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Abstract

Most of the attention brought towards the uneven economic effects of cli-
mate change has been devoted to inequality between countries. This paper
investigates how weather shocks affect income and inequality within a country.
We measure the non-linear economic effects of weather shocks on the average
level of income and the distribution of income in France combining French fis-
cal data with historical weather data from meteorological stations. Allowing
for non-linear effects of weather, we are able to compute the marginal effect
of weather shocks on income and inequality. We find that days with an av-
erage temperature above 15◦C start to have a detrimental effect on average
income, with most significant effects located at the top of the distribution; an
additional day above 30◦C reduces the average household yearly income by
0.1%. This loss is equivalent to 34% of the average daily contribution to yearly
income. These weather shocks increase between-areas inequality as poorer mu-
nicipalities are more vulnerable to temperature and are hit more strongly than
richer parts of the country. These shocks also increase within-area inequality
by hitting more hardly the lowest income deciles. An additional day above
30◦C increases the D9/D1 inter-deciles ratio by 1.4 percentage point. We then
use a Regional Climate Model to predict potential effects of global warming.
Under business as usual scenarios, these effects would be equivalent to a yearly
reduction in national income by 1 percentage point over the medium run and
2 percentage points for the last decades of the century, due to additional warm
days. Finally, using Randomized Inference, we are able to assess the reliability
of the results, controlling for any spurious spatial correlations.
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1 Introduction

Most of the attention brought towards the uneven economic effects of climate change

has been devoted to inequality between countries. However, one may also wonder

what effect climate change might have on the way income is distributed within a

country. These divergent outcomes may result from varying exposure to climate

hazards, influenced by factors such as geographic location or employment status,

alongside differences in the ability to adapt and mitigate climate change effects,

shaped by individual resources and public provisions. Understanding the impact

of climate change on various economic groups is crucial for targeting adaptation

strategies effectively. This is particularly important because many climate change

mitigation policies can influence income distribution. By discerning which popu-

lations are most affected, policymakers can tailor interventions to address specific

needs and vulnerabilities.

This paper investigates the average and heterogeneous income responses to

weather shocks in France. We analyze historical short-term reactions to marginal

weather shocks to establish a baseline for predicting the short-term economic im-

pacts of global warming. We examine the income and inequality response to local

temperature and precipitation shocks.

We combine French local fiscal data to get the average income for each of the

36, 000 French municipality from 1990 to 2015 and indicators on the distribution

of income since 2000 at the canton level (approximately 10 municipalities) with a

weather interpolation model. We are able to use deviations in local income and local

inter-decile ratio to estimate marginal responses to change in the current weather.

These estimates are then used as inputs with climate simulation models to get

projections of climate change impacts.

We find that the response function of income to temperature starts declining for

days above 15◦C, with most significant losses occurring above 27◦C. An additional

day in the top bin, days above 30◦C, is associated on average with a decrease of the

yearly income by 0.1%. It is equivalent to 34% of the average daily contribution

to yearly income. We show that these results are not driven by the impact on

agricultural income.
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We find that this effect has been much larger for low-income municipalities than

richer municipalities, leading to an increase in between-area inequality. The average

effect in the bottom 50% municipalities is twice as large as the average effect in

the top 50% municipalities. In addition, poorer municipalities have been more

exposed to larger temperature than richer ones, exacerbating between-municipality

inequality. We then look at the impact of weather shocks on each decile of the

income distribution. We show that every single income decile is significantly affected

by weather shocks, with first deciles being hit more severely. Every additional day

above 30◦C increases the D9/D1 inter-decile ratio by 1.5 percentage points.

These results shed new light to the estimation of the impact of global warming

in France and emphasize the importance of non-linear effects and studying various

sub-populations. It uncovers an important inequality dimension, not only between

but also within municipality.

We then test the robustness of the results through Randomized Inference. In-

deed, studies that use weather either as an instrument variable or an explanatory

one have been recently criticized for the spurious correlation it may contain (see

e.g. Cooperman (2017) or Lind (2015)). In particular because of the spatial auto-

correlation of the data; weather and income of two neighboring municipalities can-

not be seen as independent from each other. Randomized Inference (or Permutation

Tests) allows us to assess the extent of this issue in our setting. Our results are ro-

bust to the computation of Randomization Inference based p-values but show that

simple two-way clustering p-values are under-estimated, leading to an over-rejection

of the null hypothesis of no effect.

Using the historical estimates on the average level of income, we are able to assess

potential short run impact of global warming in France using a Regional Climate

Model (RCM). Under the RCP 8.5 scenario of the IPCC, French national income

would be reduced by 1.1% every year in the medium term (2050-2080) and 2% every

year in the long-term (2080-2100).

This paper relates and contributes to the literature aiming to assess the eco-

nomic consequences of weather shocks. Specifically, it builds on articles using panel

estimates exploiting year-to-year fluctuations and within-country variations. These
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deviations in weather conditions are assumed to be exogenous. Dell et al. (2012)

uncovers a significant negative correlation between higher temperatures and eco-

nomic growth, primarily observed in low-income countries. Meanwhile, Burke et al.

(2015), employing a similar methodology but allowing for non-linear effects of tem-

perature, reveal impacts on both poor and rich countries. Their findings suggest

a global inverted-U shape relationship between temperature and income, with an

optimal temperature for output and productivity at 13◦C, a trend persisting since

1960. Notably, France emerges as an exception, exhibiting no significant impact,

positive or negative, from global warming on its economy according to Burke et al.

(2015). This paper aims to challenge such findings by exploring nuanced dimen-

sions of non-linearity in the relationship and investigating potential heterogeneous

and detrimental impacts on various population sub-groups, which could come from

geography, occupation, housing quality, or income level.

Kalkuhl and Wenz (2020) show that larger temperatures have a substantial neg-

ative impact on income and productivity levels using region-level data across 77

countries. Deryugina and Hsiang (2017), employing a non-parametric approach

based on the number of days within temperature bins, study the effects of temper-

ature and precipitation on county income per capita in the U.S., revealing a linear

decline in income beyond daily temperatures of 15◦C.

These sub-national studies shed light on within-country disparities. Hsiang et al.

(2017) underscore the importance of examining the redistributive impacts of climate

change within the United States. They predict that climate change will exacerbate

national inequality, with poorer counties, predominantly in the South and Midwest,

bearing the brunt of the consequences, thus widening the gap between counties.

However, despite offering insights into within-country climate change impacts,

these studies may overlook the rise in within-county inequality, focusing solely on

geographical disparities rather than social ones. Burke and Tanutama (2019) and

Diffenbaugh and Burke (2019) further emphasize the exacerbating effect of warming

on inequality, both within and between regions and countries. Burke and Tanutama

(2019) highlight regional data indicating that warming is likely to worsen inequality,

while Diffenbaugh and Burke (2019) estimate a 25% increase in global inequality
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over the past six decades attributable to global warming.

This article contributes to the literature by employing an approach that assesses

the impact of temperatures on overall income inequalities within a country, spanning

both intra-regional and inter-regional disparities.

The remaining of this paper is organized as follows: section 2 describes the data

used and provides descriptive statistics, section 3 presents the estimation strategy,

section 4 presents the main results, section 5 tests the robustness of the results,

section 6 uses these results to assess global warming potential impacts for the French

economy and section 7 concludes and discusses the results.

2 Data and Descriptive Statistics

This paper uses two main categories of data: climate data and income and socio-

demographic data. We describe the climate simulation models in section 6.

2.1 Climate Data

We make use of a dataset computed by the Centre National de Recherches Météorologiques

(CNRM) and the Centre de géosciences de Mines ParisTech and provided by Météo

France, called Safran-Isba-Moscou (SIM). It gives 9 000 points of gridded data for

France (excluding overseas territories) obtained from an interpolation of the 554

weather stations and corrected by weather models. We then interpolate this data

to obtain the weather of each municipality as a weighted-average of the four neigh-

boring points.

