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Market Expectations of a Warming Climate⋆

Wolfram Schlenker1,2,∗, Charles A. Taylor1

Abstract

We compare prices of financial derivatives whose payouts are based on future
weather outcomes to CMIP5 climate model predictions as well as observed
weather station data across eight cities in the US from 2001 through 2020.
Derivative prices respond both to short-term weather forecasts for the next
two weeks and longer-term warming trends. We show that the long-term
trends in derivative prices are comparable to station-level data and climate
model output. The one exception is February in the northeastern US, where
financial markets price in a polar vortex-induced cooling effect, a recent scien-
tific finding that was not present in the older CMIP5 climate output. When
looking at the spatial and temporal heterogeneity in trends, future prices
are more aligned with climate model output than observed weather station
trends, suggesting that market participants closely align their expectations
with scientific forecasts rather than recent observations.

Keywords: Market expectations, belief formation, weather markets,
climate change
JEL: Q54, Q02, D84

Scientists overwhelmingly agree that the climate is changing because of
human activity. The American Association for the Advancement of Science
(December 9, 2006) reported that “the scientific evidence is clear: global
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climate change caused by human activities is occurring now.” But public
opinion in the US remains mixed. As of 2016, less than half of Americans
believed that the Earth is getting warmer due to human activity, a number
which has not budged much since the Pew Research Center started asking
the question in 2006.3 Views on climate change vary greatly across geogra-
phy, political affiliation, educational status, and economic sector (Leiserowitz
et al., 2017). Politicians in the US have questioned the evidence on climate
change, with some famously calling it an “elaborate hoax.”

Given the divergent beliefs about climate change, debate persists about
the accuracy of global climate models and the extent to which agents incorpo-
rate these forecasts into their actions. We address these issues by examining
how market participants update their expectations about weather over time.
The Chicago Mercantile Exchange (CME) offers futures contracts for eight
cities on two main weather products: cooling degree days, which measure how
much cooling is necessary during hot temperatures in summer, and heating
degree days, which measure how much heating is required during cold tem-
peratures in winter. The payoffs from these contracts depend on observed
temperatures over the course of a month. The contracts are traded before the
month in which the weather is realized, and thus provide a direct measure of
the market’s view on the expected climate.

First, we show that the futures market capitalizes weather shocks, i.e.,
deviations from climate averages, in the two weeks before an unexpected
weather deviation occurs. This is consistent with Dorfleitner and Wimmer
(2010) and the more general finding that for horizons beyond 8-10 days,
“the nature of temperature dynamics simply makes any point forecast of
temperature unlikely to beat the climatological forecast at long horizons,
because all point forecasts revert fairly quickly to the climatological forecast”
(Campbell and Diebold, 2005). Futures prices several weeks before the start
of a month should reflect expectations about a month’s weather before the
outcomes can be known.

Second, we find that market expectations, as measured by futures prices
when weather outcomes are unknown, have been changing at the same an-
nual rate as temperature forecasts in the CMIP5 archive, the latest repos-
itory in which various climate modeling groups made predictions for 2006

3https://www.pewresearch.org/science/2016/10/04/public-views-on-climate-change-
and-climate-scientists/.
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onward. The time trend also aligns with the observed annual change from
weather station data. All find significant warming, i.e., an increase in cooling
degree days in summer and a decrease in heating degree days in winter. Cli-
mate models’ predictions have materialized, especially on average, validating
model forecasts.

Third, the futures market closely follows advances in the climate liter-
ature. When we regress the trend in futures prices for each airport and
contract-month observed over our sample period on the observed trend at
the weather station as well as climate forecasts, the latter has the most
explanatory power. Further, the futures market seems to price in recent cli-
matological advances that were not available in the CMIP5 archive and that
have not been detectable in weather station observations. Recent research
predicts that a shift in the jet stream will reduce late winter temperatures
in the northeastern US via an increase in cold air from the Arctic (i.e., a
polar vortex). Likewise, the futures market has shown a significant increase
in heating degree days in February. Together this suggests that market par-
ticipants are taking into account both global climate model output and the
latest research rather than simply projecting forward past time trends.

Finally, we present evidence in the Appendix how oceanic oscillations like
El Niño - Southern Oscillation (ENSO) affect temperatures over the medium
term across the eight cities in our sample. Employing LASSO regressions to
select relevant oceanic oscillation indices, we find that removing these large-
scale effects reduces the year-to-year variability in observed weather, but does
not change the time trend. The observed warming trend is hence not driven
by oceanic drivers of natural variability in temperatures, but rather increased
greenhouse gas emissions.

In addition to contributing to the literature on the impact of climate
change on firms and financial markets, our findings have relevance to cli-
mate adaptation. Economists have estimated the benefits and costs from a
changing climate (Auffhammer, 2018). Many of the recent micro-level esti-
mates relate outcomes of interest to random exogenous year-to-year weather
fluctuations to obtain unbiased damage estimates (Dell et al., 2014). While
random and exogenous year-to-year variation is preferable from a statistical
perspective, adaptation to a permanent change in climate might mitigate
some of the weather sensitivity that is observed in response to unknown
random weather shocks. Agents should undertake adaptation investments
in response to anticipated permanent shifts in the climate that are either
unprofitable or infeasible for a one-time unknown weather shock. However,
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before agents can adapt, they first must form a belief about whether the
climate is changing and the extent to which it is. This paper suggests that
agents, at least those participating in weather markets, have been actively
updating their beliefs about the extent and geography of warming.

Our paper adds to several strands of literature. The first examines the im-
pact of weather fluctuations and climate change on the corporate sector and
financial markets. Corporate earnings of several economic sectors are sensi-
tive to temperature fluctuations (Addoum et al., 2020), and understanding
the extent to which financial markets are pricing in climate change risks has
implications for financial stability (Carney, 2015). Some papers find that
the stock market underreacts to the impact of predictable climatic trends on
firms’ profitability and valuation (Hong et al., 2019), while others show that
real estate market and municipal bonds do price in sea level rise (Bernstein
et al., 2019) and that agricultural land markets capitalize climate change
expectations (Severen et al., 2018). Weather derivates can provide a useful
hedge against such fluctuations as well as a direct measure of the market’s
expectation of future climate.

Second, studies have emphasized how climate change policies designed
to limit emissions can affect firm profitability using financial data. Anttila-
Hughes (2016) finds that energy company valuations respond to extreme
events that may be evidence of climate change. Meng (2017) shows how the
stock market incorporates changes in the likelihood of US carbon regulation
as measured by betting markets. Limiting emissions may render a company’s
marginal reserves, i.e., the most costly ones, worthless if they can no longer
be extracted (McGlade and Ekins, 2015). Thus, future climate expectations
are key to the energy sector’s profitability and will be reflected in financial
markets.

