 34979.94
Log pseudolikelihood -7109.56 -5468.70 -5358.95 -5300.72 -5205.33 -5193.05 -5192.44 -5193.49
Observations 2,706 2,706 2,706 2,706 2,706 2,706 2,706 2,706
Number of district 26 26 26 26 26 26 26 26
Mean observations per group 104.1 104.1 104.1 104.1 104.1 104.1 104.1 104.1
Note: Bootstrapped standard errors in parenthesis. Total number of appliances include radios, phones, TV, decoder,
satellite dishes,cookers, fridges, DVDs, music systems, computers and printers, cameras, hotplates, electric fans,
laundry machines, water filters and sewing machines. *** p<0.01, ** p<0.05, * p<0.1

The results in Table 6 underscore the importance of accounting for household characteristics
when studying how reliability affects household outcomes. We can observe that the coefficient for
the frequency of outages becomes negative as we include additional control variables. Similarly,
controlling by the residual of the first-stage regression reduces the magnitude of the coefficients
towards zero, indicating that unobservables would bias the coefficient if we do not account for the
endogeneity of reliability. In our preferred model, the two-step conditional fixed-effects Poisson
model, we observe a negative relationship between the total number of appliances owned by
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households in Rwanda and our variable of interest, although it is not statistically significant. This
outcome aligns with the results from other models that encompass all control variables.

Our results suggest that the frequency of outages does not significantly impact the number of
appliances owned by households in Rwanda. One possible explanation is that households might
lack information about grid quality or perceive the true system quality differently. If this were
the case, we wouldn’t observe any effect of reliability on the composition of the appliance stock.
Alternatively, the results in Table 6 may be a consequence of affordability constraints. Given the
low median income in Rwanda relative to appliance costs, households may experience limited de-
mand for appliances due to budget constraints, and variations in reliability may not significantly
influence the overall number of appliances they own. Nevertheless, households can still adapt by
substituting between appliances, affecting their appliance stock composition.

Figure 10 presents the change in the probability of households investing in different appliance
categories, including key appliances, based on differences in the frequency of outages in their
respective areas. The plotted coefficients quantify the disparity in willingness to invest in each
category for households residing in areas with varying outage frequencies. Appendix 2 provides
all regression results for the variables used in the empirical study for a comprehensive overview.

Figure 10: Reliability and Willigness to Invest in Appliances

(a) Communication (b) Entertainment

(c) Productivity (d) Convenience

Note: Dots represent the point estimate. Vertical lines are the 95% confidence intervals. For regression
tables, please refer to Appendix 2.

As depicted in figure 10, the likelihood of a household investing in a television or decoder
diminishes as outage frequency increases. Specifically, our results show that one additional out-
age per day reduces the probability of owning a television by 4%, and for decoders, the change is
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nearly 5%.33 The absence of electricity impedes households from watching television, and since
these appliances typically serve as the primary entertainment sources, their ownership is nega-
tively influenced by reliability. The scenario is intriguing for communication appliances, as indi-
cated by Figure 10 (a). In areas with robust reliability, households do not exhibit a notably higher
probability of investing in these appliances than those with poor reliability. However, a higher
frequency of outages is associated with a lower share of households owning a smartphone -i.e.,
one extra outage per day decreases the probability of a household investing in this type of phone
by 6%. This phenomenon can be attributed to the fact that smartphones are more energy inten-
sive than analogue phones and therefore would require more frequent charging, which becomes
challenging in areas with poorer reliability.

Appendix 2 presents the regression table with all the coefficients. From those tables, we can
observe that both fridges and satellite dishes are significant at 10% significance level but not 5%.
The point estimates in both cases is negative. This result suggests that there is a negative effect on
the composition of the stock of appliances owned by the households, yet the uncertainty associ-
ated with these two coefficients is larger and we need to allow for more type I error in our tests in
order to determine reject the null hypothesis. For this reason, we follow the 5% confidence level
in the rest of the analysis.

To complement these results, Figure 11 presents the estimated coefficients obtained by inter-
acting our reliability variable with the demeaned logarithm of expenditure. The reason for using
the demeaned expenditure is that no household has expenditure level zero. We re-run the first
stage by using a non-linear function of our instruments given our interaction term to avoid the
”forbidden” regression. The coefficients on the plot below are the second-stage coefficients. The
first set of coefficients, denoted as Average Expenditure, depict the changes in the probability of
investing in key appliances when reliability is worse by one unit at the average expenditure level.
It’s important to note that these coefficients are consistent with those in Figure 10. On the right
side of the plot we present the additional effect of outage frequency when for a household which
has an income above or below the average income.

Figure 11: Expenditure, Income, and Willigness to Invest in Appliances

The figure highlights nuanced patterns in household appliance investments based on income
levels. Specifically, the probability of investing in smartphones, televisions, and decoders de-
creases for households with average expenditure, and there is no statistical difference for house-
hold above or below the average expenditure level. Moreover, the results show that the probability

33The larger estimated coefficient for decoders than for televisions can be explained by the fact that televisions, in
general, are necessary for decoders.
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of investing in music equipment rises for those household with above-average expenditure. Con-
versely, households with below-average expenditure are more likely to invest in sewing machines.
These findings suggest adaptive behavior among households, with a tendency to steer away from
appliances heavily reliant on the electricity grid (e.g., smartphones, televisions, and decoders).
Wealthier households lean toward music equipment, often equipped with independent power
sources, while less affluent households opt for treadle sewing machines, known for their minimal
electricity consumption.

Finally, Table 7 presents the impact of reliability on the number of units owned by house-
holds for key appliances, focusing solely on appliances with sufficient data to estimate Equation
3. The coefficients for all appliances are negative, except for analogue phones; however, none of
the coefficients achieve statistical significance. This implies that the investment intensity in these
appliances is not substantially influenced by reliability.

Table 7: Number of Key Appliances Owned by Households

Phone

Radio Analogue Smart Computer

Frequency of Outages (number/day)

Point Estimate -0.053 0.086 -0.014 -0.043
(0.048) (0.066) (0.081) (0.187)

Incidence Ratio 0.948 1.089 0.985 0.958

Control Variables
Income and employment Y Y Y Y
Demographics Y Y Y Y
Head of Household Y Y Y Y
Dwelling and ownership Y Y Y Y
Location Y Y Y Y
District FE Y Y Y Y

Wald 2684.00 78688.24 48160.64 1012.43
Log pseudolikelihood -652.00 -1067.03 -711.15 -142.91
Observations 656 829 579 150
Number of district 26 26 26 18
Mean observations per group 25.1 31.9 22.3 8.3
Note: Two-step conditional fixed-effects models were used to estimate these models.
Standard errors are boostrapped. *** p<0.01, ** p<0.05, * p<0.1

Overall, our findings indicate that households in Rwanda exhibit forward-looking behavior,
adapting to low reliability levels by fine-tuning the composition of their appliance stock rather
than altering the total number of units owned. Given the prevalent affordability challenges in
Rwanda, households may face limitations in acquiring additional appliances. Wealthier house-
holds seem to pivot towards music devices, while less affluent households turn to sewing ma-
chines. This adaptive behavior underscores households’ strategic optimization of expected utility,
factoring reliability into their appliance selection process. Thus, households navigate low reliabil-
ity by adjusting their appliance mix within similar cost ranges.

4.2.2 Other Factors Affecting Appliance Ownership

This section provides descriptive evidence of other drivers of appliance ownership. Note that
these results are not casual and should be interpreted with care. Appendix 3 presents the regres-
sion tables. We summarized the results for appliance ownership of key appliances in Figure 12.
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Figure 12: Other Drivers of Appliance Ownership

(a) Categories

(b) Key Appliances

Figure 12 shows a substantial positive correlation between household financial variables and
appliance ownership, except laundry machines which could be attributed to their high cost or
cultural considerations. As shown in the regression tables presented in Appendix 3, households
experiencing high job turnover among members tend to possess fewer appliances, indicating the
impact of financial uncertainty on household appliance ownership. These findings suggest that
programs offering subsidies for appliances could have a profound impact on increasing appli-
ance ownership. However, it is noteworthy that not only income levels but also the associated
uncertainty play a crucial role.

Demographic characteristics of the households also show a significant relationship with the de-
pendent variables. Historical gender roles, where women traditionally take on caretaking respon-
sibilities in Rwandan homes (Izabiliza, 2003), could explain why households with more females
tend to invest in more appliances, possibly for entertainment, support with chores, or home-based
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productive activities. Homes with many children, on the other hand, have a negative significative
relationship with the number of appliances in the home as well as the probability of investing in
smartphones, fridges, and computers, among others. These households might be expected to de-
vote a larger portion of their expenditure toward their children’s needs, like education and health
care.