Mean daily temperature over the period are going from -25◦C to + 35◦C. While

the particularly cold temperature are not representative of temperature of any mu-

nicipality because they occur in areas uninhabited (top of mountains), especially

warm temperature occur in inhabited areas. The highest average daily tempera-

ture has been observed on the 13th of August 2003 in Perpignan (near the Spanish

border) at 35◦C.

Figure 1 shows the average evolution of temperature over the period for the

whole country while Figure 2 shows the differentiate evolution by region. The rise in

temperature does not seem to be concentrated to any specific region in the country,
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even though there is some significant heterogeneity. Figure 3 shows the distribution

of the average number of days in each temperature bin. The average number of

days in the top bins is small but not negligible. There are about 8 days on average

with an average temperature between 24 and 27◦C, 2 days between 27 and 30◦C

and 0.1 day above 30◦C, with some heterogeneity between municipalities. While all

municipalities have experienced days with a daily average temperature above 26◦C,

half of the municipalities have experienced daily average temperature above 30◦C.

Figure 4 shows the localization of these municipality. Those municipalities are not

localized specifically in the South and do not show any significant differences in

income, size or composition of labor force compared to municipality which did not

experienced any days above 30◦C.

2.2 Income Data

2.2.1 Average Income

We use income data at the municipal level provided by the Direction Générale

des Finances Publiques (DGFiP) which gives the average level of income of fiscal

households per municipality (approximately 36 000) for each year from 1990 to 2015.

Values before 2002 are converted from Francs to Euros and values for each year

are converted into Euros of 2015.

2.2.2 Distribution of Income

To study the distribution of income, we use another dataset, also provided by the

DGFiP and distributed by the French Statistical Institute (INSEE1) but at the can-

ton level (approximately 10 municipalities). This data gives each decile of income.

For statistical confidentiality reasons, deciles are not disclosed when it would reveal

information on less than 50 households. This pertains to less than one percent of

the data, with very small population, by definition. When re-estimating the results

on aggregate income while excluding these municipalities, we obtain identical point

estimates.
1Data named Revenus Fiscaux localisés des ménages (RFL) and Fichier Localisé Social et Fiscal

(FiLoSoFi).
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The data provided at the canton level is nevertheless only available for a smaller

period of time (2000-2011). We therefore have a lower cross-section and time di-

mension which reduces the statistical power of the second part of this analysis.

We obtain the inter-decile ratio in each municipality that gives the relative dis-

parity between the highest and lowest tax incomes, without being distorted by the

most extreme incomes. For example the D9/D1 inter-decile ratio gives the ratio

between the lowest income of the top 10% income earners and the highest income

of the bottom 10% income earners. From the deciles, we also obtain the average

income by group and the share of total income earned by this group using Pareto

interpolation, following Blanchet et al. (2017).

2.3 Socio-demographic Data

As covariates we also use data provided by the French Statistics Institute (INSEE)

which traces the evolution of the composition of French municipalities in terms of

unemployment rates, education levels, etc. Finally, we use data from the Recensse-

ment agricole (agricultural census) provided by the French Ministry of agriculture

to obtain the share of people working in agriculture by municipality for years 1990,

1997, 2004 and 2010. We then compute for each year of our study (1990-2015)

the weighted average of these values depending on the distance to the date with

available information2.

2For instance: shareagri,1994 = ( 1
4
+ 1

3
)−1 × (

shareagri,1990

4
+

shareagri,1997

3
)
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3 Empirical Strategy

The main equation of interest is a two-way fixed effects specification with the (log)

average income per fiscal household as a function of the (log) lag income, current

and previous weather, municipality time-varying observables and municipality and

year fixed effects. This is summarized by equation (1) below.

Yi,t = ρYi,t−1 +
∑
m

βmTm
i,t +

∑
n

γnPn
i,t +Xi,t + µi + θt + ϵi,t (1)

where Yi,t is the (log) income per capita of municipality i in year t, Tm
i,t the number of

days of year t for which mean daily temperature have been in the interval m in munic-

ipality i. These intervals are 3◦ C intervals : ]−∞;−6◦C[, [−6◦C;−3◦C[,...,[+27◦C; +30◦C[,

[+30◦C; +∞[ (the interval [9; 12[ is omitted and considered as reference);, Pn
i,t the

number of days in year t for which mean precipitations have been in interval n

of 40mm: [0;40mm[, [40mm; 80mm[, ..., [400mm, +∞[. The interval [0;40mm[ is

omitted, Xi,t−1 is a set of covariates (unemployment rate, share of people with at

least an undergraduate diploma, share of people with less education than the Brevet

des collèges (BEPC), share of people working in agriculture), µi municipality fixed

effects, θt year fixed effects, ϵi,t the error term.

The principal coefficients of interest are here βm. They may be interpreted as the

impact on the level of income of having one additional day in a given temperature

interval compared to the interval of reference. This equation may be augmented by

adding lag weather and interaction terms between temperature and precipitations.3

This specification has several advantages. First, it allows us to estimate non-

linear impacts of temperature and precipitation on income, which is critical. It seems

unlikely that a temperature rise from 12 to 13 ◦C would have the same impact than

from 29 to 30◦C. These non-linear impacts may be confounded using only means

and quadratic terms (as has been done by Burke et al. (2015)). To check for further

non-linearities, we also estimate a flexible restricted cubic spline specification.

The two-way fixed-effects approach controls for both observable and unobserv-
3Note that we will not make all bins of temperature interact with all bins of precipitation as it

would add 140 variables to the specification and present risks of multicolinearity. We will rather
compute the number of days inside a temperature bin with substantive rain (ie: with rain higher
than 1mm).
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able characteristics of each municipality that do not vary over time. We therefore

compare a municipality to itself when it experienced several types of weather. For

instance, we control for the fact that temperature may be on average higher in

Montpellier than in Charleville Mézières and local income higher as well without

any causal relationship between the two. We also use fixed-effects for each year

which will estimate all observable and unobservable characteristics that vary over

time but are the same across all municipality. In other words, the coefficients will

not be biased by the fact that some years, such as 2009, may experience highest

temperature than usual as well as economic recessions at the national level. In

brief, the coefficients estimated are computed on local idiosyncratic deviations of

each municipality compared to the usual conditions.

Following Cameron et al. (2011), we are clustering the standard-errors in two

dimensions. First, within municipality across years to take into account the serial

correlation. Second, within regions by year to take into account the spatial auto-

correlation.

To assess the impact on inequality, we run the same specification, using inter-

decile ratios as dependent variable. We also look at the impact of weather shocks

on average income earnd by each decile.

4 Results

4.1 Impact on the Average Level of Income

Table 6 shows the results of Equation 1. Standard-errors are clustered by municipali-

ties and region×year to take into account both the serial and spatial auto-correlation.

Figure 5 shows the coefficients for temperature from column (4) and from flexible

restricted cubic splines fitted with seven knots.

Column (1) regresses (log) Income on the different temperature and precipita-

tion bins (Temperature in [9; 12] and precipitation in [0; 40] are taken as references).

Column (2) adds an interraction term between temperature and precipitation, col-

umn (3) controls for the weather in the previous year, column (4) adds demographic
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of the municipality: share of farmers in the municipality, the percentage of the pop-

ulation with no diploma, the percentage of the population with a diploma higher

than an undergraduate degree and the percentage of unemployed as controls and

lastly column (5) adds both controls, lags in temperature and interaction between

temperature and precipitation. Results are weighted by the population in 1999 to

get an average effect for the French metropolitan population.4 We divided all bins

by 365 in order to have an easier interpretation of the coefficients. Coefficients may

therefore be interpreted as: an additional day with a temperature above 30◦C re-

duces the yearly income by 0.1%. Because the average daily contribution to yearly

income is 1
365 = 0.27%, this is equivalent to 34.0% of the average daily contribution

to yearly income (column 1). The idea behind dividing bins by 365 is not to say

that the yearly income can be decomposed in 365 daily incomes of equal share nor

that the effect of warm days must occur only on the current day but rather to have

a order of magnitude in mind when looking at the coefficients. The coefficients are

quite stable across specifications. Controlling for lag weather and the interaction

with precipitation moderately attenuates the impact of extremely hot days on av-

erage income. Controlling for the demographic composition of the municipality at

the last period increases the magnitude of the coefficient on extremely hot days and

increases their precision. As can be seen on Figure 5, the negative impact of temper-

ature on income seems to be linearly increasing, starting at 15◦C with most dramatic

effects occurring above 30◦C. This is in line with previous findings of the literature

in other countries (Burke et al., 2015; Deryugina and Hsiang, 2017). Results of the

cubic splines and the piecewise linear functions give similar results.