Third, another strand of the literature focuses on how agents adjust their
behavior in response to environmental forecasts (Rosenzweig and Udry, 2014;
Neidell, 2009). Shrader (2020) finds that fishermen update their beliefs us-
ing El Niño medium-range weather forecasts in order to make optimal fishing
decisions. Before El Niño forecasts were available, the cost of weather shocks
was much higher because fisheries could not adapt. On the other hand, Burke
and Emerick (2016) find that changes in agricultural yields in response to
observable long-term temperature trends are not significantly different from
yield changes in response to random weather shocks. Some authors have
modeled how market participants learn about and adapt to changing weather
conditions. For example, Kala (2019) examines how Indian farmers depen-
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dent on monsoon precipitation update their beliefs. Twitter reactions show
that people become habituated to extreme weather events as they become
more frequent over time (Moore et al., 2019). Similarly, public opinion sur-
veys ask respondents to self-report their beliefs. Public opinion also seems
driven by recent weather events, especially extremes. Many studies have
shown that people’s beliefs about climate change are strongly influenced by
recent local weather conditions (Myers et al., 2013; Deryugina, 2013; Akerlof
et al., 2013; Li et al., 2011; Zaval et al., 2014). Observed periods of cool-
ing can translate into climate skepticism (Kaufmann et al., 2017). It is also
possible that agents hold differing private and public beliefs about climate
change, especially if certain views on climate change are perceived as more
expedient. Significant variation in public opinion about climate change exists
across the US, varying by location and demographic characteristics (Howe
et al., 2015).

What is common across most of the existing studies about climate change
expectations is that researchers infer climate beliefs indirectly, i.e., by backing
them out from observed indirect actions or by relying on stated responses.
We add to this literature by using a different revealed preference approach
to measure beliefs about climate change by analyzing financial derivatives
whose value directly depends on expected weather. This allows us to observe
the evolution of market expectations on warming by looking at the price of
futures contracts that are linked to future weather outcomes.

1. Data

1.1. Financial Data

Weather futures contracts are traded on the Chicago Mercantile Exchange
(CME). The products were first launched in the fall of 2001 and became fully
operational for the first full year in 2002. Contracts are available for eight
geographically-distributed cities across the US over our sample period 2001-
2020. Each city is linked to a specific weather station in the city at one of
the airports. These are: Atlanta (ATL), Chicago O’Hare (ORD), Cincinnati
- Northern Kentucky (CVG), Dallas-Fort Worth (DFW), Las Vegas (LAS),
Minneapolis - Saint Paul (MSP), New York LaGuardia (LGA), and Sacra-
mento (SAC). The location across the US is displayed in Appendix Figure A1.
In the past more cities had weather markets, but trading in several cities was
halted due to a lack of liquidity, while at the same time new cities like Port-
land and Tokyo were launched as recently as 2019. Therefore, we focus on
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the eight US cities for which contracts were consistently available through
spring 2020.

The main participants in the weather market are insurance companies
and firms seeking to offset weather risk. For example, an energy company
may sell an HDD contract to mitigate the risk of lower demand for heating
oil due to a mild winter. Likewise, a citrus company may purchase an HDD
contract to mitigate the risk of a winter freeze. The other market participants
are speculators who take contract positions based on their expectations of
future weather. More generally, volumes in this market decreased in recent
years due to the entry of reinsurance firms offering bespoke weather-based
hedging services to market participants.

The final settlement price of the futures contract is based on the respective
weather station HDD or CDD index for the month as reported by MDA
Federal Information Systems, Inc. Each degree day in a contract has a payout
multiplier of $20. For example, if a customer buys one July CDD contract for
300 cooling degree days, the cost would be $6,000. If the realized cumulative
cooling degree days for the month of July settled at 330 degree days, the
clearance value would be $6,600, and the trader would reap a profit of $600
($20 times the increase of 30 degree days). Trading volume generally increases
in the two weeks prior to the start of a contract month, with lower trade
volume more than two weeks before the start of the contract month.

The weather contracts are based on cumulative heating and cooling degree
days in a given month. These are indexed to 65◦F (18◦C), the temperature
considered the most comfortable for humans on average, and a common stan-
dard for utility companies because cooling and heating systems tend to be
turned on above and below that level, respectively. For example, a mean
daily temperature of 85◦F would count as 20 cooling degree days. These
daily degree days are then summed over the course of the contract month.

Cooling degree days (CDD) measure by how much daily average temper-
atures Tad at airport a on day d exceed 65◦F and thus require cooling, hence
the name cooling degree days. The exact formula to derive CDDam for month
m is obtained by summing over all days d(m) of the month

CDDam =
∑

d(m)

max{Tad − 65, 0} (1)

Likewise, heating degree days (HDD) measure by how much and for how long
temperature fall below 65◦F and thus require heating. The exact formula to
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derive HDDam is
HDDam =

∑

d(m)

max{65− Tad, 0} (2)

For our baseline analyses, we use end-of-day daily futures prices obtained
from Bloomberg terminals. Prices are carried forward in the absence of
market activity. For example, if there is a recorded trade on June 17 at a price
of 300 cooling degree days for the July contract, followed by no trade on June
18, the Bloomberg data will show a price of 300 again. Unfortunately, the
volume data only includes contracts traded via the exchange and not private
over-the-counter block trades (Dorfleitner and Wimmer, 2010)4, and it is
missing for most days. Some data cleaning was necessary because of “sticky
fingers,” e.g., sudden price jumps by a factor of 10. The exact adjustments
are listed in Appendix Section A1.

The raw daily data we downloaded from the Bloomberg terminals is dis-
played in Figure 1 for the two airports with the highest volume in cooling
degree days: LGA and DFW. We pick two representative months: The left
column shows cooling degree days contracts in July, while the right column
shows heating degree day contracts for December. Contracts for the remain-
ing airports and months are shown in Appendix Figure A2. Each graph
displays the annual prices series for roughly two and a half months. Day 0
is the last day of the month on which the contract is based. Both the end of
the month and the beginning of the month are indicated by vertical dashed
black lines. The temporal extent ranges from 70 days prior to the end of
the contract month (roughly 40 days prior to start of the contract month)
to 10 days past the end of the contract month. Years are color-coded from
blue (2001) to red (2020). Prices generally do not move past the end of the
contract month (day 0) as all information has been revealed. Most price
volatility occurs one to two weeks prior to the start of the contract month
and within the contract month. There are limited price changes more than
two weeks before the start of the contract month, as limited information on
weather shocks is revealed that the market could incorporate that far out.
These flat prices depict market expectations of the climate before annual

4Due to the illiquidity of the weather market, we cannot guarantee that contracts were
actually traded on days where the settlement price provided by CME does not change.
In order to ensure that only traded prices were considered, we sometimes exclude time
periods where the settlement price never changes, but the results are robust to the inclu-
sion/exclusion of these days.
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weather shocks are realized.
The main finding of our paper is clearly visible in the raw data: looking

at futures prices a month before the start of the contract month (i.e., the left
side of each graph), we see how prices for cooling degree day contracts in the
left column are generally drifting upward over the years (color coded from
blue to red), indicating an upward shift in the required amount of cooling
as it gets hotter. By the same token, the right column shows prices for
heating degree day contracts drifting downward over the years, indicating a
downward shift in the expected amount of heating required.

While we do not have reliable volume data for the Bloomberg terminal
time series, Appendix Figure A3 displays the fraction of days there has been
a price change for the two-months period ranging from one month prior to
the contract month to the contract month itself. It shows how the number of
day-to-day price changes increase from 2001 to 2010, a likely indication that
trading volume is picking up, before declining again until 2020. The decrease
in volume is the reason that some of the original contract cities are no longer
offered.