The age and gender of the head of the household play significant roles in determining the
household’s appliance ownership. The regression table in Appendix 3 highlights a noteworthy
pattern: female heads of households and those below the age of 35 exhibit a negative and statis-
tically significant relationship with the total number of appliances owned by the household. This
finding may be attributed to existing socioeconomic disparities between genders, where female
heads of households could face lower incomes and limited access to resources compared to their
male counterparts. Younger heads of households might also experience lower financial stabil-
ity, contributing to their reduced ownership of appliances. Additionally, the results presented in
Figure 12 shed light on distinct demographic based expenditure patterns. Specifically, households
led by females tend to own more convenience appliances but fewer entertainment appliances. No-
tably, female-headed households show a higher likelihood of owning cookers, possibly reflecting
traditional gender roles in Rwandan society where women are primarily responsible for house-
hold tasks, including cooking.

Education levels of the head of the household significantly influence the types of appliances
owned, revealing important insights into household appliance ownership patterns. Specifically,
households led by individuals with higher education tend to own more appliances. In addition,
the likelihood of a household investing in specific categories of appliances, such as entertain-
ment (e.g., TVs), productivity (e.g., computers), and convenience (e.g., cookers and refrigerators),
increases with the education of the head of the household. This positive correlation can be at-
tributed to several factors. Educated heads of households are likely to possess more information
about the benefits of various appliances, enabling them to make informed decisions about their
utility. Additionally, their higher level of education may equip them with the necessary skills to
operate certain appliances, particularly those in the productivity category, such as computers.

Lastly, dwelling characteristics, such as the number of rooms in a house, exhibit a positive
and significant relationship with the dependent variable. Larger houses are associated with a
higher likelihood of owning appliances, particularly items such as televisions, suggesting that
the spatial requirements of a household influence the demand for appliances. Additionally, the
stability brought about by long-term homeownership may encourage households to acquire more
appliances over time. In contrast, rural households and multiple families sharing a home are less
likely to have an extensive collection of appliances.

5 Linking Appliance Ownership to Usage and Electricity Consump-
tion

We extend the analysis by assessing how residential electricity consumption correlated with the
ownership of key appliances. Our empirical results suggest that the composition of the stock of
appliances owned by households is affected by low reliability. This implies that investment in
improving reliability could potentially impact residential electricity consumption in Rwanda. We
quantify these empirical results in terms of electricity consumption by estimating the appliance-
specific electricity consumption. Although the point estimates from the previous section are rel-
atively low, the overall impact could be significant if the appliances affected by reliability issues
represent substantial consumption levels. We follow the conditional demand model proposed
by Larsen and Nesbakken (2004) and Matsumoto (2016a). We also use this model to assess the
effect of reliability on appliance usage, recognizing that both appliance ownership and usage de-
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termine residential electricity consumption. However, there remains a gap in understanding how
households specifically use their appliances at there homes (Matsumoto, 2016a), and low relia-
bility might also affect electricity consumption through appliance usage. Therefore, we use our
extended analysis to explore the role of reliability in influencing appliance use dynamics.

5.1 The conditional demand model

Since households’ electricity consumption depends on both appliance ownership and how these
appliances are used once owned, merely regressing electricity consumption on appliance owner-
ship variables would yield biased results. While we could control for factors influencing appliance
use in the demand equation34, doing so would result in biased and inconsistent estimates due to
the simultaneous nature of consumption decisions and appliance ownership (Dubin & McFadden,
1984). Addressing this simultaneity problem requires identifying instrumental variables that in-
fluence the purchase decision but not the usage decision. However, finding a valid instrument for
each appliance is impractical, given the diversity of appliances. The conditional demand model
offers a solution by allowing us to estimate appliance-specific consumption for the average house-
hold while accounting for appliance use.

Assume a household can own ℓ ∈ L different types of appliances. We follow the hurdle model
explained in our empirical section, in which a household first invests in each appliance and then
decides the amount of units. Let Dℓ

i be a dummy that takes the value 1 if a household i owns
appliance ℓ, and let Kℓ > 0 be the number of units of that appliance owned by the household.
We assign each household owning Kℓ > 0 units of appliances ℓ to group Kℓ and we estimate the
intensity of the use of appliance ℓ within group Kℓ. For this, assume that electricity consumption
for the kth appliance ℓ for household i is observed through direct metering. The appliance-usage
equation is then

yℓik = αℓ +
M∑

m=1

γℓ,m(Ci,m − C̄Kℓ,m) + εℓik (5)

where the parameter αℓ measures the electricity required for an appliance of type ℓ for the
mean household, and εℓik is an independent and identically distributed error term. The parameter
γℓ,m measures the effect of the mth observable characteristic Ci,m on the use of appliance ℓ. This
variable can be the household socioeconomic characteristics as well as other factors. In this model,
C̄Kℓ,m is the mean characteristic for households in group Kℓ. Therefore, the second term is the
adjustment to appliance consumption due to usage on account of other variables. This equation
enables us to investigate, for instance, whether high-income households utilize each appliance ℓ
more intensively than their low-income counterparts and whether households in areas with low
reliability use certain appliances less intensively than those in areas with good reliability.

Given that each household owns Kℓ
i units of the appliance, we assume each unit has the same

energy requirements, and the effect of household characteristics on appliance usage is the same
for all Kℓ

i units. Therefore, the total electricity consumption of appliance ℓ is

yℓi = yℓij ·Kℓ
i = αℓ ·Kℓ

i +
M∑

m=1

γℓ,m(Ci,m − C̄Kℓ,m) ·Kℓ
i + ωℓ

i (6)

where ωℓ
i = Kℓ

i · εℓik. Given that there are L varieties of appliances, the total electricity con-
sumption of household i becomes

34Several factors might affect households’ ability to use appliances, including, but not limited to, service characteris-
tics (Blimpo & Cosgrove-Davies, 2019) and household characteristics (Matsumoto, 2016b).
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yi =

L∑
ℓ=1

yℓi ·Dℓ
i =

L∑
ℓ=1

αℓ · (Kℓ
i ·Dℓ

i ) +
L∑

ℓ=1

M∑
m=1

γℓ,m(Ci,m − C̄Kℓ,m) · (Kℓ
i ·Dℓ

i ) + µi (7)

where µi = τ + ωℓ
i ·Dℓ

i , and τ is the consumption due to unobserved appliances. Since all the
variables in Equation 7 are observed, we can estimate it by least squares.

In this model, the parameters of interest are αℓ and γℓ,m. The parameter αℓ represents the
electricity consumption associated to one unit of appliance ℓ for the mean household. That is,
this variable measures how much electricity of a unit of appliance ℓ is expected to consume at
the mean household. On the other hand, the parameter γℓ,m are the deviations in consumption
from the mean due to usage differences across households. In other words, this method allows us
to explain the intensity of appliance usage in terms of variations in the different household-level
characteristics, for example, income and reliability. Hence, we can also estimate how appliance
use is expected to change due to reliability changes.

5.1.1 Electricity Consumption Data

To estimate the conditional demand model we use the EICV data explain in Section 3. How-
ever, the EICV data presents some challenges for studying electricity consumption. First, the data
does not directly provide household electricity consumption in kilowatt-hours (kWh) but reports
monthly electricity expenditure. We converted expenditure values into consumption quantities
for each household using the country’s tariff, as explained in detail in Appendix 3. Secondly, data
is susceptible to misreporting and measurement errors, which impact inference and potentially
introduce bias (Bruckmeier, Riphahn, & Wiemers, 2019; Meyer, Román-Palacios, & Wiens, 2018).
To address this issue, we conducted a validation procedure to address these issues using propri-
etary data from the Rwanda Energy Group (REG). The REG dataset comprises customer prepaid
electricity transactions data collected from 2013 to 2019 for 777,023 unique meter IDs installed be-
tween 1996 and 2020.35 Access to this data was obtained through a data sharing agreement with
the Rwanda Energy Group36.