In comparison with temperature, precipitations do not have a significant effect.

This is in line with what has been found by Dell et al. (2014) and Deryugina and

Hsiang (2017).

The magnitude of the effect is not only statistically significant but also econom-

ically. For example, any day above 30◦ C reduces the municipality average income

by about a third of the average daily income contribution compared to a day with

cooler temperature.
4The results can therefore be interpreted as for the average French taxpayer, unweighted results

would rather be interpreted as for the average municipality.
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4.2 Impact on Agricultural income

One might wonder if the entirety of the effect of temperature shocks on income

happens through the impact on agriculture. In order to test this hypothesis, we run

the same specification, including interaction terms between each temperature bins

and the share of people working in agriculture in each municipality.

The results are displayed in Table 3. Columns (2) and (4) include an interaction

term for each temperature bin and the share of farmers. Columns (1) and (3) show

the initial effect without interaction terms, for comparison. The first insight is that

coefficients are not heavily impacted by the inclusion of interaction terms. The main

coefficient of interest (#days in [30◦ C;+ ∞[) increases in magnitude by 4 percentage

points from column (3) to column (4). The interaction term for days between 27

and 30◦C and days above 30 with the share of people working in agriculture are

positive and significant for most of them.

It can be interpreted as, any additional day above 30◦C has an impact on mu-

nicipalities with one additional percentage point of farmers in their population that

is lower by 2 percentage points compared to the impact on another municipality.

The median share of farmers in the municipalities is relatively low (at 5%) and the

average is around 2.5%. Thus, even for a municipality that is at the median in

terms of share of farmers, the coefficient is still negative and significant. The effect

becomes null for a municipality that has more than 11% of farmers (less than 20%

of the municipalities).

To be more precise, we can also compare the estimated coefficients between the

municipalities that have more agricultural workers than the median and those that

have less workers than the median. These results are presented on Figure 6.

These results are obviously counter-intuitive at first but can be explained by

administrative characteristics of the French tax system. Contrary to other taxpayers,

farmers are allowed to report the average of their income over the three previous

years (Moyenne triennale) in order to smooth their taxes. They can also choose

to report the income of year n − 2 in year n instead of the one of year n − 1 as
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the rest of the population does. Lastly, farmers are allowed to differ the inclusion

of investment expenses in their tax reports, again in order to smooth the level of

their taxes. We therefore can expect farmers reported taxable income to be less

representative of their actual annual income.

In addition to these tax reporting differences, most farmers subscribe to insur-

ance policies that compensate them in case of extreme weather, notably drought.

These insurance compensations are reported by farmers as income to the tax author-

ity. Moreover, in case of drought, the Government may also decide to compensate

farmers for their losses5. These compensations either publicly or privately funded

are included in the farmers’ earnings and are therefore included in the reported

income.

These compensation mechanisms and tax reporting types explain why those who

are a priori the more sensitive to weather seem to be the ones for whom the income

responds less. In addition, this is in line with a report conducted by the French

Senate (Sénat, 2004) which estimated the impact of the 2003 heatwave on farmers’

income. They find an ambiguous impact on agriculture and underline that heat

waves in the late summer lead notably to early and good quality wine harvest or

hardening of wood. Moreover, cereal prices responded to the supply scarcity6 which

led to an ambiguous impact on farmers’ income. The same report underlines a siz-

able detrimental impact on industrial, transport, energy, and distribution sectors.

Nonetheless, it is important to note that observing a low impact for municipal-

ities with farmers does not imply that French farmers’ income do not vary with

weather. Indeed, deferring the costs of a climate shock to the following year or

smoothing it across three years does not imply that farmers do not ultimately end

up paying these costs.

Secondly, even when farmers are compensated by their insurance, this likely

leads to a more expensive insurance policy for following years which can also be

considered as a negative impact on the net actualized income.
5See, for instance, the Arrêtés interministériels d’indemnisation du 9 septembre 2003
6Wheat prices were higher by 20% in October 2003 compared to October 2002 for a total

cereal production that was 21.5% under the 2002 production. Nectarine prices were higher by 44%
compared to 2002
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Lastly, one should keep in mind that the timing of the heat waves may be very

crucial as well, i.e., if days above 30◦C occur in the early summer or in spring it

can have a much more detrimental impact on land yields than in the late summer

(as most heatwaves French has experienced until now). Climate change may lead

to hot days occurring much earlier in the year which would have an impact that

we under-estimate in such specifications where there is no distinction of when hot

days occur. This aspect is true not only for farmers but may apply to the whole

population and thus to the previous estimates as well. This will be discussed in

more details in section 7.

To summarize, we do not conclude that farmers are actually less impacted by

hot days in France but that institutional settings prevent to seize the impact of

temperature on their current income. However, this section allows us to show that

our results are not driven by the impact of temperature on farmers’ income. In

other words, temperature have impacts on other sectors than agriculture. Also,

considering the reasons described above, our coefficients are likely an under-estimate

the true impact of temperature on income.

4.3 Impact on the Distribution of Income

Weather shocks can foster inequality in two main ways, either by increasing in-

equality between areas or by increasing inequality within areas. Contrary to most

of the literature, our framework allows us to study both phenomena. The first phe-

nomenon has already been documented by the literature in the past and this article

is able to bring further evidence. Using estimates from the previous section, we can

compute what has been the total impact of the occurrence of temperature shocks

on municipality’s average income and compare it with municipality’s demographic

characteristics, in particular initial average income.

Figure 7 shows the correlation between the estimated impact of hot days on

municipalities’ average pre-tax income and the initial income of the municipality.

The results are also reported in Table 8 in Appendix. Richer municipalities have

been less impacted on average by temperature shocks. Simply put, wealthier mu-
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nicipalities are located in places that are often less exposed to temperature shocks,

implying that temperature shocks have been fostering inequality between municipal-

ities. More economically disadvantaged municipalities have been hit more strongly

by weather shocks than richer ones. This echoes findings from Hsiang et al. (2017)

who show that climate change impacts are likely to increase inequality between

counties in the U.S., with poorer counties being more vulnerable to weather shocks.

Contrary to Hsiang et al. (2017), our setting allows us to also look at the impact

of weather shocks on inequality within areas. As mentioned in the introduction,

there are several reasons why various income groups might be differentially affected

by weather shocks, even within the same city. First, jobs that are likely to be more

affected by climate change are disproportionally occupied by first deciles (in par-

ticular, outdoor and physical jobs). Second, within each municipality, the bottom

of the income distribution might be living mostly in areas that are more subject to

weather shocks, or less resilient to weather shocks. For example, previous research

has shown that urban green spaces are unequally distributed, leading more disadvan-

taged communities to be more at risk of climate shocks (Liotta et al., 2020). Third,

income constraints themselves might lead economically disadvantaged households

to be more sensitive to weather shocks.

The inequality measure we use is the inter-decile ratio which gives the relative

disparity between the highest and lowest tax incomes, without being distorted by

the most extreme incomes. More precisely, the inter-decile ratio (D9/D1) measures

the ratio of the highest to the lowest incomes, removing the 10% of households with

the most extreme incomes from each side. As mentioned above, the data is not at

the same geographical scale as the one used in section 4.1 to compute the effect on

average income. We now use canton-level (approximately 10 municipalities) income

distribution. Nevertheless, running the same regression on the average income by

canton gives the same results as the ones on the average income by municipality.