We contacted the Chicago Mercantile Exchange and obtained volume
data for the subset of the contracts shown in Appendix Figure A4. Note the
reduction in the number of lines representing contracts relative to Figure 1,
our baseline dataset from Bloomberg. We display volume data for this subset
in Appendix Table A1. Panel A shows volume by year. It is increasing from
the start of weather derivatives in 2002 to 2008, when sales for winter and
summer contracts combined topped US$ 2 billion per year. Volume declines
between 2008 and 2016, before another uptick in activity since 2017. Panel
B aggregates the volume data by airport. Volume is highest in both cooling
and heating degree days for New York (LGA) with a combined trading value
of US$3.9 billion. The second largest value for cooling degree days is for
Dallas-Fort Worth (DFW), and for heating degree days at Chicago (ORD).
The smallest value is for Sacramento at US$ 0.2 billion. The combined traded
value over all airports and years for this subset of the data (and hence a
lower bound) exceeds US$10 billion, a large enough amount to ensure that
the market should efficiently incorporate weather information.

1.2. Weather Data

We pair the futures data with weather data: both weather station ob-
servations at the location associated with each contract as well as gridded
climate model forecasts.
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For station data, we obtained the ID of the airport weather station under-
lying each contract and downloaded daily minimum and maximum temper-
atures from the National Oceanic and Atmospheric Administration’s FTP
server. We then computed the daily mean by averaging the minimum and
maximum temperature before calculating the degree days for the 65◦F bound
as given in equations (1) and (2) above.

Climate projections were taken from the Coupled Model Comparison
Project (CMIP) repository, which asks various modeling groups to simu-
late changing temperatures under comparable assumptions. We rely on the
5th round, i.e., the CMIP5 archive where these groups predicted climate
trends from 2006 onwards. We obtain daily values from NASA NEX-GDDP,
a dataset of 21 models that were spatially downscaled to a common 0.5◦ grid
and select the grid cell in which the weather station is located. NASA NEX-
GDDP has data for two scenarios. Representative Concentration Pathway
(RCP) 4.5 assumes an additional energy flux of 4.5 Watts per meter square.
This is a moderate warming scenario in which greenhouse gas emissions are
reduced and radiative forcing stabilizes such that the global mean temper-
ature increases by 1.8◦C (3.2◦F) by 2100. Note there is large spatial het-
erogeneity, and warming in the US is usually projected to be higher than
the global average by a factor of roughly two. RCP 8.5, on the other hand,
simulates major warming where emissions continue to rise such that there
will be additional radiative forcing of 8.5 Watts per square meter resulting
in a global mean temperature increase of 3.7◦C by 2100. In the short term of
our study period (2001-2020), however, both models give similar projections.
The models are predicted to diverge further towards the end of the century
as carbon emissions accumulate over time.

Appendix Figure A5 shows box plots for the number of cooling and heat-
ing degree days by month for the eight cities with weather futures contracts.
The red line displays the weather station data and the blue line shows the
climate model data. Both use data from 1950-2005, which was the historical
baseline period in the CMIP5 archive. There is close alignment in the mean
values as well variance around the means in both datasets. Recall that the
climate models predict average temperature over the entire grid, and hence
might differ from the observed temperature at any given point (i.e., weather
station) if there is spatial heterogeneity. For example, a city’s airport lo-
cated close to a mountain might have a different temperature than that of
the surrounding area when averaged over the entire grid.

We observe strong seasonality: more cooling degree days in the summer,
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and more heating degree days in the winter. As expected, northerly cities
(Chicago, Minneapolis, New York) have relatively more HDD and less CDD,
while southerly cities (Atlanta, Dallas, Las Vegas) have less HDD and more
CDD. Across the eight cities, there are very few occurrences of HDD in the
summer months and CDD in winter months, which is why HDD futures
contracts are not traded in summer and CDD contracts are not traded in
winter.

Appendix Figure A6 plots the price of each weather derivative at the end
of the contract month against the realized weather at the underlying weather
station. The output closely follows the 45-degree line, demonstrating that
the market is active enough to ensure that weather outcomes are fully priced
in by contract close and that there are no arbitrage opportunities.

2. Empirical Analysis

We start by analyzing the timing of when futures prices capitalize weather
shocks in Section 2.1. Forecasting and prediction skill of weather (short-
term) and climate (medium to long-term) are closely connected (Auffhammer
et al., 2013). Climate models build on a foundation of short-term weather
dynamics and the same underlying physical laws apply to the predictions
of both weather and climate models. If market participants are accurately
updating their longer-term beliefs based on climate warming trends, it would
be expected that they also accurately update their short-term beliefs based
on weather forecasts. The long-term trends are examined in Section 2.2.

2.1. Capitalization of Short-term Weather Shocks

Weather forecasts are widespread and freely available. There has been
a sustained improvement in weather forecasting across all prediction ranges
over recent decades. Bauer et al. (2015) present forecasting skill over time
for weather anomalies, defined as deviations from the average climate, e.g., it
is 10◦F hotter today than what it is normally this time of the year. A score
of 1 indicates that the forecasting model explains 100% of the year-to-year
anomaly, while a score of 0 implies it cannot explain anything more than what
is expected from the average conditions for the season.5 A 3-day forecasts

5The score is defined as 1 minus the ratio of the root mean squared error in the full
weather forecast model relative to the root mean squared error of a baseline model that
just predicts the average climatology. The authors state that “Values greater than 60%
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has improved from a skill of 80% in 1981 to 98% in 2014. On the other hand,
a 10-day forecasts (not offered in 1981), increased from 30% in 1995 to 45%
in 2014. Thus we would expect an inverted U-shape in terms of the impact
of weather shocks on futures prices since long-term forecasts beyond 10 days
have quickly diminishing value and since very short-term forecasts should
have already been incorporated into prices given their certainty, aligning
with Dorfleitner and Wimmer (2010) who find that weather forecasts only
influence futures prices up to 11 days into the future. After this point, using
the average outcome as prediction is just as good. As such, anticipated
changes in weather around one week out should have the largest impact on
current prices in an efficient market.

To test this, we estimate when weather shocks capitalize into futures
prices for the eight airports in our sample. In a first step, we remove the
seasonality to obtain weather shocks (anomalies), i.e., deviations from the
average value that a rational market participant should expect. Specifically,
we regress daily average temperature Tad at airport a on day d on a constant
αa as well as flexible spline that is a function f of the day of the year.6 We
also include a linear time trend γa in the year y(d) as the weather might be
warming over time. The regression equation is

Tad = αa + βaf(d) + γay(d) + ǫad (3)

The estimated seasonality for each airport β̂af(d) is shown in Appendix Fig-
ure A7. Years are color-coded to show the linear trend over time. The
annual increase has not been uniform, e.g., Las Vegas warmed faster than
Sacramento as there is a large distance between the red line (2020) and the
blue line (2001). The weather shock on day d is simply the observed number
of degree days D(Tad) minus the degree days that would be expected at the

predicted average climate according to the seasonality regression D
(
T̂ad

)
.7

In a second step, we then regress the change in future prices ∆pcd for

indicate useful forecasts, while those greater than 80% represent a high degree of accuracy.”
6To address leap years, we normalize the start of the year on January 1st to equal 0

and the end of the year on December 31st to equal 1. The five knots of the restricted cubic
spline are at 0.05, 0.27, 0.50, 0.72, 0.95. This will give us four variables for the phase of the
year f(d). We force the seasonality on December 31st to equal January 1st to guarantee
continuity by running a constraint regression.