In order to validate the EICV consumption data, we first matched the survey data and REG
data sets to quantify the discrepancy between a respondent’s reported electricity expenditure and
their actual electricity consumption. Then, we study the relationship between this measurement
error and different covariates at the household level. Under the classical measurement errors as-
sumption, a noise measure of the dependent variable will increase the noise of the residual but
won’t bias the estimates. However, measurement error in the dependent variable that is corre-
lated with the dependent variables (non-classical measurement error) usually does lead to biased
estimates (see Bound, Brown, Duncan, and Rodgers (n.d.) for a general framework on the topic).37

The details of this validation procedure is presented in the Appendix 3 together with the regres-
sion results. Our analysis concludes that the variance of the error term, which affects our infer-

35In Rwanda, most electricity purchases are carried out using the prepaid electricity framework. Under the pre-
paid framework, customers purchase electricity units through a mobile telecom network, typically using a mobile or
web application if purchasing through the Internet. Otherwise, USSD quick codes can be used for offline customers
(Mwaura, 2012). REG maintains a record of each customer transaction with corresponding customer details such as
the customer’s name, consumer category, transaction timestamps, corresponding taxes and fees, and customer’s meter
location details such as administrative district and GPS coordinates. Our data includes 85% residential households
while the remainder is non-residential (it does not include large industrial meters). The data for residential consumers
is used to validate the reported consumption data.

36This agreement was signed by e-Guide, a collaboration between engineering research groups at 5 Universities. The
following e-GUIDE professors have provided access to this data: Vijay Modi (Columbia University), Nathan Williams
(RIT), Barry Rawn (CMU-Africa), and Jay Taneja (UMass Amherst). We are thankful for their support and collaboration.

37The bias, in more general cases, can always be thought in terms of regression coefficients from regressing the
measurement errors on the mis-measured covariates.
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ence, is expected to increase significantly as the variance of the measurement error is 447.60 KWh.
Moreover, we find that the measurement error is not random and correlated to ownership status
and the number of laundry machines, phones, satellite dishes and printers owned by the home.

In this context, there is a trade-off between the EICV data and the administrative data. The
reported data present measurement error which will affect our hypothesis tests and might lead
to bias estimates. One solution to this situation would be to use the administrative data for
those household we were able to match between dataset. Unfortunately, only 693 households
are matched, and hence, we are concern by sample selection bias38 Appendix 3 also presents the
regressions for the sample selection analysis. Unfortunately, selection is not random under our
matching process. Consequently, we estimate the conditional demand using analysis on both data
sets and compare the results. In addition, we conduct a two-step Heckman selection correction to
our model when using the administrative data.

5.1.2 Empirical Estimates

Table 8 presents our residential electricity consumption analysis results. Models 1, 2, and 3 use
the reported consumption data in EICV, while model 4 uses the administrative data. Model 1 en-
compasses solely appliance ownership variables, while models 2 and 3 incorporate usage drivers.
Most of the coefficients are robust when comparing between the administrative data and the re-
ported consumption, which can suggest that the attenuation bias is not a big concern. Yet, there
are some important differences across the models which can be explained by the different samples
we use to estimate the models. Our preferred model is model 3. The reason is that the regres-
sion with the administrative data uses sub-samples and estimates might be driven by very few
observatios as the conditional demand model assigns households to appliance group Kℓ. Robust
standard errors are enclosed in parentheses.

In model 3, we observe positive coefficients for appliance ownership, except for sewing ma-
chines and cameras.39 The results highlight significant electricity consumption for certain appli-
ances, notably hotplates, fridges, and laundry machines. Specifically, our findings suggest that, on
average, households consume 16.44 kWh per month on hotplates, 19.58 kWh on fridges, and 38.40
kWh on laundry machines. Comparatively, these estimates for fridges are lower than reported fig-
ures for other countries; for instance, research in Japan indicates consumption ranging from 49.33
to 72.08 kWh per month for fridge usage Matsumoto (2016b). Similarly, a study in Ghana reports
an average consumption of 31 kWh for refrigerators (Sakah, du Can, Diawuo, Sedzro, & Kuhn,
2019b). Ghana and Japan are admittedly much wealthier than Rwanda.

Moreover, our estimation results show that a household, on average, consumes 5.46 kWh of
electricity per month from using a television. Smartphones are associated with higher electricity
consumption compared to analogue phones. Specifically, a typical household consumes 1.90 kWh
per month for a smartphone and 0.64 kWh per month for an analogue phone. This discrepancy
suggests that smartphones require more frequent recharging due to their higher energy demands.
It’s worth mentioning that the consumption from the remaining appliances is not statistically sig-
nificant, indicating that only a few households utilize these appliances.

Notably, the results above show that the top three consuming appliances are lights40, TVs,
and smartphones, with ownership rates of 36.7%, 54.8%, for TVs and smartphones, respectively
(refer to Table 2). The substantial ownership rates of TVs and smartphones, coupled with their
average consumption levels (Table 8), explain their significant shares relative to other household
appliances. Conversely, despite an 82% ownership rate, analogue phones contribute minimally

38If the sample is truncated in a nonrandom way, then OLS suffers from selection bias.
39However, model 1, which does not account for intensity of usage, shows negative coefficients for water filters and

radios. It’s noteworthy that model 4 also indicates a negative coefficient for radios.
40Please note that number of rooms in a household is used as a proxy to determine the number of lights in the

household.
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to aggregated appliance-level household consumption due to their low consumption levels. Al-
though laundry machines, hotplates, and fridges are classified as demand-intensive appliances,
their consumption levels remain minimal owing to their low levels of household ownership.

Table 8: Electricity Consumption Analysis

Reported Consumption (KWh/month) Administrative
Model 1 Model 2 Model 3 Data

Communication
Radio -0.179 (0.466) 0.257 (0.413) 0.130 (0.395) -2.071∗ (1.152)
Analogue phones 1.655∗∗∗ (0.374) 0.637∗∗ (0.271) 0.595∗∗ (0.256) 0.656 (0.693)

# Outage freq. (number/day) -0.003∗∗ (0.001) -0.003∗∗ (0.001) 0.0002 (0.003)
# Expenses (log RWF) 0.620 (0.435) 0.792∗(0.437) 2.337∗∗ (0.916)
# Children (number) -0.186 (0.138) -0.348 (0.342)

Smart phones 2.60∗∗∗ (0.456) 1.897∗∗∗ (0.407) 2.148∗∗∗ (0.383) 0.810 (0.934)
# Outage freq. (number/day) -0.003∗ (0.002) -0.004∗∗∗ (0.002) -0.003 (0.003)
# Expenditure (log RWF) 1.400∗∗∗ (0.422) 1.390∗∗∗ (0.448) 1.753∗ (0.983)
# Children (number) 0.178 (0.189) 0.301 (0.487)

Entertainment
TV 6.172∗∗∗ (0.665) 5.460∗∗∗ (0.838) 5.209∗∗∗ (0.829) 6.184∗∗ (2.703)

# Outage freq. (number/day) 0.003 (0.004) 0.002 (0.003) -0.001 (0.009)
# Expenditure (log RWF) 2.460∗∗ (1.004) 2.144∗∗ (0.985) 0.758 (3.013)
# Children (number) -0.328 (0.348) -0.568 (1.733)
# Seniors (number) 4.005∗∗∗ (1.501) 5.875∗∗ (2.955)

Music system 0.633 (2.591) 0.964 (2.092) 1.022 (2.019) 19.176 (11.995)
Camera 1.098 (4.007) -1.150 (3.609) -0.965 (3.618) -11.917∗ (6.321)

Productivity
Computer 4.827∗∗∗ (1.528) 2.445 (1.534) 2.151 (1.417) 12.549∗∗∗ (2.471)

# Outage freq. (number/day) 0.014∗ (0.007) 0.006 (0.015)
# Expenditure (log RWF) 1.022 (1.619) 2.069 (1.772) 6.438∗ (3.286)
# Members (number) -0.607 (0.760) -3.938∗∗∗ (1.170)
# Children (number) 0.676 (1.329) 0.805 (1.855)

Sewing Machine -0.451 (0.568) -0.472 (0.520) -0.589 (0.544) 3.633 (3.661)

Convenience
Hotplate 24.894∗∗∗ (7.181) 16.444∗∗∗ (6.280) 15.601∗∗ (6.248) -5.248 (11.891)

# Outage freq. (number/day) -0.023 (0.097) -0.017 (0.092) 0.151 (0.200)
# Expenditure (log RWF) 28.147∗∗ (11.555) 29.402∗∗ (12.593) 28.395 (26.385)
# Members (number) -2.243 (3.425) -8.282 (8.582)
# Females (number) 0.438 (5.911) 19.179 (16.112)