We estimate Equation 1 using the inter-decile ratio as the dependent variable.

Results are shown on table 4 and plotted on figure 8. The results, though noisy,

show that most extreme temperature tend to increase inequality in each municipal-

ity. The magnitude of the effect is small but not negligible; one extra day above
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30◦C increases the inter-decile ratio by 0.02 (from a baseline at 5.7). One should em-

phasize that this is only the effect on pre-tax income, not on disposable income. The

true post-tax effect is therefore probably smaller since income taxes and transfers

typically reduces this inter-decile ratio.

To better understand this relationship, we are looking at alternative inter-decile

ratio, comparing D9/D5 and D5/D1. Figure 9 shows the impact of temperature in

each bin. temperature seem to not impact the D9/D5 ratio at all while the D5/D1

ratio is impacted just as much as the D9/D1, meaning that the increase in inequality

is mainly driven by a higher impact on lowest deciles compared to all other deciles

rather than a lower impact on highest deciles. Table 5 shows the associated results.

Lastly, Figure 10 also shows the point estimation for each of the ten deciles

average income, estimated using Pareto interpolation (Blanchet et al., 2017). Ta-

bles 6 and 7 report all the regression statistics. Estimates for the first deciles are

much more noisy than for other deciles. The first decile may be subject to more

income variability in general and more measurement errors (income coming more

from unemployment benefits, part-time jobs, etc.).

5 Randomization Inference

One major concern of statistical studies using weather, either as an explanatory

variable or as an instrument, is to take into account the spatial auto-correlation of

the data. Indeed, weather, and to a lesser extent income, are strongly geographi-

cally correlated, meaning that if one can exploit the randomness of weather across

time, assuming random and independent variation across space is not a credible

assumption. Unless one takes that structure of the data into account, one would

obtain (downward) biased standard-errors.

This element may also be reinforced by the interpolated characteristics of my

weather dataset. Two-way clustering has been a common tool for controlling for

spatial correlation. Nevertheless, as has been emphasized by Lind (2015) or Coop-

erman (2017), it may not be enough and may still lead to spurious correlations.

Some solutions exist such as models of spatial dependence or a correction of the

standard-errors by the method proposed by Conley (1999). In both case, neverthe-
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less, it brings about assumptions on the spatial dimension of the data. This may still

lead to over-rejection of the null hypothesis of no average effect. Because weather

boundaries do not correspond to any political boundaries, it may be not restrictive

enough to chose to cluster by region for instance.

We therefore chose to use Randomized Inference as proposed by Gerber and

Green. (2012) or Cooperman (2017) to test the robustness of the results. The

idea of Randomized Inference is to permute (with replacement) the weather for

each year; ie: for each municipality (resp. canton) we randomize the "treatment"

(ie: the weather) received and run the same regression on this "placebo" weather

variable. For each permuted dataset, we can compute the t-statistic associated with

each coefficient. The distribution of these t-statistics which is the distribution under

the null hypothesis, should be compared with the "true" t-stat in order to test its

significance. In other words, we create a distribution of t-statistics for which we

know that we cannot reject the null hypothesis of an effect and we compare it to our

estimated t-statistic. In other words, we break the existing structure in the dataset

in order to quantify the patterns we could have observed only "by chance".

The "treatment" can be randomized at several levels. The question is here to

know at what level the true treatment (weather) is assigned. Firstly, if we consider

that treatment is assigned to four "big weather regions" independently, we can

randomize across these big regions (see Appendix Figure 14 for the delimitation). It

means that two municipalities of different weather regions may be assigned weather

of different years but that two municipalities of the same weather region will be

assigned weather of the same year. Secondly, one could consider that no observations

within France could be considered as independent from one another. We therefore

also randomize at the national level; ie: all municipalities of the country are assigned

to the weather of the same year.

Figures 11 and 12 are showing the distribution of t-statistics of the coefficients

for the number of days in [27◦C; 30◦C[ and [30◦ C ;+∞ [ assuming either an inde-

pendence of two municipalities in different weather regions or no independence at

all. We therefore obtain new p-values under the sharp-null hypothesis of no-effect

(Table 10). These p-values correspond to the number of "null" t-statistics that are
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larger in absolute terms than the "true" t-statistic. In other words, one can cal-

culate the probability to obtain an estimate of such a magnitude if these days had

no effect at all. From these graphs, it is clear that most regular approaches tend

to under-estimate the standard errors. More than 5% of the t-statistics are located

above 1.96 (in absolute value). This is true with both clustering levels. The null

hypothesis is therefore falsely rejected in more than 5% of the cases. Appendix Ta-

ble 10 shows the distribution of p-values for all coefficients under both alternative

clustering levels. The p-values of the two main coefficients of interest (coefficients

for the number of days in [27◦C; 30◦C[ and [30◦ C ;+∞[) also increase (up to 0.043

and 0.071 for the most demanding correlation) but remain below commonly admit-

ted thresholds. We cannot reject the sharp null of no effect for coefficients of more

moderately hot days (between 15◦ and 27◦C) that are much lower in magnitude and

have p-values above commonly admitted thresholds.

6 Simulation and climatic projections

The effects measured on the aggregate level of income, despite being quite sizable,

have had only a marginal effect on the French eonomy since the occurrence of ex-

tremely hot days is quite rare (see Figure 4 for historical specific local occurrences

of days above 30◦C). Nevertheless, the occurrence of such days will dramatically in-

crease in the coming years according to all climatic projection models. We therefore

make some back-of-the-envelope estimation of the potential costs of the occurrence

of extremely hot days. These estimates are valid under several very strong hy-

potheses, in particular we assume that the reaction function to long-term common

shocks is similar than to the one to short-term idiosyncratic shocks. We discuss the

likelihood of this hypothesis and the reliability of these estimates in the discussion

section.

The various climate scenarios intend to represent various possible future weather

situations based on different greenhouse gas concentrations. The EURO-CORDEX

ensemble uses Representative Concentration Pathways scenario (RCP) provided by

the Intergovernmental Panel on Climate Change (IPCC). These RCPs determine

greenhouse gas concentration scenarios and deduct temperature rises. From these

17



RCPs, General Circulation Models (GCM) that study the interactions between com-

ponents of the Earth system are computed. These models give projections of weather

and are downscaled to get predictions at a local scale. Data is provided by the Drias.

The scenario RCP 8.5 corresponds to a "business as usual", i.e., no specific change

of gas emissions.

Note that with global warming, French municipalities will experience tempera-

ture that have never before occurred (or very rarely). There are two possibilities

to estimate the impacts of such extreme days. First, one could extrapolate the re-

lationship found for days above 30◦ C. Alternatively, one can set the effect of days

far above 30◦ C as the same as days just above 30◦ C. We choose to use the second

option, which is more conservative.

According to the climate projections, only 24 municipalities in France will never

experience any days above 30◦C, all in very mountainous areas. Three quarters of

the municipalities will experience a day above 30◦C at least once every five years.

Three quarter of the population, as it is currently distributed, will experience such

temperature every three years. Finally, almost 40% of the population will experience

such temperature more than once a year. At the end of the period, France will

experience, on average, two days above 30◦C per year for the period with some

regions experiencing more than 20 days per year above 30◦C with a non-negligible

share of days above 36◦C7.

For each French municipality, we compute the predicted number of days in each

temperature bin. We compute the 11-year moving-average for each year in order to

smooth the results. We then multiply the difference between the number of days and

the number of days from the average 1970-1989 (considered as pre-global warming)

by the coefficients estimated by equation (1).

δ̂i,t =
∑
d

βd(T
d
i,t − T̄ d

i,1970−1989) (2)

where δ̂i,t: the predicted impact in municipality i and year t, β̂30 the estimated
7Let us recall that the maximum average temperature observed over the period 1990-2015 has

been once 33◦C in Perpignan
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coefficient of an additional day above 30◦C, T d
i,t the number of days in bin d in

municipality i and year t, T̄ d
i,1970−1989 the number of days in bin d in municipality i

during the reference period.