7While degree days are a nonlinear transformation when temperatures cross the trun-
cation point at 65◦F, the truncation is rarely observed, i.e., average daily temperatures
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contract c on day d, i.e., the difference between the closing price to that of

the previous close, on lags and leads of daily degree day shocks ∆̂Dc[d+τ ] =[
D(Tc[d+τ ])−D(T̂c[d+τ ])

]
for days that fall within the contract month.8

∆pcd = αc +

21∑

τ=−7

βτ

[
D(Tc[d+τ ])−D(T̂c[d+τ ])

]
+ ǫcd (4)

One particularity about this regression is that while temperature data is
available every day, prices are only available on trading days. As a result,
the coefficient β1 is for the sum of all weather shocks after the previous close
and today’s weather. All other βτ use the weather on a single day, which
is τ − 1 days past the current close for leads (τ > 0) and τ days before the
previous close for lags (τ < 0).9 The coefficient β0 is normalized to be zero.

In line with the discussion on forecasting skill, future weather shocks
should be capitalized into prices when weather forecasts can predict them,
so we expect β̂τ > 0 for the next two weeks τ ∈ [1, 14]. After that point,
weather forecasts become unreliable and not better than the average climate
(Campbell and Diebold, 2005). Past weather is already known to market

participants and hence the β̂τ should be zero for τ < 0.
The left panel of Figure 2 shows individual coefficient estimates β̂τ with

the expected hump-shaped pattern. The black line shows the point estimates
with the 95% confidence band added in grey. As expected, past weather
shocks have no effect on futures prices, while coefficients for the next two

are generally above 65◦F in the summer and below 65◦F in the winter. See Appendix
Figure A5 that shows that there are very few heating degree days in the summer and
cooling degree days in the winter. Expected degree days are close to degree days at the
expected temperature. We obtain similar results whether we fit the seasonality separately
for heating and cooling degree days or jointly for average temperature. We focus on the
latter to estimate one unique seasonality rather than two separate regressions for summer
and winter.

8A contract c specifies how many degree days will be observed at airport a in month
m of year y, e.g., cooling degree days in June 2015 at LaGuardia airport. For a June
contract, the weather shocks for days d+ τ that are outside the month of June are set to
zero as the price of a June contract is solely based on weather in June.

9For example, if day d is a Monday, β1 includes the sum of the degree day shocks for
Saturday, Sunday, and Monday, β2 is the degree days shock on Tuesday, β3 is the degree
day shock on Wednesday, etc. On the other hand, β−1 is the degree day shock on the
previous Friday.
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weeks are generally positive as weather shocks get anticipated by the market
and priced in prior to realization. Beyond day τ = 14, the coefficients become
insignificant again as weather forecasts beyond this time period are generally
not better than the average climatology for the location. The right panel
of Figure 2 makes this point more visible by plotting the cumulative sum of
coefficients relative to τ = 0, i.e.,

∑τ

k=1 β̂k for τ > 0 and
∑

−1
k=τ β̂k for τ < 0.

on the negative values of days τ < 0 show no trend and the 95% confidence
band includes zero. On the contrary, the line increases from 0 to 1 over the
next two weeks as 100% of weather shocks get capitalized into the futures
price. The curve flattens around 14 days into the future as weather forecasts
become unreliable.

Appendix Figure A8 splits the regression into heating and cooling degree
days and finds very similar relationships. The one exception is that the coeffi-
cient estimate β̂−1 is positive for cooling degree days, which measure required
cooling on the given day. This is not surprising as the daily maximum, which
is crucial for the amount of required cooling, is generally observed in the late
afternoon after the market closes, and hence would not get priced in until
the next day.

One can invert the estimated relationship to obtain how future prices
predict future weather. We can also run the opposite regression for illustra-
tive purposes: do price changes in the futures market predict future weather
shocks. In other words, are price changes a reliable weather forecast? We
run the following inverse regression problem

τ1∑

τ=τ0

[
D(Tc[d+τ ])−D(T̂c[d+τ ])

]
= αc + β∆pcd + ǫcd (5)

The regression results are shown in Appendix Table A2. Each entry is from
a single regression of the sum of future weather shocks τ0 − τ1 days into the
future on today’s price change in the weather derivative. Different rows vary
the time period τ0 − τ1. The first column pools all airports, the remaining
eight columns run the regression by airport. We find that price changes
predict weather shocks over the next two weeks, especially days 4-11, the
sweet spot of weather forecasts, but cannot predict weather shocks more
than two weeks in advance.10 The coefficient on weather shocks three weeks
into the future (15-21 days) is not significant.

10The regression should be considered with caution as the reverse regression problem
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2.2. Capitalization of Long-term Weather Trends

2.2.1. Linear Time Trends

We now turn to our main analysis of market expectations of climate
change. With weather futures, we must be careful to separate price changes
driven by short-term weather forecasts and those reflecting longer-term mar-
ket beliefs on warming. Some shocks are partially forecastable over the course
of months based on oceanic-atmospheric phenomena like El Niño - South-
ern Oscillation (ENSO) or the North Atlantic Oscillation (NAO). Ideally we
would use futures prices quoted well before the contract’s delivery month.
However, for the same reason that weather is challenging to forecast far in
advance, trading does not pick up until close to the contract delivery month,
and early-dated prices may not be representative of the market’s true expec-
tation given the illiquidity.

Balancing these two tradeoffs, our baseline model uses average futures
prices pamy of contract c for airport a in month m of year y. The average
price is taken the fourth week (28-22 days) prior to the start of a contract
month, e.g., the average price between June 3 and June 9, 2015 for a July 2015
CDD contract in Atlanta. This ensures that prices reflect future expectations
and not contemporaneous weather as confirmed in the previous section. In
the baseline we pool four summer months (June – September) in the cooling
degree days regression, and five winter months (November - March) in the
heating degree days regression. We fit a simple linear trend in the year
y after including airport-by-month fixed effects αam, e.g., a fixed effect for
June contracts in Atlanta. We cluster the error terms for a particular month
m as they might be subject to the same common weather shock.

pamy = αam + βy + ǫamy (6)

Table 1 shows the predicted annual change β̂ in column (1a). Panel A shows
that on average prices increased by $2.4 per year for each of the four summer
months, June to September, or $10 per year for the combined four-month
period. This annual increase is statistically significant at the 1% level. Since

can lead to biased coefficients. In the climate literature, the width of tree rings is often
taken as a temperature proxy for past temperatures before weather stations were available.
As Auffhammer et al. (2015) point out, weather influences tree rings. Running the inverse
regression where temperature is regressed on tree rings will lead to biased coefficients and
predictions with artificially low variance.
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our dataset spans 20 years, the price for a cooling degree day contract in-
creased by roughly $50 since 2001 for each of the monthly summer contracts.
Recall that the payout of the weather derivatives has a multiple of 20, so a
price increase of $50 implies a change in payout by $1000 over our sample
period. Panel B shows that the price for heating degree day contract declined
on average by $1 per year, or $5 for the five-month span November to March.
It is significant at the 5% level.