Cooker 3.510∗ (2.039) 1.945 (1.721) 2.023 (1.822) 0.729 (2.732)
Fridge 20.419∗∗∗ (3.186) 19.582∗∗∗ (3.213) 19.585∗∗∗ (3.180) 23.665∗∗∗ (4.885)

# Outage freq. (number/day) 0.057 (0.039) 0.047 (0.035) -0.003 (0.029)
# Expenditure (log RWF) 10.658∗∗∗ (2.716) 11.079∗∗∗ (2.607) 9.444 (5.926)

Laundry machine 57.440∗∗∗ (20.267) 38.404∗∗ (15.563) 36.675∗∗ (15.781) 5.409 (7.876)
# Outage freq. (number/day) -0.202 (0.411) -0.221 (0.411) -2.463∗∗∗ (0.802)
# Expenditure (log RWF) 43.679∗ (23.832) 43.082∗ (24.529) 224.090∗∗∗ (82.272)

Water Filter -0.379 (3.000) 0.588 (2.536) 0.774 (2.582) -0.859 (8.401)

Number of rooms (lights) 0.568∗∗ (0.232) 0.669∗∗∗ (0.200) 0.713∗∗∗ (0.241) 0.540 (0.689)
Constant 3.536∗∗∗ (0.812) 4.628∗∗∗ (0.623) 4.363∗∗∗ (0.776) 1.478 (3.686)
Inverse Mill’s Ratio Y

Observations 2,906 2,906 2,906 496
R2 0.523 0.603 0.610 0.697
Adjusted R2 0.520 0.599 0.605 0.672
F Statistic 226.074∗∗∗ (df = 14; 2891) 161.962∗∗∗ (df = 27; 2878) 124.684∗∗∗ (df = 36; 2869) 28.416∗∗∗ (df = 37; 458)

Note: White’s robust standard error in parenthesis. For models 3 and 4, we control for the inverse Mill’s Ratio to account for sample selection. In our first step,
we regress a dummy which takes value 1 if the household survived the matching procedure on a set of variables which predict selection. These variables are
number of members, gender of the head of household, number of children, a dummy which takes value of 1 if the household is rural, number of years in the
dwelling, a dummy which takes value 1 if there are multiple households in multiple houses, total savings, distance to major towns, and dummies for the district.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Models 2 and 3 in Table 8 underscore the significance of usage variations among households
in determining residential electricity consumption. The adjusted R2 for these models is higher
compared to that of model 1, indicating that incorporating controls for appliance use enhances
the explanatory capability of the empirical model. Given the space constraints in this paper, we
concentrate on two variables - households’ income and reliability. Our findings suggest that the
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impact of reliability on appliance use is negligible. Specifically, model 3 reveals that monthly
electricity consumption from both analogue and smartphones decreases by 0.003 kWh and 0.004
kWh, respectively, for each additional outage.

While the role of reliability on appliance use is negligible, model 3 in table 8 shows that higher-
income households use televisions and phones more intensively. This finding could be attributed
to two possible explanations. Firstly, high-income households may have the financial capacity to
purchase more electricity at a given tariff level compared to low-income households. The second
explanation is straightforward: high-income households may allocate their time differently than
low-income households. Notably, the income effect is more pronounced for smart-phones than
for analogue phones, with smart phones requiring higher electricity consumption and being more
significantly impacted by additional income.

The impact of income is significant for convenience appliances. Model 3 reveals that a typi-
cal household consumes 15.601 kWh of electricity per month from a hotplate, and consumption
increases by 29.40 kWh for each additional unit of expenditure. Additionally, higher income is
associated with increased electricity consumption from fridges and washing machines, possibly
because lower-income households may struggle to afford the electricity required to operate such
appliances and use them sparingly.

5.2 Quantifying Reliability Changes

We quantify the effect of reliability investments by estimating the expected electricity consump-
tion from Kℓ

i units of appliances ℓ for any household i as

E
[
yℓi |Kℓ

i , Ci,m

]
=

{
0 if Kℓ

i = 0

Kℓ
i

(
α̂ℓ +

∑M
m=1 γ̂ℓ,m(Ci,m − C̄Kℓ,m)

)
if Kℓ

i > 0
(8)

where α̂ℓ and γ̂ℓ,m are the coefficients presented in Table 8, and Kℓ
i is the number of appliances

ℓ owned by household i. Equation 8 provides a framework for estimating the residential electricity
consumption of various appliances, considering the characteristics of the specific household. We
leverage this equation to quantify our empirical findings from the previous section and draw
policy implications. Figure 10 in section 4.2 suggests that a decrease in reliability would lead to
reduced ownership rates for TVs and smartphones, on average. Given that these two appliances,
along with lights, are the highest contributors to aggregate household-level consumption for the
average household (i.e. high α̂ℓ), a decrease in their ownership could result in large impacts on
the residential consumption.

Using our empirical results and equation 8, we estimate household’s consumption at the appli-
ance level for all grid-connected and presented in figure 13. The blue bars represent the baseline
level which is the observed consumption; the red bars is the consumption we would have ob-
served if reliability was 1 unit less than the observed one. The number of households selected to
not have the appliance was determined following the results from section 4.2, and we assume any
household has the same probability of not having the appliance. The vertical lines represents the
range for the possible aggregate consumption under this counter-factual scenario. It is important
to note that this is a simplified exercise which aims to quantify our results in terms of consumption
to provide context to the discussion. A structural model would be required to estimate changes
in consumption and welfare gains from reliability investment. Such model exceed the objective of
this paper.
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Figure 13: Aggregate household consumption

Note: The above figure depicts the consequences of a one-unit reduction in reliability on aggregate household con-
sumption across all grid-connected surveyed households. The combined household consumption is presented at the
appliance level. The blue bars represent consumption levels under a reliable electricity supply, while the red bars depict
consumption levels following a one-unit decrease in reliability.

From Figure 10 in section 4.2, we observed that a decrease in reliability would lead to re-
duced ownership rates for TVs and smartphones. Given that these two appliances, along with
lights, are the highest contributors to aggregate household-level consumption (Figure 13) 13), a
decrease in their ownership results in an average decrease in aggregate household consumption
of approximately 800 kWh. According to Joel Mugyenyi (2024), households in Rwanda consumed
an average of 22 kWh per month in 2016-2017. As such, a unit decrease in reliability results in
a reduction in aggregate consumption equivalent to the aggregate monthly consumption of 36
households. In concise terms, a unit decrease in reliability would have the equivalent impact of
loss of consumption for 1% of the households connected to the grid surveyed in EICV2016/2017.

Following our empirical results, it is reasonable to conclude that investments in grid reliability
alone may have a limited impact on enhancing household consumption levels. If policymakers
aim to boost household consumption, a more effective strategy would involve increasing own-
ership rates of demand-intensive appliances, such as fridges, laundry machines, and hotplates.
Making these appliances more accessible, perhaps through credit schemes, and reducing the oper-
ational costs through more affordable tariffs could significantly contribute to elevating household
consumption levels. Moreover, to achieve higher levels of residential consumption on the grid,
efforts should be directed towards making electricity more affordable for the average household.

6 Conclusions and Discussion

This paper investigates the impact of electricity reliability on households appliance ownership and
usage in Rwanda, focusing on the well-documented challenge of low appliance ownership and
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utilization in Sub-Saharan Africa. Utilizing rare access to administrative reliability data linked to
household locations, the study provides a unique opportunity to examine how electricity reliabil-
ity influences both the total number of appliances owned and the ownership of key appliances. We
address empirical challenges related to endogeneity and measurement error using a novel set of
instrumental variables—specifically, lightning frequency and radiance. These instruments help to
mitigate biases, enabling a more accurate assessment of the relationship between electricity relia-
bility and appliance ownership. Moreover, we estimate the conditional demand model to quantify
how investments in improving reliability could impact residential electricity consumption. This
analysis considers both the effects on appliance ownership and usage, providing insights into how
enhanced reliability might influence overall residential electricity consumption.

Our results highlight that electricity reliability influences the composition of the appliance
stock owned by households in Rwanda. Households, in response to low grid quality, adjust the
types of appliances they own based on their energy needs. Specifically, while reliability does not
notably affect the ownership of high-consumption appliances such as washing machines and re-
frigerators, it does reduce the ownership of lower-consumption and less expensive items like tele-
visions, smartphones, and decoders. In this context, we observe that higher-income households
are more likely to own music systems, whereas lower-income households tend to own sewing
machines. Despite the modest impact of reliability on the ownership of certain appliances, it does
not significantly affect the usage of appliances among households that already possess them. In-
stead, income emerges as the predominant factor influencing electricity consumption, indicating
that affordability is a more critical barrier to higher consumption levels than grid reliability.