We then compute the overall average effect, δ̂t weighted by the municipality pop-

ulation of 2012, to get a nationally representative estimate. Since most coefficients

from Equation (1) are not significantly different from zero, we use only coefficients

that are significant at the 5% level. We do not include lag effect of temperature.

According to the RCP 8.5 scenario, we get a national average estimated impact of

−1.13% of national income each year over the medium-run (for the period 2050-2080)

and −2.00% over the long-run (for 2080-2100) compared to a no global warming

scenario.

These numbers should be seen in parallel with growth predictions. Furthermore,

there are obviously cumulative effects of having a contracted national income in t−1

on the national income of t.

7 Conclusion and Discussion

This paper has assessed the impact of local temperature on income and inequality

in France. Results show that income starts to decrease for days with an average

temperature above 15◦C with the most dramatic effect for days above 27◦C. In par-

ticular, an additional day with temperature above 30◦C reduces the yearly income

per fiscal household by 0.1%. This is equivalent to 34% of the average daily con-

tribution to the yearly income. This impact is not driven by weather consequences

on agriculture. In addition, larger temperature increase inequality levels. First,

larger temperature deepen inequality between municipalities. Poorer municipality

are twice more vulnerable to temperatures and exposure is correlated with income.

Second, larger temperature also exacerbate within municipality inequality, increas-

ing the ratio of top income earner to bottom income earners. Every single income

decile remains, however, negatively affected by extreme temperature. Using predic-

tions made by Regional Climate Models, we obtained an estimate for the costs of

global warming. The estimate gives a reduction of national income over the medium
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run on average by 1.13 %, and over the long run by 2.00% each year. Even these

small effects on national income may have large consequences over time, taking into

account cumulative effects. Finally, we assessed the robustness of the estimates us-

ing Randomization Inference to avoid the risk of spurious correlations. This exercise

shows that many specifications that do not take into account spatial correlation in

the data tend to over-reject the null hypothesis of no effect.

We discuss below several issues related to the predictions in terms of global

warming costs. We also present further interesting axes of research.

The first aspect to underline is the reliance on specific climate models which

are uncertain and should be approached with cautious attention. Control for the

robustness of our results using more diverse models would therefore be interesting.

There are also several challenges that arise when using historical estimates to

infer future global warming costs, questioning both the internal and external validity

of our estimates.

Deryugina and Hsiang (2017), using the envelope theorem, argue that their es-

timates take into account adaptation since each counties (or municipalities in our

case) would be at the production possibility frontier. This is also an argument de-

veloped in Hsiang (2016). Reaction functions to weather would therefore be optimal

and represent a fair estimator of climate change future costs. One could, however,

challenged this statement since several characteristics of the weather shocks used in

this paper differ from actual climate shocks. In particular, this paper has focused on

shocks that are idiosyncratic, mostly unexpected and non-permanent. These three

properties make our coefficients very likely to estimate the costs of global warming

with a bias. Depending on the assumptions made, each of these differences between

global warming and the idiosyncratic, unexpected and short-term weather shocks

may lead to either an over- or an under-estimation of the true effect. We discuss

each of them below.

Our specification imperfectly takes into account common shocks and therefore

does not allow to estimate entirely a national level impact for two main reasons.

First, national shocks will be captured by year-fixed effects, whereas, some national
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detrimental effects exist, leading our coefficients to under-estimate the "true" costs

of global warming. Second, complex interactions between municipalities, may lead

the national impact to differ from the aggregated impact. One could argue that

these costs would be higher if every municipality were to be affected at the same

time (less geographical solidarity, less compensation and substitution mechanisms

available).

Second, we have assumed that the relationship between income and the number

of days in each bin is linear. However, this relation is likely to be convex with

higher cumulative effects; i.e.: three consecutive days above 30 ◦C may have a

higher negative impact on income than three times the impact of one day above 30◦

C. Not taking into account this cumulative effect would therefore tend to under-

estimate the true costs of global warming. With higher frequency, weather shocks

could also hamper economic activity harder. For instance, two consecutive droughts

on two subsequent years will likely be more detrimental.

Third, climate change and specifically global warming may lead to days with

temperature above the threshold computed here (ie: temperature above 35 or 36◦C

that have not occurred during the period studied here). In the specification, we

have imputed the same coefficients for all days above 30◦C but these days are very

likely to have stronger detrimental impacts on income thus leading the historical

response function to under-estimate the true impacts of global warming.

Fourth, historically, days above 30◦C have occurred only during summer and

especially in August. This is not the more critical period in terms of agriculture

and a large part of the French labor force is not working at that time. If days above

30◦C were to occur in other periods than during the summer, we expect a stronger

detrimental effect to be observed.

Fifth, the share of municipalities to experience extremely hot temperature is to

be enlarged with global warming. For instance, while only about half of French

municipalities have experienced a day with average temperature above 30◦C so far,

all of them will experience it by 2100. One may argue that this will lead them to

be more sensitive than the previously treated population thus leading again to an

under-estimation of the true effect.
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Sixth, as it has been shown in previous sections, the impact of temperature on

farmers’ income is only scarcely taken into account. Since we do not observe all the

impact on farmers’ income, our estimate is likely to underestimate the true costs of

global warming.

Finally, a major difference between short-run response estimates and climate

change future costs is adaptation. If future weather shocks (notably heat waves) are

better anticipated than in the past, economic agents may prepare themselves better

and change their optimal response to such events. Moreover, because these weather

shocks will be permanent, agents may also develop adaptation strategies to climate

change, (e.g., more air conditioned living and working environments, technological

changes or factor reallocation (e.g., migration)) which would reduces the magnitude

of the impact.

This paper has focused on global warming and is therefore close to a partial equi-

librium study taking all other aspects than global warming as constant. Nonethe-

less, temperature rises can hardly be disentangled from other climate change aspects

such as sea rise, natural disasters (notably storms) and biodiversity changes that

are likely to affect income as well. Lastly, since climate change is a global phe-

nomenon, its impact on other countries will probably have indirect impact on the

French economy (e.g. climatic migration). In light of the aforementioned elements,

these results do not aim to predict precisely the future impacts of climate change

impact but rather aim to highlight what temperature rises independently of other

variables could imply in terms of income and inequality.
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Figure 1: Evolution of the temperature between 1900 and 2015

Notes: Graph from Météo France
In 2003, the yearly average of temperature was 1.6 ◦C above the long-term average whereas the
moving average for 1998-2008 was 1◦C above the long-term average.

Medium-Term Long-Term
(2050-2080) (2080-2100)

Point Estimate -1.13% -2.00%
95 % CI [-1.87; -0.38] [-0.70; -3.30]

Table 1: Estimated future yearly short run impact of global warming in France

Notes: Under the RCP 8.5, scenario, average income will be reduced by 1.13% each year due to
additional warm days in 2050-2080 and by 2.00% in the long run (2080-2100).
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Figure 2: Evolution of the temperature between 1990-1995 and 2010-2015.

Notes: Data from Météo France. The Figure shows the average difference in temperature between
the beginning and the end of the period.

Figure 3: Average yearly number of days in each temperature bin (1990-2015).

Notes: Data from Météo France. The Figure shows the average number of days in each temperature
bin per municipality.
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Figure 4: Average yearly number of days above 30 by municipality (1990-2015).

Data from Météo France
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Figure 5: Marginal effect of an additional day in each temperature bin

Notes: Results from equation 1 estimated by OLS with municipality and year fixed effects. All
coefficients have been multiplied by 365 to be compared with the average daily contribution to
yearly income. The blue model shows the non-linear impact of temperature on income, using
restricted cubic splines in temperature with seven knots (at 0, 6, 12, 18, 24, 27, and 30◦C). Standard
errors are clustered by municipality and by region by year. One additional day above 30◦C is
associated on average with a decrease of the yearly income by 34% of average daily contribution
to yearly income.
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Figure 6: Marginal effect of an additional day in one temperature bin on (log)
income depending on the municipalities composition.