Columns (b)-(d) replicate an equivalent analysis using the weather sta-
tion and climate model data. The dependent variable is no longer the futures
price pamy but the number of degree days at the weather station or climate
grid. Columns (1b)-(1d) hold the set of observations constant, i.e., only in-
clude the months where we have futures price data. Column (1b) uses the
observed degree days for the contract month from the underlying station data
as the dependent variable. The observed trends (annual changes) are larger
in magnitude with an increase of 3 cooling degree days per year during the
summer and a decrease of 2 heating degree days during the winter. The stan-
dard errors are much larger given the greater year-to-year swings stemming
from random weather fluctuations. As a result, trends in observed weather
are not significantly different from those anticipated by the futures market as
shown in column (1a). The smaller standard errors for futures prices relative
to the station-level data also suggest that we are correctly measuring longer-
term market expectations and not just annual weather realizations, which
are much noisier. Columns (1c) and (1d) show trends in the NASA-NEX
dataset averaged across the 21 climate models for the RCP4.5 and RCP8.5
scenarios, respectively, as dependent variable for each month.

While columns (1a)-(1d) intentionally keep the set of city-year observa-
tions constant, columns (2a)-(2d) replicate the analysis with different subsets
of the data. First, to address concerns about market illiquidity, Column (2a)
excludes observations where there was no price change in the week over which
prices are averaged, i.e., the fourth week prior to the start of the contract
month in our baseline specification. This exclusion reduces the sample size
by roughly half but results in point estimates of similar magnitude to those
in column (1a). The time trends are statistically different from zero, and not
statistically different than the estimates in column (1a). The reduction in
observations in column (2a) can be explained by the fact that we are taking
average prices over the fourth week prior to the start of the contract month,
a period when limited information about the eventual weather outcome is
available beyond the climate normals. We hence do not expect many price
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changes, which happen when new information gets incorporated. Neverthe-
less, it is reassuring that the time trends are similar whether there is a price
change (and hence update) or not. Second, to address concerns about the
endogeneity of this market, e.g., if contracts are traded more in particularly
cold or hot years as firms realize they need a hedge, columns (2b)-(2d) use
all available months with weather station and climate model data (even if
no future price data existed) and again find very similar annual changes to
those in columns (1b)-(1d).

So far we have pooled all months of a season as well as each airport into
a single regression. Appendix Tables A3 and Table A4 relax this assumption
to examine heterogeneity by geography and month. Each table presents
the pooled results from Panels A and B of Table 1 in the top row of the
corresponding panel for reference. Appendix Table A3 allows time trends
to differ by airport while still pooling all summer or winter months, and
Appendix Table A4 allows time trends to differ by month while still pooling
all airports. We observe some differences by airport, e.g., in column (1a) the
futures market predicts warming in Las Vegas above the national average
in both winter and summer, and below average warming in Chicago and
Sacramento in the summer, all at the 1% significance level. All significant
time trends have the same sign as the national analysis, i.e., more cooling
degree days in the summer and fewer heating degree days in the winter,
although the winter time trends sometimes become insignificant, especially
in the northeastern subset of airports (CVG, LGA, MSP, ORD).11 In column
(1b), none of the time trends in weather station data differ significantly by
airport, although they are estimated with more noise due to the large year-to-
year variability. In columns (1c)-(1d), the climate models show below-average
warming in Sacramento in the RCP4.5 data. In summary, while there are
small differences, there does not seem to be a systematic significant difference
by airport.

The story is different when examining heterogeneity by month in Ap-
pendix Table A4. Futures prices show a significant positive annual increase
for February heating degree days, suggesting an expectation of colder tem-
peratures. It is highly significant at the 1% level. This finding is primarily
driven by regional heterogeneity. Appendix Figure A10 shows time trends

11The winter time trend for Sacramento is also insignificant, although it is less traded
than other contracts and the summer time trend was also closer to zero.
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per month after separating the eight airports into a northeastern quadrant
(CVG, LGA, MSP, ORD) and the rest, mostly in the south and southwest
(ATL, DFW, LAS, SAC). The February cooling trend (positive increase in
heating degree days) is only observed for the northeastern quadrant in the
futures data. Since we are splitting the sample further, the estimated time
trends become less precisely estimated, but February cooling is neither sup-
ported by recent weather observations nor climate runs in the CMIP5 archive.
All other winter months either show a significant negative time trend or an
insignificant time trend in heating degree days.

The futures market may be incorporating recent information about a shift
of the polar vortex that was not available at the time of CMIP5. Recent stud-
ies suggest that melting ice sheets destabilize the jet stream, leading to an
increased frequency of stable weather patterns bringing cold arctic air to Eu-
rope and North America (Francis and Vavrus, 2015). Zhang et al. (2016) con-
clude that the “Arctic polar vortex shifted persistently towards the Eurasian
continent and away from North America in February over the past three
decades. [...] Our analysis reveals that the vortex shift induces cooling over
some parts of the Eurasian continent and North America which partly off-
sets the tropospheric climate warming there in the past three decades.” Kim
et al. (2014) note that “the mechanism that links sea-ice loss to cold winters
remains a subject of debate,” so it remains an active topic of research. One
crucial paper for our analysis is Charlton and Polvani (2007), who more gen-
erally examine a phenomenon called stratospheric sudden warming (SSW)
and its relationship to the troposphere, specifically the polar vortex. The
authors note that “given the prominent role of SSW events, it is somewhat
surprising that relatively few attempts have been made to establish a com-

prehensive climatology of SSWs.” The authors proceed to do so in two
accompanying articles in the Journal of Climate in 2007 and operationalize
how SSW events in January and February in the stratosphere can influence
weather in the troposphere.12 A fully rational market would incorporate this

12The authors write: “A useful analogy might be drawn at this point with the at-
mosphere–ocean system: in the same way as understanding and successfully model-
ing the El Niño–Southern Oscillation phenomenon is of primary importance for the at-
mosphere–ocean system, understanding and successfully modeling stratospheric sudden
warming events is of primary importance for the stratosphere–troposphere system.” El
Niño–Southern Oscillation similarly allows a weather forecast with a lead time of more
than four weeks, i.e., the futures data might be picking up relevant information of how a
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new finding, an issue we return to in the next subsection where we present
nonlinear trends and find an uptick in the 2007-2008 winter, i.e., right after
publication.

Before we do so, Panel C row of Table 1 replicates the analysis for heating
degree days from Panel B after excluding February contracts for the four
northeastern airports. While the exclusion has very limited effect on the
estimated annual decrease in monthly heating degree days for the regression
using weather station data or climate model outputs in columns (b)-(d),
it changes the coefficient on the annual decrease in futures prices in column
(a), making it much more closely aligned with the annual changes in observed
weather and climate model output.