This paper suggests that improving grid reliability may only have a modest effect on increas-
ing household electricity consumption. A more effective strategy would involve making both
electricity and appliances more affordable. This could be achieved through enhanced access to
credit for appliance purchases and targeted subsidies to lower electricity costs. Addressing both
aspects of affordability holds promise for increasing household electricity usage and expanding
energy access. However, it is important to note that this study does not explore other potential im-
pacts of improved reliability, such as the increased ability of households to engage in productive
activities, which could boost their income in the medium to long term. Additionally, since relia-
bility is correlated with household location, changes in reliability might affect migration patterns
within the country. Furthermore, the paper does not examine the role of reliability in commercial
and industrial electricity consumption. These questions are left for future research.
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Appendix 1: Data Description and Cleaning

Integrated Household Living Conditions Survey (EICV)

• Expenditure - The expenditure variable was constructed by consolidating reported expendi-
ture items from surveyed households. Participants were queried about their spending over
the past year on durable items like clothes, accessories, furniture, and school-related ex-
penses (uniforms, supplies, and tuition). Monthly expenditures on transport, leisure, health,
beauty care, communication, and housing (including rent and electricity) were also elicited.
To ensure consistency, all expenditure-related responses were transformed into a monthly
cadence and aggregated into a single variable, offering an overview of each household’s
expenditure level

• Demographics - Several variables from the survey were employed to characterize the demo-
graphics of households. These include gender, encompassing the sex of the household head
and the overall gender makeup; the highest level of education attained by the household
head and members; the age composition of household members (children under 16 and the
elderly above 60); details about the dwelling, such as the number of rooms and construction
material; and a variable denoting the nationality of the household head.

• Finances - Binary variables were created to identify households involved in various finan-
cial activities, including ownership of businesses, employment status of members, presence
of debt, savings in a bank account, and receipt of money transfers from friends or family.
Another variable categorizes households engaged in either large-scale or small-scale agri-
culture. The skill level of household members is determined using reported occupation
responses and classified into low, medium, or high skill levels according to the Intermation
Standard Classification of Occupations ISCO-08. Additionally, the stability of a respondent’s
job is inferred from the number of jobs held in the recent past.

• Appliance ownership - Households were surveyed about ownership of common house-
hold appliances, and binary variables were created to indicate ownership of each appliance
within the household. This approach allows for a detailed understanding of the possession
of specific household items.

Reliability Data

Reliability and grid infrastructure geo-spatial datasets were provided by the Rwanda Energy
Group (REG). The reliability data encompasses reported outages, indicating both the time of oc-
currence and resolution. Additionally, it includes information on feeder outage causes, reported
at the feeder level - the finest resolution on the grid. Each feeder is uniquely identified by a name
and originates from a substation. The dataset spans five years, from 2016 to 2020, and is aggre-
gated into a cohesive dataset using feeder names and origin substations to track feeders over time.
The geo-spatial dataset contains feeder names, corresponding origin substations, and the spatial
extent of each feeder.

Through our collaboration with the National Institute of Statistics in Rwanda (NISR), we in-
tegrated REG data with the EICV household survey data. The matching process required our
physical presence in Rwanda due to the sensitive nature of the data, and it was conducted on
NISR internal computers. For the matching technique, we adopted a straightforward approach.
Household reliability was determined based on a household’s proximity to a feeder. Each house-
hold was assigned the reliability value of the nearest feeder, subject to a constraint: the household
had to be within an 800-meter proximity to the feeder. This constraint aligns with REG installation
requirements, as households more than 800 meters away from the closest transformer cannot be
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connected to the grid. This careful consideration helps minimize the probability of erroneously
assigning households to distant feeder lines, especially in cases where certain grid lines may not
be captured within our dataset.

Rainfall Data and Spatial Interpolation

The Rwanda Meteorological Agency maintains a comprehensive historical dataset of daily rain-
fall collected at 18 rainfall stations distributed across Rwanda, as depicted in 5 (a). Our study has
access to a 40-year daily historical record of rainfall at each station. However, the agency acknowl-
edges occasional gaps in its daily collection of station rainfall data, which are addressed by filling
them with derived outputs from satellite images collected at resolutions of 4km by 4km.

To interpolate and estimate rainfall across the entire country, we employ Kriging, a geostatis-
tical technique known for spatial interpolation, prediction, and estimation, as depicted in 5 (a). In
this process, the values of rainfall at unobserved locations are estimated using recorded rainfall
data from the designated rainfall stations. Kriging involves mathematical modeling of the spatial
correlation structure through a variogram, which quantifies the spatial variability of the data. The
variogram is then utilized to optimize the weights assigned to observed points when predicting
values at unsampled locations.

For the implementation of Kriging, we utilize pykrige, a specialized Python library for Kriging.
This library offers various variogram models such as linear, Gaussian, exponential, and power.
After visual inspection, we selected a ”power” model for our sample as it provided the best fit to
the observed data. Using the modelled variagram, we interpolated the data to the full extent of
the country. We then assigned rainfall data to each household given households location.

Lightning Data

The Lightning Imaging Sensor (LIS) is an advanced space-based lightning detection instrument
situated aboard NASA’s Earth Observing System (EOS) Tropical Rainfall Measuring Mission (TRMM)
satellite. Designed to operate seamlessly in both day and night conditions, the LIS records the
precise time of lightning occurrences, measures radiant energy, and estimates their locations with
exceptional efficiency. As the TRMM satellite speeds through space at an astonishing 7 kilometers
per second (nearly 16,000 miles per hour), it provides LIS with a unique vantage point, allowing
for observations of a specific point on Earth or a cloud for approximately 90 seconds during each
overhead pass.

Despite the relatively brief observation duration, this timeframe is sufficiently long for LIS
to accurately estimate the flashing rate of most storms. The instrument’s capabilities encompass
recording the time of occurrence, measuring radiant energy, and determining the precise location
of lightning events within its expansive field-of-view. Notably, the TRMM LIS detection efficiency
demonstrates a range from 69% near noon to 88% at night.

The TRMM Lightning Imaging Sensor (LIS) dataset, collected by the LIS instrument on the
TRMM satellite, serves as a valuable resource for discerning the distribution and variability of
total lightning in Earth’s tropical and subtropical regions. This dataset finds application in severe
storm detection, comprehensive analysis, and investigations into lightning-atmosphere interac-
tions. With its high detection efficiency during both day and night, the LIS instrument has proven
instrumental in advancing our understanding of lightning phenomena (Blakeslee, 1998).

Appendix 2: Regression Tables

This appendix presents the complementary regression tables.
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Table 9: Regression Results Communication Appliances

Any Radio Analogue Phone Smart Phone

Frequency Outages -0.015 0.008 0.017 -0.061**
(0.010) (0.020) (0.015) (0.030)

Expenditure 0.052*** 0.125*** 0.089*** 0.222***
(0.009) (0.011) (0.020) (0.018)

Savings -0.002*** -0.001 -0.003 -0.004**
(0.001) (0.002) (0.002) (0.002)

Has business 0.014* 0.061*** 0.033** 0.014
(0.008) (0.019) (0.015) (0.018)

High Skill Job -0.006 0.012 0.016 0.112***
(0.004) (0.026) (0.015) (0.023)

Job Instability -0.029*** -0.019 -0.063*** -0.028
(0.010) (0.012) (0.014) (0.017)

Number of female -0.002 -0.006 0.034*** 0.018***
(0.003) (0.008) (0.006) (0.006)

Number of children -0.003 -0.025** -0.008 -0.043***
(0.003) (0.012) (0.005) (0.005)

Number of seniors -0.044*** 0.014 -0.051*** -0.087***
(0.014) (0.027) (0.017) (0.017)

HoH is female -0.029** -0.173*** -0.080*** 0.054**
(0.012) (0.023) (0.017) (0.027)

HoH is Rwandese 0.045 0.095 0.030 -0.079
(0.035) (0.076) (0.067) (0.062)

HoH High Education -0.004 -0.028 -0.099*** 0.184***
(0.006) (0.026) (0.017) (0.026)

HoH youth -0.003 0.015 -0.004 0.003
(0.007) (0.019) (0.016) (0.016)

Number of Rooms 0.002 0.022*** 0.036*** 0.011*
(0.004) (0.007) (0.007) (0.006)

Multiple Households 0.017 -0.015 0.027 0.005
(0.011) (0.035) (0.039) (0.026)