Note: Results of the estimation by OLS of Equation 1 for municipalities below the median pro-
portion of farmers (left) vs. municipalities above the median proportion of farmers (right). All
coefficients have been multiplied by 365 to be compared with the average daily contribution to
yearly income (0.27%)
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Notes: This graph shows the quantiles of the distribution of relative impact (in terms of pre-tax
income) of weather shocks as a function of the initial income level of the municipality. The left
panel controls only for year fixed effects while the right panel also controls for the demographic

composition of the municipality (unemployment rate, educational attainment, and share of
farmers). The economic impact is computed by comparing the predicted municipalities’ income
with and without days in the bins that have coefficients significant at the 5% level. The results

are reported in Table 8 in Appendix.

Figure 7: Impact of hot days occurence (1990-2015) on municipalities’ average pre-
tax income

-.01

0

.01

.02

.03

.04

Pr
ed

ic
te

d 
im

pa
ct

 o
n 

in
te

r-
de

ci
le

 ra
tio

-3 0 3 6 9 12 15 18 21 24 27 30
Temperature

Polynomial (spline)

Piecewise linear

Figure 8: Impact of temperature shocks on inter-decile ratio (D9/D1)
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Figure 9: Impact of temperature on inter-decile ratio (D5/D1 and D9/D1)
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Figure 10: Marginal effect of an additional day in one temperature bin by deciles

Note: Results of the estimation by OLS of Equation 1 for each decile separately.
An additional day above 30◦C is associated on average with a decrease of the yearly income of the
first decile (10% poorest of the municipality population) by 80% of the average daily contribution
to yearly income. This effect is only of -30% of the sixth decile.
The same graph with confidence interval is displayed in the Appendix (see Figure 13).
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Figure 11: Distribution of t-statistics for the coefficient on days between 27◦C and
30◦C from randomized samples
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Figure 12: Distribution of t-statistics for the coefficient on days above 30◦C from
randomized samples
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(a) 1st decile
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(b) 2nd decile

-3

-2.5

-2

-1.5

-1

-.5

0

Pr
ed

ic
te

d 
im

pa
ct

 o
n 

av
er

ag
e 

de
ci

le
 in

co
m

e

≤-3 0 3 6 9 12 15 18 21 24 27 ≥30 
xaxis

(c) 3rd decile
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(d) 4th decile
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(e) 5th decile
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(f) 6th decile
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(g) 7th decile
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(h) 8th decile
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(i) 9th decile
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Figure 13: Marginal effect of an additional day in one temperature bin by deciles
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(log) Income
(1) (2) (3) (4) (5)

Lag Income 0.685∗∗∗ 0.703∗∗∗ 0.702∗∗∗ 0.640∗∗∗ 0.622∗∗∗

(0.017) (0.015) (0.015) (0.016) (0.018)
]−∞;−3◦C[ 0.076 0.035 0.017 0.089 0.020

(0.074) (0.057) (0.054) (0.062) (0.076)
[−3◦C; 0◦C[ 0.075∗ 0.066∗ 0.049 0.079∗∗ 0.047

(0.043) (0.037) (0.037) (0.037) (0.046)
[0◦C; 3◦C[ 0.029 0.035 0.021 0.029 0.024

(0.033) (0.030) (0.029) (0.026) (0.036)
[3◦C; 6◦C[ 0.001 0.001 -0.011 0.003 -0.024

(0.022) (0.023) (0.022) (0.020) (0.025)
[6◦C; 9◦C[ -0.003 -0.003 -0.013 -0.002 -0.016

(0.020) (0.019) (0.018) (0.016) (0.020)
[12◦C; 15◦C[ 0.002 -0.002 0.005 -0.003 0.009

(0.020) (0.019) (0.018) (0.017) (0.021)
[15◦C; 18◦C[ -0.059∗∗ -0.055∗∗ -0.044∗∗ -0.067∗∗∗ -0.045∗

(0.024) (0.022) (0.022) (0.022) (0.026)
[18◦C; 21◦C[ -0.098∗∗∗ -0.086∗∗∗ -0.070∗∗∗ -0.113∗∗∗ -0.081∗∗

(0.032) (0.028) (0.027) (0.028) (0.032)
[21◦C; 24◦C[ -0.084∗∗ -0.085∗∗∗ -0.056∗ -0.095∗∗∗ -0.048

(0.035) (0.032) (0.030) (0.031) (0.035)
[24◦C; 27◦C[ -0.135∗∗∗ -0.140∗∗∗ -0.110∗∗∗ -0.134∗∗∗ -0.099∗∗

(0.046) (0.041) (0.039) (0.039) (0.045)
[27◦C; 30◦C[ -0.291∗∗∗ -0.245∗∗∗ -0.185∗∗∗ -0.294∗∗∗ -0.202∗∗∗

(0.066) (0.060) (0.055) (0.062) (0.059)
[30◦C; +∞[ -0.340∗∗ -0.321∗∗∗ -0.295∗∗ -0.463∗∗∗ -0.290∗∗

(0.163) (0.119) (0.121) (0.133) (0.141)
Precipitations X X X X X
Commune FE X X X X X
Year x Region FE X X X X X
Interaction Temp and Pcip X X X
Lag weather X X
Controls X X
Observations 889,980 878,066 878,066 864,551 876,226
Number of communes 36,523 36,520 36,520 36,143 36,145
R2 (within) 0.484 0.574 0.575 0.596 0.505

Table 2: Impact of weather shocks on municipalities’ income.

Notes: This table shows the impact of the number of days in each temperature bins compared
to the reference bin (11 to 14◦C). Standard errors are clustered by municipality and by region by
year.
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(log) Income
(1) (2) (3) (4)