We present a final sensitivity check of the observed futures price trends
to the window over which the prices are averaged in Table 2. Our baseline
uses prices that are averaged over the fourth week prior to the start of the
contract month. Prices at this point are mostly stable as shown in Figure 1
because new information on the annual shocks are not yet available. The six
columns in Table 2 replicates the analysis by averaging anywhere between one
to six weeks prior to the start date of the contract month. The time trend on
cooling degree days in Panel A is completely insensitive to the chosen time
window and very stable around an additional 2.4 cooling degree days per
year for each of the summer months. The time trend on heating degree days
in Panel B and Panel C are very similar whether we average prices six, five,
or four weeks in advance of the start of the contract month. There is a slight
uptick as we get closer to the start date of the contract month suggesting an
even larger annual decline, although the difference is not significant given the
larger standard errors. The overall robustness of the relationship across the
time periods supports the idea that markets expected a consistent increase
in the need for cooling in the summer and decrease in the need for heating
in the winter.

2.2.2. Nonlinear Trends

Figure 3 relaxes the linearity assumption of the time trend and instead
plots a semi-parametric regression of the residuals after removing airport-
by-month fixed effects αam in equation (6) to account for different average

year’s weather is shifting. Appendix Section A2 finds that oceanic indices like El Niño are
not a major factor of the observed warming trend.
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monthly climates (i.e., June in Atlanta is hotter than June in Minneapolis).
We use restricted cubic splines to allow for more flexible trends.13 The lines in
green, red, blue and cyan correspond to the variables listed in columns (1a)-
(1d) of Table 1 (Panel A for cooling degree days and Panel C for heating
degree days), respectively, i.e., residuals from the weather futures prices,
weather station outcomes, and climate forecasts under RCP4.5 and RCP8.5.

The futures prices and climate model output show a steady upward trend
in cooling degree days and a downward trend in heating degree days. The
trends on the weather station data (red lines) are less smooth for both cooling
and heating, partly because of the noisiness inherent in year-to-year swings
in weather realizations that are larger than predicted average outcomes in
the other datasets. For example, the winter 2017/2018 was especially warm,
leading to a sharp drop in heating degree days for that year. There also
seems to be a short-term plateau in the observed cooling trend around 2010,
but the long-term effects over the 20-year period are similar across datasets.
For both cooling and heating, the green lines showing futures price trends
closely follow the cyan and blue lines of the climate model projections, and
not the red lines. This suggests that beliefs are not myopically updated based
on recently observed weather but rather tied to the smooth warming trend
projected by climate models and observed in longer-term station data.

In the previous section we found a statistically significant cooling trend
in February futures prices for the four northeastern airports. To show this,
we again relax the linearity assumption in Figure 4 and plot the residuals
of February prices four weeks before the start of the contract month after
removing airport fixed effects. We then add a trend line using the same
restricted cubic splines in time as well as the 95% confidence band. We
observe an almost linear uptick in residuals between 2007 and 2012, which is
consistent with the publication of Charlton and Polvani (2007) a study in the
premier climatology journal that presents a novel comprehensive climatology
to predict the “Polar Vortex.” While we cannot be sure of when the market

13The spline knots are at 2003, 2008, 2013 and 2018. Appendix Figure A11 presents
locally-weighted lowess regression of the same residuals. Specifically, we apply STATA’s
lowess command to the annual average of the residuals. We first average the monthly
residuals per year as a locally weighted regression with several observation in the same
year would need to arbitrarily pick which of the month to include in the local average.
The point estimates are similar to the spline regression, which we utilize going forward
because they allow for the construction of confidence bands.
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became aware of various findings in the scientific literature, it is striking that
starting around 2007 February becomes the only month where the futures
markets predicts a cooling in the short-term that eventually diminishes as
anthropogenic warming becomes dominant.

2.2.3. Comparing Spatial and Temporal Heterogeneity

The previous section has shown that the market incorporated a unique
sub-seasonal cooling dynamic for part of the US. We extend this type of
analysis further by examining whether the observed heterogeneity in the
time trend mostly aligns with climate model output or observed station-level
trends. This allows us to contrast whether futures markets reflect knowledge
about climate model forecasts or simply assume the continuation of observed
time trends. While all datasets show similar average time trends, the spatial
and temporal heterogeneity varies.

Intuitively, if traders rely mostly on recent observed trends, we would
expect that airports and/or contract months that show larger than average
warming in the station-level data between November 2001 and March 2020
would also have larger than average annual changes in futures prices as well.
On the other hand, if market participants mostly respond to climate model
forecasts, we would observe the distribution of time trends to more closely
align with what is observed in the climate model output.

To test this we estimate time trends βam that are airport and month
specific instead of the common trend β used in equation (6):

pamy = αam + βamy + ǫamy (7)

We run this model with futures price data to obtain β̂
f
am, observed weather

station data to obtain β̂s
am, and the climate model output under RCP4.5 to

obtain β̂4.5
am and RCP8.5 to obtain β̂8.5

am).
14 In a second step we then regress

the estimated time trend in the futures data on the other trends

β̂
f
am = α0 + αsβ̂s

am + α4.5β̂4.5
am + α8.5β̂8.5

am + ǫam (8)

14We use all monthly observations from November 2001-March 2020 in the station and
climate model data, even if the futures data is not available. Since the weather station data
is more variable (it measures actual outcomes versus averages among climate models), we
include as many observations as possible in order not to unfairly penalize the station-level
data by making the time trend more variable.
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If market participants are just incorporating the average for each airport-by-
month, we would only expect the constant α0 to be significant, as it picks
up the common average. On the other hand, if futures prices incorporate
the observed heterogeneity in time trends found in the station-level data or
climate model output, we would expect αs, α4.5, or α8.5 to be significant.

It should be noted that it is much harder to predict spatial heterogeneity
in warming than it is to predict average trends because of all the localized
feedback loops of the climate system. The average trend is given by a simple
balance of energy calculation. For example, if one increases the burner under
a pot of water the average temperature will increase, but it is much harder
to predict where this extra energy will show up and how it will spread across
the volume of water. Similarly, changes in wind patterns might lead to higher
warming in some areas while reducing it in others (Hsiang and Kopp, 2018).
February cooling due to the polar vortex over eastern North America goes
hand-in-hand with higher-than-expected warming in the Arctic. Cooling in
East Coast cities does not refute that the globe is warming, which it is in
total, but rather reflects the uncertainty on where the extra energy manifests
as jet streams shift.

The results are given in Table 3. Columns (a)-(c) include each estimated
time trend in the weather/climate data one at a time, while columns (d)
jointly include all three. Columns (1a)-(1d) include all 72 airport-month
combinations of the 8 airports and 9 months: June - September for cooling
degree days in the summer and November - March for heating degree days
in the winter. Columns (2a)-(2d) exclude February for the four northeastern
airports for a total of 68 observations.

Panel A pools all observations from November 2001-March 2020 in the
estimation of the βam. The coefficient on the climate model output in columns
(b) and (c) is consistently larger than for the heterogeneity actually observed
in the weather station data over the same period. When we include all
three in column (d), they are no longer individually significant given the
high degree of multicollinearity, but climate model output under the RCP4.5
scenario has the largest point estimate.

Panel B and Panel C limit the observations to 2006-2020 and 2011-2020,
respectively, in the calculation of the trends βam. The reason is twofold:
first, climate models in the CMIP 5 archive used 1950-2005 as the baseline
to calibrate their models. By limiting the data to a period past 2005, the
model should predict completely out-of-sample. Note however that we are
using the actual observed climate trends from the weather station data β̂s

am,

21



so the climate model would simply incorporate some of the information that
is in the station level data. Since it took climate modeling groups several
years to run the models before they were posted, Panel C further limits
the time window to after 2010. Second, the pace of global warming slowed
between 1998-2012, and then picked up again around 2012.