Mutiple houses -0.001 0.020 0.001 0.006
(0.007) (0.022) (0.026) (0.024)

Is owner 0.007 0.110*** 0.019 0.038*
(0.011) (0.023) (0.018) (0.020)

Years in dwelling 0.000 0.002** -0.001 0.001
(0.001) (0.001) (0.002) (0.001)

Rural -0.002 0.028 -0.002 -0.040
(0.011) (0.031) (0.016) (0.028)

Distance Trade Center -0.002 -0.025*** 0.007 -0.024***
(0.003) (0.009) (0.007) (0.009)

Distance Town 0.007 0.026* -0.001 -0.023
(0.006) (0.014) (0.013) (0.017)

Rainfall 0.103 0.145 -0.043 0.263
(0.068) (0.136) (0.156) (0.180)

Duration outage 0.000 -0.001 0.000 -0.002
(0.000) (0.001) (0.001) (0.001)

District FE Yes Yes Yes Yes
Observations 2,706 2,706 2,706 2,706
R-squared 0.090 0.107 0.150 0.296
Number of district 26 26 26 26
Note: Robust standard errors in parentheses.These are clustered at the district level.
*** p<0.01, ** p<0.05, * p<0.1
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Table 10: Regression Results Entertainment Appliances

Any TV Decoder DVD Satellite Dish Camera Music

Frequency Outages -0.056*** -0.045** -0.048*** -0.018 -0.027* -0.010 -0.013
(0.010) (0.018) (0.013) (0.016) (0.016) (0.008) (0.011)

Expenditure 0.242*** 0.232*** 0.177*** 0.166*** 0.055*** 0.021*** 0.013**
(0.019) (0.020) (0.015) (0.020) (0.011) (0.004) (0.005)

Savings -0.002 -0.001 0.003 -0.000 0.010*** 0.009*** 0.008***
(0.001) (0.002) (0.003) (0.003) (0.003) (0.001) (0.002)

Has business 0.062*** 0.053*** 0.038*** 0.056*** -0.006 -0.005 0.002
(0.014) (0.014) (0.013) (0.014) (0.012) (0.007) (0.005)

High Skill Job 0.022 0.016 0.053** 0.017 0.022 0.017** 0.017*
(0.031) (0.028) (0.027) (0.030) (0.018) (0.007) (0.010)

Job Instability -0.044*** -0.046*** -0.021** -0.040*** 0.004 0.016** 0.003
(0.010) (0.009) (0.010) (0.013) (0.005) (0.006) (0.004)

Number of female 0.020*** 0.019** 0.019** 0.017* -0.000 0.002*** 0.000
(0.006) (0.007) (0.008) (0.010) (0.004) (0.001) (0.003)

Number of children -0.012* -0.006 -0.007 -0.010 -0.005 -0.004** -0.001
(0.007) (0.007) (0.007) (0.007) (0.003) (0.002) (0.003)

Number of seniors -0.014 -0.007 0.018 -0.042* 0.016 -0.000 0.002
(0.019) (0.018) (0.019) (0.024) (0.018) (0.007) (0.004)

HoH is female -0.050*** -0.042*** -0.034* -0.068*** -0.005 0.004 -0.008
(0.016) (0.016) (0.018) (0.021) (0.010) (0.004) (0.008)

HoH is Rwandese 0.009 0.029 -0.018 0.072 -0.011 -0.018 0.027**
(0.064) (0.068) (0.069) (0.097) (0.080) (0.036) (0.011)

HoH High Education 0.055** 0.061** 0.070*** 0.003 0.041*** 0.039*** -0.013*
(0.025) (0.024) (0.026) (0.025) (0.015) (0.012) (0.007)

HoH youth -0.002 -0.012 -0.051** -0.027 -0.007 -0.017** 0.004
(0.027) (0.020) (0.021) (0.030) (0.009) (0.008) (0.006)

Number of Rooms 0.047*** 0.041*** 0.037*** 0.030*** 0.015*** 0.004 0.003
(0.007) (0.007) (0.008) (0.006) (0.005) (0.006) (0.002)

Multiple Households -0.045** -0.046** -0.024 -0.017 -0.039* -0.039*** 0.003
(0.020) (0.020) (0.020) (0.020) (0.020) (0.003) (0.009)

Multiple houses 0.069*** 0.077*** 0.044** 0.077*** 0.039*** 0.029*** -0.026**
(0.025) (0.027) (0.022) (0.028) (0.011) (0.007) (0.012)

Is owner 0.090*** 0.096*** 0.081*** 0.071*** 0.009 0.001 -0.004
(0.030) (0.025) (0.022) (0.024) (0.012) (0.011) (0.007)

Years in dwelling -0.000 0.000 0.000 -0.000 -0.000 -0.000 -0.000
(0.001) (0.001) (0.001) (0.001) (0.000) (0.000) (0.001)

Rural -0.071*** -0.064** -0.056 -0.071*** -0.024** -0.007 0.000
(0.025) (0.027) (0.035) (0.019) (0.012) (0.006) (0.010)

Distance Trade center -0.011 -0.013 0.005 -0.014 0.001 0.001 0.002
(0.011) (0.011) (0.012) (0.009) (0.006) (0.003) (0.002)

Distance Town -0.004 -0.011 -0.015 0.002 0.004 -0.004 -0.004
(0.009) (0.010) (0.010) (0.012) (0.007) (0.006) (0.006)

Rainfall 0.263** 0.259** 0.354*** 0.134 0.014 -0.036 -0.055
(0.118) (0.126) (0.113) (0.153) (0.049) (0.049) (0.040)

Duration outage -0.002 -0.001 -0.000 -0.001 -0.002 -0.000 0.000
(0.002) (0.002) (0.001) (0.001) (0.001) (0.000) (0.000)

District FE Yes Yes Yes Yes Yes Yes Yes
Observations 2,706 2,706 2,706 2,706 2,706 2,706 2,706
R-squared 0.347 0.335 0.285 0.212 0.135 0.102 0.033
Number of district 26 26 26 26 26 26 26
Mote: Robust standard errors in parentheses. These are clustered at the district level.
*** p<0.01, ** p<0.05, * p<0.1
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Table 11: Regression Results Productivity Appliances

Any Computer Printer Sewing
Frequency Outages -0.011 0.005 -0.004 -0.017

(0.015) (0.013) (0.006) (0.013)
Expenditure 0.127*** 0.126*** 0.009** 0.005

(0.015) (0.014) (0.004) (0.005)
Savings 0.006*** 0.006*** 0.007*** -0.001

(0.002) (0.002) (0.002) (0.000)
Has business 0.016* -0.021** -0.003 0.047***

(0.010) (0.009) (0.003) (0.005)
High skill job 0.094** 0.101*** 0.006 -0.010

(0.037) (0.038) (0.005) (0.008)
Job Instability 0.018* 0.016* 0.007** 0.000

(0.009) (0.009) (0.003) (0.006)
Number of female 0.011 0.006 0.001 0.007**

(0.007) (0.006) (0.002) (0.003)
Number of Children -0.019*** -0.018*** -0.000 -0.004

(0.006) (0.005) (0.002) (0.003)
Numer of seniors 0.008 0.004 0.009** 0.013

(0.013) (0.013) (0.004) (0.009)
HoH is female 0.009 0.031* 0.000 -0.022***

(0.018) (0.019) (0.005) (0.008)
HoH is Rwandese 0.080* 0.095** 0.013* -0.005

(0.043) (0.046) (0.007) (0.022)
HoH High Education 0.181*** 0.187*** 0.007** -0.002

(0.028) (0.026) (0.003) (0.010)
HoH youth -0.026** -0.017* -0.006 -0.010

(0.013) (0.010) (0.004) (0.008)
Number of Rooms 0.019*** 0.017*** 0.002 0.004

(0.006) (0.005) (0.001) (0.002)
Multiple households -0.013 -0.034* 0.003 0.019

(0.016) (0.018) (0.006) (0.014)
Multiple houses 0.022 0.038* 0.009 -0.017**

(0.026) (0.023) (0.009) (0.008)
Is owner 0.029 0.039** -0.005 -0.010

(0.019) (0.019) (0.003) (0.008)
Years in Dwelling 0.000 0.000 -0.000 0.000

(0.001) (0.001) (0.000) (0.000)
Rural -0.010 -0.016 -0.003 0.002

(0.013) (0.011) (0.002) (0.009)
Distance Trade Center 0.002 0.003 0.003 0.001

(0.007) (0.005) (0.002) (0.004)
Distance Town -0.019* -0.021** 0.002 -0.003

(0.011) (0.009) (0.003) (0.006)
Rainfall -0.171* -0.177** -0.004 0.030

(0.088) (0.080) (0.011) (0.070)
Duration outage -0.001* -0.001 -0.000 -0.000

(0.001) (0.001) (0.000) (0.001)
District FE Yes Yes Yes Yes
Observations 2,706 2,706 2,706 2,706
R-squared 0.254 0.296 0.084 0.029
Number of district 26 26 26 26
Note: Standard errors in parenthesis. These are clustered at the district level.
*** p<0.01, ** p<0.05, * p<0.1
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Table 12: Regression Results Convenience Appliances