Lag Income 0.683∗∗∗ 0.681∗∗∗ 0.639∗∗∗ 0.637∗∗∗

(0.016) (0.017) (0.016) (0.016)
]−∞;−3◦C[ 0.099∗ 0.087 0.024 0.006

(0.059) (0.062) (0.056) (0.058)
sharefarmers× ]−∞;−3◦C[ 0.706∗∗∗ 0.756∗∗∗

(0.250) (0.237)
[−3◦C; 0◦C[ 0.095∗∗ 0.115∗∗∗ 0.053 0.067∗

(0.037) (0.038) (0.038) (0.038)
sharefarmers× [−3◦C; 0◦C[ -0.489∗∗ -0.386∗

(0.200) (0.199)
[0◦C; 3◦C[ 0.037 0.034 0.027 0.022

(0.028) (0.030) (0.029) (0.031)
sharefarmers× [0◦C; 3◦C[ 0.386∗∗ 0.392∗∗∗

(0.156) (0.148)
[3◦C; 6◦C[ 0.019 0.014 -0.010 -0.017

(0.021) (0.022) (0.023) (0.023)
sharefarmers× [3◦C; 6◦C[ 0.532∗∗∗ 0.562∗∗∗

(0.146) (0.146)
[6◦C; 9◦C[ 0.009 0.019 -0.013 -0.005

(0.019) (0.020) (0.018) (0.018)
sharefarmers× [6◦C; 9◦C[ -0.090 -0.040

(0.153) (0.143)
[12◦C; 15◦C[ -0.007 -0.025 0.004 -0.015

(0.018) (0.019) (0.017) (0.018)
sharefarmers× [12◦C; 15◦C[ 0.669∗∗∗ 0.681∗∗∗

(0.174) (0.172)
[15◦C; 18◦C[ -0.067∗∗∗ -0.089∗∗∗ -0.049∗∗ -0.073∗∗∗

(0.022) (0.022) (0.023) (0.023)
sharefarmers× [15◦C; 18◦C[ 1.084∗∗∗ 1.134∗∗∗

(0.149) (0.145)
[18◦C; 21◦C[ -0.104∗∗∗ -0.107∗∗∗ -0.084∗∗∗ -0.090∗∗∗

(0.028) (0.028) (0.027) (0.028)
sharefarmers× [18◦C; 21◦C[ 0.476∗∗∗ 0.520∗∗∗

(0.163) (0.158)
[21◦C; 24◦C[ -0.092∗∗∗ -0.092∗∗∗ -0.056∗ -0.058∗

(0.032) (0.032) (0.030) (0.030)
sharefarmers× [21◦C; 24◦C[ 0.227 0.259

(0.168) (0.168)
[24◦C; 27◦C[ -0.144∗∗∗ -0.149∗∗∗ -0.105∗∗∗ -0.108∗∗∗

(0.042) (0.043) (0.039) (0.039)
sharefarmers× [24◦C; 27◦C[ 0.255 0.169

(0.292) (0.288)
[27◦C; 30◦C[ -0.293∗∗∗ -0.329∗∗∗ -0.202∗∗∗ -0.242∗∗∗

(0.064) (0.065) (0.055) (0.057)
sharefarmers× [27◦C; 30◦C[ 2.800∗∗∗ 2.836∗∗∗

(0.549) (0.532)
[30◦C; +∞[ -0.389∗∗∗ -0.392∗∗∗ -0.341∗∗∗ -0.363∗∗∗

(0.138) (0.151) (0.117) (0.128)
sharefarmers× [30◦C; +∞[ 1.999 2.262∗∗

(1.372) (1.147)
Precipitations X X X X
Commune FE X X X X
Year x Region FE X X X X
Interaction Temp and Pcip X X
Lag weather X X
Controls X X
Observations 864,551 864,551 864,551 864,551
Number of communes 36,143 36,143 36,143 36,143
R2 (within) 0.581 0.582 0.597 0.598

Table 3: Impact of weather shocks on municipalities’ income, interacted with agri-
cultural shares.

Notes: This table shows the impact of the number of days in each temperature bins compared
to the reference bin (11 to 14◦C). Standard errors are clustered by municipality and by region by
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Inter-deciles ratio (D9/D1))
(1) (2) (3) (4) (5)

Lag inter-decile ratio 0.690∗∗∗ 0.693∗∗∗ 0.693∗∗∗ 0.694∗∗∗ 0.697∗∗∗

(0.070) (0.070) (0.070) (0.067) (0.067)
]−∞;−3◦C[ 0.017∗∗ 0.006 0.006 0.017∗∗ 0.007

(0.007) (0.005) (0.005) (0.007) (0.005)
[−3◦C; 0◦C[ 0.002 -0.003 -0.003 0.003 -0.002

(0.004) (0.004) (0.004) (0.004) (0.004)
[0◦C; 3◦C[ 0.004 0.002 0.002 0.004 0.002

(0.003) (0.003) (0.003) (0.003) (0.003)
[3◦C; 6◦C[ 0.002 -0.001 -0.001 0.002 -0.001

(0.003) (0.002) (0.002) (0.003) (0.002)
[6◦C; 9◦C[ 0.003∗ 0.003∗ 0.003∗ 0.003∗ 0.003∗∗

(0.002) (0.001) (0.001) (0.002) (0.001)
[12◦C; 15◦C[ 0.002 0.002 0.002 0.002 0.001

(0.002) (0.002) (0.002) (0.002) (0.002)
[15◦C; 18◦C[ 0.002 0.002 0.002 0.002 0.002

(0.002) (0.002) (0.002) (0.002) (0.002)
[18◦C; 21◦C[ 0.005 0.002 0.002 0.005 0.002

(0.003) (0.003) (0.003) (0.003) (0.003)
[21◦C; 24◦C[ 0.008 0.007 0.007 0.009 0.008

(0.005) (0.005) (0.005) (0.005) (0.005)
[24◦C; 27◦C[ 0.008 0.007 0.007 0.009 0.008

(0.006) (0.005) (0.005) (0.006) (0.005)
[27◦C; 30◦C[ 0.003 0.005 0.005 0.005 0.006

(0.006) (0.007) (0.007) (0.006) (0.007)
[30◦C; +∞[ 0.024∗∗∗ 0.016∗∗ 0.016∗∗ 0.022∗∗ 0.014∗

(0.009) (0.008) (0.008) (0.009) (0.008)
Precipitations X X X X X
Canton FE X X X X X
Year x Region FE X X X X X
Interaction Temp and Pcip X X X
Lag weather X X
Controls X X
Observations 35,211 35,211 35,211 34,906 34,906
Number of cantons 3,515 3,515 3,515 3,482 3,482
R2 (within) 0.325 0.330 0.330 0.338 0.343

Table 4: Impact of weather shocks on municipalities’ income.

Notes: This table shows the impact of the number of days in each temperature bins compared
to the reference bin (11 to 14◦C). Standard errors are clustered by municipality and by region by
year.
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D5/D1 D9/D5
(1) (2) (3) (4)

D5/D1 lag 0.734∗∗∗ 0.715∗∗∗

(0.064) (0.065)
D9/D1 lag 0.891∗∗∗ 0.812∗∗∗

(0.022) (0.037)
]−∞;−3◦C[ 2.730∗∗ 1.504 -0.735∗∗∗ -0.564∗∗

(1.173) (0.936) (0.261) (0.245)
[−3◦C; 0◦C[ 0.397 -0.098 -0.119 -0.114

(0.724) (0.650) (0.112) (0.206)
[0◦C; 3◦C[ 0.239 0.101 -0.287 -0.152

(0.629) (0.553) (0.180) (0.140)
[3◦C; 6◦C[ 0.188 0.114 -0.121 -0.080

(0.489) (0.429) (0.086) (0.085)
[6◦C; 9◦C[ 0.424 0.696∗∗ -0.025 0.022

(0.276) (0.315) (0.047) (0.081)
[12◦C; 15◦C[ 0.665 0.382 0.143 0.102

(0.517) (0.413) (0.091) (0.064)
[15◦C; 18◦C[ 0.472 0.562 0.009 -0.060

(0.426) (0.387) (0.054) (0.102)
[18◦C; 21◦C[ 0.881 0.659 0.062 -0.059

(0.632) (0.472) (0.142) (0.119)
[21◦C; 24◦C[ 1.543 1.508∗ 0.035 -0.180

(1.001) (0.839) (0.148) (0.159)
[24◦C; 27◦C[ 1.740 1.441 0.125 -0.020

(1.188) (0.951) (0.317) (0.191)
[27◦C; 30◦C[ 0.584 0.964 0.246 0.297

(1.003) (1.149) (0.208) (0.232)
[30◦C; +∞[ 5.043∗∗∗ 2.613∗ -0.288 -0.291

(1.901) (1.405) (0.321) (0.382)
Precipitations X X X X
Canton FE X X X X
Year x Region FE X X X X
Interaction Temp and Pcip X X
Lag weather X X
Controls X X
Observations 35,211 34,906 35,263 34,958
Number of cantons 3,515 3,482 3,515 3,482
R2 (within) 0.338 0.367 0.507 0.533

Table 5: Impact of weather shocks on municipalities’ income.