Both Panel B and C show that the spatial heterogeneity in trends in the
futures data is better aligned with the heterogeneity in the climate model
output rather than the trend at the underlying weather station. For this
subinterval of accelerated warming, the heterogeneity found in RCP8.5 is a
better predictor than RCP4.5. On the one hand, this is not surprising as
the early 2000s mostly relied on climate projections from the IPCC Fourth
Assessment Report that did not include the more rapid RCP8.5 scenario. On
the other hand, as we have argued above, the futures market was quick to
pick up on scientific advances related to the polar vortex. Since the IPCC
reports are based on published studies, much of the underlying theory might
have also been available to interested parties in the early 2000s. We lack a
credible proxy for when information is received by the market, so we cannot
directly test when market participants update their view on which climate
model to follow.

It is noteworthy that across all the time periods considered in Panels A-
C, the heterogeneity in the futures price trends more closely mirror climate
models than the eventual weather realizations. Combined with the uptick in
February futures prices that is not supported by station-level observations,
we conclude that market participants are utilizing climate models, or some
related source of information, to update their beliefs on future weather rather
than just projecting forward historical trends. Moreover, as Appendix Sec-
tion A3 shows, previous warming trends in the early part of the 20th century
have plateaued, and simply forecasting that past trends will continue rather
than utilizing climate model forecasts would be a risky endeavor for investors.

Warming trends are predicted to diverge further out in the future as
shown in Figure 5, which displays climate model output through 2100. We
again remove airport-by-month fixed effects and then average the residuals
over the four summer months (June - September) or the five winter months
(November - March). The top row again shows cooling degree days, while the
bottom row shows heating degree days. The left column shows nonparamet-
ric warming paths under the RCP4.5 scenario, while the right column uses
RCP8.5. For example, the reduction in heating degree days in Minneapolis
under the RCP8.5 scenario (bottom right graph) is almost twice as large as
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for Atlanta.

3. Conclusion

To the best of our knowledge, this paper is the first to utilize a direct mea-
sure of climate change expectations as derived from weather-based futures
contracts. The evidence shows that financial markets incorporate warming
trends that are consistent with climate model projections. We find that the
market has been accurately pricing in a warming climate, and that this be-
gan occurring at least since the early 2000s when the weather futures markets
were formed. The market also seems to price in recent scientific findings like
the polar vortex that can lead to February cooling over the eastern US, an
effect neither present in the CMIP5 archive nor detectable in recent weather
station observations.

Our findings have direct implications for firms and financial markets.
Recent studies have highlighted how the valuations of companies and entire
industries are sensitive to weather fluctuations and climate change risk. Since
efficient and profit-maximizing behavior requires an accurate assessment of
predicted warming, weather markets can provide companies with pertinent
information on future weather and climate trends, as well as a hedge against
potential lost profit. Relatedly, our findings may have relevance to climate
adaptation. Adaptation requires that agents form beliefs about whether the
climate is changing and the extent to which it is. This paper suggests that
agents, at least those participating in weather markets, have been updating
their beliefs that summers are getting hotter and winters colder.

There are also policy implications of our findings, especially since some
politicians still question the existence and extent of climate change. The
observed annual trend in futures prices shows that the supposedly-efficient
financial markets agree that the climate is warming. At least so far, climate
models have been very accurate in predicting the average warming trend
that’s been observed across the US. While our results do not conclude that
the market believes the warming is human-induced, per se, anyone doubting
the observed warming trend can always attempt to profit from that belief by
betting against the observed trend. The price of a summer month cooling
degree days contract, for example, has increased by roughly $50 over 20-year
sample period. Since the payout of the financial derivative has a multiplier
of 20, this implies an additional $1,000 in value is on the table per contract.
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When money is on the line, it is hard to find parties willing to bet against
the scientific consensus.
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Figure 1: Future Prices Around Maturity
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Graphs display the time series of futures prices around maturity. Day 0 is the end of the

month on which the weather derivative is based, e.g., day 0 for a June contract is June 30.

Top row is for New York LaGuarida airport (LGA), bottom row for Dallas-Fort Worth

(DFW). The left column shows cooling degree days for July while the right columns show

heating degree days for December. Years are color coded as shown in the bottom legend.

Price series that are flagged for quality issues are shown as dashed lines instead of solid

lines. The grey shaded area shows the period over which we average futures prices in our

baseline specification to derive market expectations, which is four weeks before the start

of the month. Contracts for the remaining airports and months are shown in Appendix

Figure A2.

28



Figure 2: Capitalization of Weather Shocks

This figure displays the results from a distributed lag model. Daily futures price changes

∆pcd for contract c on day d are regressed on 21 leads and 7 lags of weather shocks
̂∆Dc[d+τ ], i.e., the difference compared to the average climate on day d+τ . The regression

equation is ∆pcd = αc +
∑21

τ=−7 βτ
̂∆Dc[d+τ ] + ǫcd. The left graph shows the estimated

coefficient β̂τ for the weather shock on a particular lead/lag τ . Negative values of τ on

the horizontal axis indicate weather occurring on an earlier day, i.e., in the past, while

positive values depict weather at a future date. The right graph shows
∑τ

k=1 β̂k, i.e., the

cumulative sum of coefficients from day 0 onwards for positive values of the horizontal axis

and
∑

−1
k=τ β̂k, i.e., the cumulative sum of coefficients before day 0 for negative values of

the horizontal axis. The regression pools cooling degree day contracts in June - September

and heating degree day contracts for November - March. The estimated coefficients for

leads τ > 1 and lags τ ≤ −1 are on the weather shock for one day, but the coefficient

shown for τ = 1 is for the sum of shocks from today to the previous close given that

futures are not traded every day.
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Figure 3: Nonlinear Time Trends in Futures Prices and Weather

This figure estimates nonlinear time trends using restricted cubic splines in time (knots at 2003, 2008, 2013, and 2018)

on the residuals, which are obtained by subtracting airport-by-month fixed effects β̂am among the eight airports and four

summer months (June - September) in the left graph or eight airports and five winter months (November-March) in the right

graph, excluding February for the four northeastern airports. The green line uses futures prices four weeks before the start of

the contract month. The red line shows the results for the observed weather station data. The blue lines use model output

from NASA NEX-GDDP. In each case we subtract the average for the airport and month (i.e., airport-by-month fixed effect).

The horizontal axis reports the year a season ends, e.g., winter 2001/2002 is recorded as 2002. The 95% confidence bands are

added as shaded areas.
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Figure 4: Nonlinear Time Trend in February Futures at Northeastern Airports

This figure estimates nonlinear time trends using restricted cubic splines in time (knots

at 2003, 2008, 2013, and 2018) on the residuals of February contracts among the four

airports in the northeastern quadrant in Appendix Figure A1. Residuals are obtained and

after removing airport fixed effects and are displayed for the four airports. The green line

uses futures prices four weeks before the start of the contract month. The 95% confidence

band is added as shaded area.
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Figure 5: Predicted Change in Degree Days in Climate Models
Study Period
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This figure shows nonparametric time trends by airport averaged over the 21 climate

models in the NASA NEX-GDDP database. The y-axis gives the predicted average change

in monthly cooling or heating degree days. Top row shows the results for the change in

monthly cooling degree days in the summer (June - September) and the bottom row for the

change in monthly heating degree days in the winter (November - March). Left column

uses the predictions under the RCP4.5 scenario, while the right column uses RCP8.5.