Any Hotplate Cooker Laundry Filter Fan Fridge

Frequency Outages 0.007 0.004 -0.001 0.000 0.007 0.004 -0.015*
(0.012) (0.007) (0.013) (0.001) (0.008) (0.003) (0.009)

Expenditure 0.110*** 0.038** 0.081*** 0.005 0.031*** 0.011** 0.077***
(0.023) (0.016) (0.018) (0.003) (0.011) (0.005) (0.021)

Savings 0.011* 0.014*** 0.010*** 0.008*** -0.000 0.001 0.013**
(0.005) (0.005) (0.003) (0.002) (0.001) (0.002) (0.006)

Has business 0.008 -0.013*** -0.018* 0.001 0.015 -0.001 0.005
(0.010) (0.005) (0.010) (0.001) (0.010) (0.003) (0.007)

High Skil Job 0.040*** 0.006 0.029* -0.001 0.030*** 0.005 0.029
(0.015) (0.006) (0.016) (0.003) (0.008) (0.004) (0.025)

Job Instability 0.021** 0.013** 0.018*** 0.001 0.006 0.003*** 0.016*
(0.010) (0.006) (0.007) (0.001) (0.004) (0.001) (0.009)

Number of female 0.009 0.004*** -0.005 -0.001 0.000 0.000 0.017***
(0.008) (0.001) (0.006) (0.001) (0.004) (0.002) (0.006)

Number of children -0.022** -0.006** -0.010 -0.000 -0.004 -0.003* -0.022***
(0.009) (0.002) (0.007) (0.000) (0.003) (0.001) (0.007)

Number of seniors 0.004 -0.004 -0.000 0.002 0.011 -0.006** 0.011
(0.009) (0.004) (0.010) (0.002) (0.011) (0.003) (0.010)

HoH is female 0.021* 0.011 0.041*** 0.001 0.005 -0.007*** 0.004
(0.011) (0.008) (0.011) (0.003) (0.010) (0.002) (0.007)

HoH is Rwandese -0.034 -0.060** 0.044 -0.033 -0.005 0.022*** -0.100**
(0.045) (0.029) (0.036) (0.032) (0.035) (0.008) (0.049)

HoH High Education 0.141*** 0.011** 0.124*** 0.002 0.027*** 0.003 0.076***
(0.022) (0.005) (0.021) (0.003) (0.009) (0.008) (0.017)

HoH youth -0.029*** -0.003 -0.020*** -0.003*** -0.022*** -0.006 -0.025***
(0.009) (0.006) (0.007) (0.001) (0.006) (0.004) (0.009)

Number of rooms 0.031*** 0.006 0.017*** -0.002* 0.008** 0.000 0.022***
(0.005) (0.004) (0.005) (0.001) (0.003) (0.002) (0.007)

Multiple households -0.063*** -0.028** -0.045** -0.003 -0.020** -0.004 -0.061***
(0.017) (0.013) (0.021) (0.003) (0.009) (0.007) (0.014)

Multiple houses 0.016 -0.000 0.023 -0.000 0.000 -0.007 0.017
(0.019) (0.021) (0.026) (0.006) (0.012) (0.008) (0.023)

Is owner -0.002 -0.007* -0.014 0.003 -0.001 -0.009 -0.003
(0.021) (0.004) (0.011) (0.003) (0.012) (0.006) (0.011)

Years in dwelling 0.000 -0.000 0.000 0.000 0.000 0.000* -0.000
(0.001) (0.000) (0.001) (0.000) (0.001) (0.000) (0.001)

Rural -0.025 -0.007 -0.009 -0.001 0.001 0.001 -0.039***
(0.020) (0.007) (0.015) (0.001) (0.013) (0.008) (0.014)

Distance Trade Center -0.007 0.003 -0.001 -0.000 -0.000 -0.002 0.008*
(0.007) (0.002) (0.007) (0.001) (0.005) (0.002) (0.004)

Distance Town 0.003 0.004 0.002 0.002* -0.010 0.003 0.004
(0.013) (0.004) (0.010) (0.001) (0.008) (0.003) (0.009)

Rainfall -0.124 -0.022 -0.040 0.002 -0.073 0.025 -0.106
(0.095) (0.033) (0.065) (0.004) (0.086) (0.025) (0.075)

Duration Outage -0.002** -0.001 -0.002*** -0.000 0.000 0.000 -0.002
(0.001) (0.000) (0.001) (0.000) (0.000) (0.000) (0.001)

District FE Yes Yes Yes Yes Yes Yes Yes
Observations 2,706 2,706 2,706 2,706 2,706 2,706 2,706
R-squared 0.240 0.154 0.189 0.169 0.060 0.018 0.248
Number of district 26 26 26 26 26 26 26
Note: Standard errors in parenthesis. These are clustered at the district level.
*** p<0.01, ** p<0.05, * p<0.1
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Appendix 3: Validation of Reported Electricity Consumption Data

This section explains how the reported electricity expenditure data in EICV was validate using ad-
ministrative data on electricity consumption for the Rwanda Energy Group. We first transformed
the reported expenditure data into consumption data in KWh. We then matched the reported and
administrative data. Finally, we conducted statistical analysis of the misreported values.

Transforming Expenditure Data into Consumption Data

We use the residential electricity tariff structure in Rwanda to transform our Expenditure Data
into Consumption Data. In 2016, every household paid a tariff 182 RWF/KWh. For households
surveyed in 2016, we dived the reported expenditure by the tariff level at that moment. In January
2017, a block tariff was introduced in which the household paid a tariff of 89 RWF/kWh for the
first 15 kWh. That is, for the first 15 kWh, the expenditure can never be above 1,335 RWF. For the
next 35 kWh, the household pays a tariff of 182 RWF/kWh (the expenditure for the following 35
units can never be above 6370). Any additional unit above the first 50 kWh pays a tariff of 189
RWF/kWh. In this context, suppose that for household i the expenditure is yi:

• If yi > 7, 705, yi − 7, 705 pays a tariff of 189 RWF/kWh and consumption is then 50 + (yi −
7, 705)/189

• If 1, 335 < yi < 7, 705, yi − 1, 335 pays a tariff of 182 RWF/kWh and consumption is then 15
+ (yi − 1, 335)/182

• If yi < 1, 335, yi pays a tariff of 182 RWF/kWh and consumption is then yi/89

Matching, Data Validation, and Inverse Mill’s Ratio

In both the EICV and REG datasets, the names, administrative and GPS locations are recorded for
each household. Unfortunately, meters are not located at the house in several cases but on the grid
pole. Hence, using GPS location to match the datasets will produce significative errors. Instead,
we combine head of households names and GPS data for our matching process in a two-step
algorithm.

The smallest administrative unit in Rwanda is a village. Villages common to both datasets
are identified and within selected villages, respondents common to both data sets are chosen. In
EICV, each household head is identified and we have access to the recorded names. In REG’s data,
all electricity purchases are attached the the owner of the house who is typically the household
head. Therefore, given that the household head’s name is listed in both datasets, it can be used as
a common identifier to match households in one dataset to another. Yet, these names are not the
same. Figure 14 presents an example of how the household names are display in each dataset.

Figure 14: Head of Household Names
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In this context, we implement a ”fuzzy” string matches to identify similar names in villages
common to both data sets. A similarity score is then assigned based on the number of words
which are matched. Figure 15 presents an example for the similarity score. We finally consider
that names in each data set are a ”match” if they have a similarity score higher than 80 implying a
majority of the names are similar.