Notes: This table shows the impact of the number of days in each temperature bins compared
to the reference bin (11 to 14◦C). Standard errors are clustered by municipality and by region by
year.
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D1 D2 D3 D4 D5
(1) (2) (3) (4) (5)

Lag Decile Income 0.632∗∗∗ 0.755∗∗∗ 0.827∗∗∗ 0.848∗∗∗ 0.852∗∗∗

(0.124) (0.065) (0.036) (0.032) (0.033)
]−∞;−3◦C[ -0.909∗ -0.782∗∗ -0.531∗∗ -0.465∗∗ -0.462∗∗

(0.528) (0.340) (0.206) (0.182) (0.179)
[−3◦C; 0◦C[ -0.062 -0.109 -0.072 -0.062 -0.078

(0.290) (0.179) (0.101) (0.093) (0.100)
[0◦C; 3◦C[ -0.069 -0.070 -0.034 -0.006 0.010

(0.214) (0.143) (0.090) (0.088) (0.102)
[3◦C; 6◦C[ -0.037 -0.071 -0.059 -0.046 -0.040

(0.199) (0.119) (0.066) (0.057) (0.060)
[6◦C; 9◦C[ -0.196∗ -0.142∗∗ -0.089∗∗ -0.070∗∗ -0.066∗

(0.111) (0.068) (0.038) (0.033) (0.034)
[12◦C; 15◦C[ -0.301∗ -0.176 -0.100 -0.097 -0.115

(0.167) (0.116) (0.076) (0.078) (0.092)
[15◦C; 18◦C[ -0.174 -0.142 -0.103 -0.100 -0.106

(0.154) (0.109) (0.069) (0.065) (0.071)
[18◦C; 21◦C[ -0.281 -0.228 -0.143 -0.135 -0.150

(0.219) (0.154) (0.102) (0.101) (0.114)
[21◦C; 24◦C[ -0.481 -0.384∗ -0.246∗ -0.236∗ -0.263

(0.340) (0.228) (0.140) (0.139) (0.163)
[24◦C; 27◦C[ -0.537 -0.449 -0.291 -0.285 -0.322

(0.413) (0.277) (0.182) (0.182) (0.210)
[27◦C; 30◦C[ -0.088 -0.133 -0.108 -0.117 -0.114

(0.493) (0.293) (0.161) (0.141) (0.145)
[30◦C; +∞[ -1.985∗∗∗ -1.560∗∗∗ -1.006∗∗∗ -0.919∗∗∗ -0.965∗∗∗

(0.679) (0.469) (0.307) (0.314) (0.369)
Precipitations X X X X X
Canton FE X X X X X
Year x Region FE X X X X X
Interaction Temp and Pcip
Lag weather
Controls
Observations 35,209 35,263 35,263 35,263 35,263
Number of cantons 3,515 3,515 3,515 3,515 3,515
R2 (within) 0.270 0.377 0.444 0.465 0.465

Table 6: Impact of weather shocks on each decile’s average income.

Notes: This table shows the impact of the number of days in each temperature bins compared
to the reference bin (11 to 14◦C). Standard errors are clustered by municipality and by region by
year.
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D6 D7 D8 D9 D10
(1) (2) (3) (4) (5)

Lag Decile Income 0.851∗∗∗ 0.871∗∗∗ 0.889∗∗∗ 0.904∗∗∗ 0.723∗∗∗

(0.035) (0.033) (0.030) (0.029) (0.059)
]−∞;−3◦C[ -0.480∗∗∗ -0.460∗∗∗ -0.408∗∗ -0.367∗∗ -0.197

(0.179) (0.171) (0.163) (0.157) (0.170)
[−3◦C; 0◦C[ -0.112 -0.125 -0.114 -0.104 -0.008

(0.112) (0.115) (0.113) (0.114) (0.125)
[0◦C; 3◦C[ 0.021 0.038 0.065 0.084 0.198

(0.120) (0.129) (0.132) (0.133) (0.164)
[3◦C; 6◦C[ -0.037 -0.024 -0.009 0.001 0.037

(0.066) (0.067) (0.067) (0.066) (0.071)
[6◦C; 9◦C[ -0.066∗ -0.052 -0.038 -0.028 0.001

(0.036) (0.037) (0.035) (0.034) (0.044)
[12◦C; 15◦C[ -0.141 -0.142 -0.137 -0.132 -0.180

(0.110) (0.118) (0.118) (0.117) (0.130)
[15◦C; 18◦C[ -0.118 -0.118 -0.111 -0.106 -0.169∗

(0.079) (0.082) (0.081) (0.079) (0.100)
[18◦C; 21◦C[ -0.173 -0.179 -0.180 -0.180 -0.181

(0.131) (0.138) (0.137) (0.135) (0.140)
[21◦C; 24◦C[ -0.299 -0.308 -0.302 -0.297 -0.313

(0.194) (0.209) (0.211) (0.211) (0.221)
[24◦C; 27◦C[ -0.376 -0.397 -0.399 -0.404 -0.496∗

(0.248) (0.266) (0.268) (0.266) (0.277)
[27◦C; 30◦C[ -0.099 -0.091 -0.082 -0.070 -0.163

(0.156) (0.154) (0.147) (0.142) (0.145)
[30◦C; +∞[ -1.042∗∗ -1.049∗∗ -1.009∗∗ -0.996∗∗ -1.169∗∗

(0.431) (0.461) (0.464) (0.462) (0.490)
Precipitations X X X X X
Canton FE X X X X X
Year x Region FE X X X X X
Interaction Temp and Pcip
Lag weather
Controls
Observations 35,263 35,263 35,263 35,263 35,263
Number of cantons 3,515 3,515 3,515 3,515 3,515
R2 (within) 0.460 0.475 0.492 0.509 0.407

Table 7: Impact of weather shocks on each decile’s income (2).

Notes: This table shows the impact of the number of days in each temperature bins compared
to the reference bin (11 to 14◦C). Standard errors are clustered by municipality and by region by
year.
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(1) (2)
Relative impact on income Relative impact on income

Average income 0.0035∗∗∗ 0.0059∗∗∗

(0.0007) (0.0009)
Unemployment rate -0.6534∗∗∗

(0.0816)
Share of farmers 0.0302

(0.0198)
Share of college graduates -0.6377∗∗∗

(0.0779)
Share without high-school degree 0.0760∗∗∗

(0.0254)
Constant -0.4121∗∗∗ -0.3581∗∗∗

(0.0157) (0.0202)
Year FE X X
Observations 894,000 878,970
R2 0.31217 0.34050

Table 8: municipality demographics and impact of historical temperature shocks.

Notes: Income in thousand euros

Coefficient Initial p-value RI Weather Region correlation RI National correlation
]−∞;−3◦C[ 0.110 0.158 0.218 0.236
[−3◦C; 0◦C[ 0.082 0.077 0.095 0.130
[0◦C; 3◦C[ 0.041 0.220 0.261 0.319
[3◦C; 6◦C[ -0.003 0.917 0.939 0.930
[6◦C; 9◦C[ -0.004 0.840 0.825 0.871
[12◦C; 15◦C[ 0.000 0.996 0.996 0.996
[15◦C; 18◦C[ -0.068 0.009 0.140 0.185
[18◦C; 21◦C[ -0.118 0.000 0.071 0.087
[21◦C; 24◦C[ -0.097 0.009 0.013 0.025
[24◦C; 27◦C[ -0.134 0.005 0.013 0.016
[27◦C; 30◦C[ -0.319 0.000 0.000 0.001
[30◦C; +∞[ -0.456 0.006 0.040 0.058

Table 9: Randomization Inference-based p-values for the impact on average munic-
ipalities’ income
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Figure 14: Separation of France in 4 Weather Regions for Randomization Inference

Coefficient Initial p-value RI Weather Region correlation RI National correlation
]−∞;−3◦C[ 0.017 0.019 0.048 0.081
[−3◦C; 0◦C[ 0.002 0.580 0.671 0.671
[0◦C; 3◦C[ 0.004 0.208 0.363 0.416
[3◦C; 6◦C[ 0.002 0.576 0.719 0.734
[6◦C; 9◦C[ 0.003 0.084 0.154 0.385
[12◦C; 15◦C[ 0.002 0.270 0.384 0.521
[15◦C; 18◦C[ 0.002 0.447 0.600 0.583
[18◦C; 21◦C[ 0.005 0.141 0.249 0.389
[21◦C; 24◦C[ 0.008 0.132 0.258 0.304
[24◦C; 27◦C[ 0.008 0.148 0.270 0.303
[27◦C; 30◦C[ 0.003 0.565 0.688 0.666
[30◦C; +∞[ 0.024 0.008 0.036 0.085

Table 10: Randomization Inference-based p-values for the impact on average can-
tons’ inter-decile ratio
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