Specifically, a nonparametric lowess regression is fit to the annual average of the monthly

residuals after removing airport-by-month fixed effects.

32



Table 1: Linear Time Trends in Degree Days

(1a) (1b) (1c) (1d) (2a) (2b) (2c) (2d)
Panel A: CDD June - September

Trend 2.432∗∗∗ 2.998∗∗∗ 2.286∗∗∗ 2.774∗∗∗ 2.148∗∗∗ 2.676∗∗∗ 2.167∗∗∗ 2.432∗∗∗

(0.160) (0.887) (0.169) (0.174) (0.330) (0.772) (0.173) (0.160)
Observations 522 522 522 522 222 576 576 522

Panel B: HDD November - March
Trend -1.000∗∗ -2.081 -1.662∗∗∗ -1.854∗∗∗ -1.175∗∗ -1.677 -1.734∗∗∗ -1.000∗∗

(0.415) (1.723) (0.354) (0.370) (0.573) (1.524) (0.314) (0.415)
Observations 676 676 676 676 322 760 760 676

Panel C: HDD November - March (excluding February in Northeast)
Trend -1.719∗∗∗ -1.856 -1.527∗∗∗ -1.710∗∗∗ -2.224∗∗∗ -1.610 -1.643∗∗∗ -1.719∗∗∗

(0.384) (1.731) (0.362) (0.336) (0.478) (1.529) (0.329) (0.384)
Observations 604 604 604 604 281 684 684 604
Data Futures Station RCP4.5 RCP 8.5 Futures Station RCP4.5 RCP 8.5
Years Common Common Common Common Traded All All All

This table reports the estimated annual increase/decrease in degree days β̂. Each entry is from a separate regression where

degree days Damy at airport a for month m in year y are regressed on airport-by-month fixed effects as well as a linear time

trend: Damy = αam+βy+ǫamy. Panel A regresses cooling degree days (CDD) for the summer months June - September, while

panel B and C use heating degree days (HDD) for November - March. Panel C excludes February for the four northeastern

airports in Appendix Figure A1. The data set ranges from winter 2001/2002 through winter 2019/2020. Columns (a) uses

the average futures price pamy four weeks before the start of each contract month, e.g., the average price between May 4

and May 10 for a June contract. Columns (b) uses observed station-level data for the month, while columns (c) and (d) use

climate model forecasts in the NASA NEX-GDDP database under the RCP4.5 and RCP8.5 scenarios for the month. Columns

(1a)-(1d) estimate the trends for a consistent set of observations where futures data are available. Columns (2a)-(2d) conduct

sensitivity checks to the included years. Columns (2a) exclude contracts where the price did not change during the fourth

week preceding the contract month. Columns (2b)-(2d) include all years even if futures data is not available. Stars indicate

significance levels: ∗ 10%, ∗∗ 5%, ∗∗∗ 1%.
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Table 2: Sensitivity of Linear Trend to When Expectations are Taken

(1) (2) (3) (4) (5) (6)
Panel A: CDD June - September

Trend 2.451∗∗∗ 2.428∗∗∗ 2.432∗∗∗ 2.385∗∗∗ 2.431∗∗∗ 2.448∗∗∗

(0.147) (0.142) (0.160) (0.189) (0.239) (0.314)
Observations 520 522 522 522 522 522

Panel B: HDD November - March
Trend -0.905∗∗ -0.900∗∗ -1.000∗∗ -1.224∗∗∗ -1.356∗∗∗ -1.628∗∗

(0.408) (0.405) (0.415) (0.431) (0.482) (0.697)
Observations 672 676 676 676 676 676

Panel C: HDD November - March (exl. Feb in NE)
Trend -1.656∗∗∗ -1.642∗∗∗ -1.719∗∗∗ -1.908∗∗∗ -2.077∗∗∗ -2.202∗∗∗

(0.371) (0.363) (0.384) (0.414) (0.465) (0.727)
Observations 600 604 604 604 604 604
Airport FE Yes Yes Yes Yes Yes Yes
Weeks Prior 6 5 4 3 2 1

This table shows a sensitivity analysis of column (1a) of Table 1, now column (3), to the

time window over which future prices are averaged to evaluate expectations. The last row

displays how many weeks prior to the start of the contract month the futures prices are

averaged over, ranging from one to six weeks. Stars indicate significance levels: ∗ 10%, ∗∗

5%, ∗∗∗ 1%.
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Table 3: Comparing Spatial and Temporal Heterogeneity in Trends

(1a) (1b) (1c) (1d) (2a) (2b) (2c) (2d)
Panel A: All Years

Trend at Weather Station 0.251∗∗ 0.135 0.302∗∗∗ 0.137
(0.101) (0.113) (0.100) (0.105)

Trend in CMIP5 - RCP4.5 0.628∗∗∗ 0.432 0.840∗∗∗ 0.627
(0.155) (0.474) (0.137) (0.426)

Trend in CMIP5 - RCP8.5 0.501∗∗∗ 0.066 0.666∗∗∗ 0.080
(0.126) (0.392) (0.120) (0.376)

Panel B: Years 2006-2020
Trend at Weather Station -0.056 -0.130∗∗ -0.014 -0.107∗

(0.054) (0.058) (0.065) (0.063)
Trend in CMIP5 - RCP4.5 0.175 0.098 0.422 0.262

(0.260) (0.295) (0.318) (0.323)
Trend in CMIP5 - RCP8.5 0.346∗∗ 0.457∗∗∗ 0.400∗∗ 0.415∗∗∗

(0.167) (0.166) (0.172) (0.153)

Panel C: Years 2011-2020
Trend at Weather Station -0.037 -0.046 -0.062 -0.062

(0.049) (0.046) (0.056) (0.052)
Trend in CMIP5 - RCP4.5 0.158 -0.034 0.159 -0.033

(0.192) (0.186) (0.197) (0.188)
Trend in CMIP5 - RCP8.5 0.716∗∗∗ 0.730∗∗∗ 0.733∗∗∗ 0.737∗∗∗

(0.155) (0.162) (0.166) (0.168)
Observations 72 72 72 72 68 68 68 68

This table examines spatial and temporal heterogeneity in various data sources. A separate linear time trend β̂am is fit for

each month and airport: Damy = αam + βamy + ǫamy. We then regress the trend in the futures data β̂
f
am on the trend in

the weather station data β̂s
am as well as the trends in the climate model forecasts β̂4.5

am, β̂8.5
am under RCP 4.5 and RCP8.5,

respectively. Columns (1a)-(1d) include all months (November - March for heating degree days and June - September for

cooling degree days). Columns (2a)-(2d) exclude February for the four northeastern airports. Panels vary the years over which

the time trends are estimated. Stars indicate significance levels: ∗ 10%, ∗∗ 5%, ∗∗∗ 1%.
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