Figure 15: Fuzzy String matching

We then use the GPS data to improve the matching algorithm. We calculate the distance be-
tween the houses corresponding to the matched names and the meter ID. In many cases, the meter
is not installed in the house but in the electricity pole. In Rwanda, customer electricity meters es-
pecially in residential settings are typically located at the closest electricity pole which according
to REG electricity connection standards should be within a 40 meter distance to the house receiv-
ing the electricity connection (REG, 2020). Hence, only matches that are within a 40 meter distance
to one another are maintained, and matches outside this threshold are discarded. The reason for
this decision is that people in the same village might have the same name, but the probability of
two household living within 80 meters one from the other and having the same name is small.

Figure 16: Distance house to meter location

Figure 17 presents the result from our matching algorithm. Out of the 3,600 grid electrified
housedholds in the EICV dataset, 693 household are matched to the REG data set. For the matched
results, the respondent’s consumption recorded in the month the EICV interview was conducted
is compared to the respondent’s reported electricity expenditure to determine the level of over or
under reporting.

Figure 17: Matching Result
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In this context, we are worried about sample selection bias. That it, we may have a latent vari-
able that is only observed based on some other condition, which we will call a selection equation
given by

sij = 1(z′ijω + ηij ≥ 0) (9)

where sij = 1 if the dependent variable s observed by the econometrician. In this case, the
bias is given by the Inverse Mills ratio. We present the results for equation (9) below. As we can
observe in out data, selection is not random and correlated to household characteristics.

Table 13: Inverse Mill’s Ratio Regression

Dependent variable: household was matched

OLS Logit Probit

Duration Outage 0.026∗∗ 0.173∗ 0.026∗∗

(0.013) (0.103) (0.013)
Frequency Outage −0.010 −0.167 −0.010

(0.016) (0.121) (0.016)
Expendityre 0.001 −0.306∗∗∗ 0.001

(0.003) (0.029) (0.003)
Savings −0.002 −0.015 −0.002

(0.003) (0.021) (0.003)
Has business 0.009 0.138 0.009

(0.014) (0.113) (0.014)
High Skill −0.021 −0.131 −0.021

(0.021) (0.175) (0.021)
Job Instability −0.014 −0.281∗∗ −0.014

(0.011) (0.109) (0.011)
Number of female 0.010 0.058 0.010

(0.007) (0.050) (0.007)
Number of children −0.016∗∗ −0.078∗ −0.016∗∗

(0.006) (0.046) (0.006)
Number of seniors −0.058∗∗∗ −0.359∗∗∗ −0.058∗∗∗

(0.018) (0.122) (0.018)
HoH is female −0.029 −0.333∗∗ −0.029

(0.018) (0.152) (0.018)
HoH High Education −0.011 −0.083 −0.011

(0.020) (0.179) (0.020)
HoH youth −0.021 −0.267∗ −0.021

(0.016) (0.136) (0.016)
Number of Rooms 0.005 0.051 0.005

(0.006) (0.045) (0.006)
Multiple Households 0.007 0.072 0.007

(0.020) (0.206) (0.020)
Multiple Houses 0.014 0.221 0.014

(0.020) (0.189) (0.020)
Is owner 0.295∗∗∗ 2.862∗∗∗ 0.295∗∗∗

(0.020) (0.216) (0.020)
Years in dwelling 0.002∗∗ 0.009 0.002∗∗

(0.001) (0.006) (0.001)
Rural −0.057∗∗∗ −0.490∗∗∗ −0.057∗∗∗

(0.017) (0.136) (0.017)
Distance Trade Center 0.005 0.050 0.005

(0.008) (0.064) (0.008)
Has TV 0.064∗∗∗ 0.557∗∗∗ 0.064∗∗∗

(0.021) (0.154) (0.021)
Has phone 0.008 0.067 0.008

(0.007) (0.050) (0.007)
Has radio −0.004 −0.012 −0.004

(0.011) (0.082) (0.011)
Has satellite dishe −0.030 −0.221 −0.030

(0.030) (0.218) (0.030)
Has decoder −0.007 −0.003 −0.007

(0.021) (0.155) (0.021)
Has filter −0.064∗ −0.404 −0.064∗

(0.034) (0.264) (0.034)
Has laundry machine 0.103 0.653 0.103

(0.105) (0.797) (0.105)
Has computer −0.011 −0.076 −0.011

(0.015) (0.113) (0.015)
Has printer 0.062 0.671 0.062

(0.068) (0.560) (0.068)
Has cooker −0.0001 0.009 −0.0001

(0.025) (0.189) (0.025)
Has fridge 0.054∗ 0.416∗ 0.054∗

(0.032) (0.241) (0.032)
Has hotplate −0.014 0.248 −0.014

(0.051) (0.406) (0.051)
Has music system −0.092∗∗ −0.870∗∗ −0.092∗∗

(0.041) (0.407) (0.041)
Has camera 0.024 0.099 0.024

(0.038) (0.304) (0.038)

Observations 3,072 3,072 3,072
R2 0.328
Log Likelihood −1,171.048 −1,163.726
Residual Std. Error 0.355 (df = 3038)
F Statistic 43.706∗∗∗ (df = 34; 3038)
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Non-classical Measurement Error

Figure 18 presents a frequency histogram visualizing the measurement error in the survey report
and our consumption estimates for 693 matched households.

Figure 18: Measurement error in EICV 5

(a) Monthly expenditure (b) Monthly consumption

Note: The figure shows that the measurement error depicts a normal distribution for both monthly reported
electricity expenditure and monthly consumption. In the case of reported electricity expenditure, the mean
difference is close to zero showing that on average the respondent’s reported electricity expenditure don’t
suffer from under or over reporting but rather mirror a close approximation of their actual electricity con-
sumption. In the case of the calculated monthly consumption, the mean difference is 3.37 while the median
is 4.75. The reason of these larger differences might be due to taxes which are charged by the utility but we
do not account in our estimates for electricity consumption.

In order to study the measurement error in our consumption data we regress the estimated
measurement error on several observables, including the number of appliances. Below are the
results. The results show that the measurement error is correlated to the number of some appli-
ances owned by the household. In addition, household who own their home seem to have larger
measurement error. For this reason, we need to be careful about non-classical measurment error.
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Table 14: Non-classical measurement error

Dependent variable: measurement error

Expenditure Consumption

(1) (2)

Duration Outage 0.133 0.861
(0.318) (1.789)

Frequency Outages 0.180 1.943
(0.365) (2.052)

Expenditure −0.112 −0.420
(0.101) (0.567)

Savings −0.019 −0.077
(0.050) (0.281)

Has business −0.423 −2.333
(0.353) (1.986)

High Skill 0.289 1.443
(0.581) (3.264)

Job instability 0.220 1.483
(0.364) (2.044)

Number of female −0.180 −1.227
(0.163) (0.919)

Number of children −0.001 0.176
(0.151) (0.848)

Number of seniors −0.404 −2.204
(0.403) (2.268)

HoH female −0.117 −0.765
(0.521) (2.927)

HoH High Education 0.145 0.895
(0.591) (3.320)

HoH youth −0.112 0.210
(0.453) (2.547)

Number of rooms −0.131 −0.504
(0.144) (0.809)

Multiple households −0.753 −4.832
(0.622) (3.497)

Multiple houses −0.164 −1.415
(0.564) (3.170)

Is owner 1.373∗ 8.450∗∗

(0.751) (4.221)
Years in dwelling 0.022 0.140

(0.021) (0.120)
Rural 0.218 −1.460

(0.440) (2.473)
Distance Trade Center −0.016 −0.324

(0.234) (1.315)
Has tv −0.495 −2.327

(0.496) (2.786)
Has phones 0.377∗∗ 1.968∗∗

(0.161) (0.905)
Has radio 0.002 0.119

(0.258) (1.451)
Has satellite dish −1.899∗∗∗ −9.759∗∗∗

(0.655) (3.682)
Has decoder 0.566 2.480

(0.501) (2.814)
Has filter −0.267 0.211

(0.851) (4.783)
Has laundry 6.479∗∗∗ 33.228∗∗∗

(1.776) (9.983)
Has computer −0.662∗∗ −3.373∗

(0.325) (1.826)
Has printer 4.730∗∗ 21.532∗∗

(1.849) (10.395)
Has cooker 0.700 4.090

(0.619) (3.478)
Has fridge −0.141 −2.460

(0.672) (3.776)
Has hotplate −0.578 −4.189

(1.226) (6.890)
Has music system −0.730 −2.221

(1.450) (8.152)
Has camera −1.275 −6.987

(0.957) (5.377)

Observations 571 571
R2 0.096 0.110
Adjusted R2 0.038 0.053
Residual Std. Error (df = 537) 3.847 21.627
F Statistic (df = 34; 537) 1.670∗∗ 1.942∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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