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Abstract

This paper studies the short-term trade-off between economic growth and environmental
governance from the perspective of political incentives. In the context of international
trade conflicts, we use the U.S.-China trade war as a natural experiment and find that
higher U.S. tariffs worsen air quality in China. The city-level analysis shows that a 1%
increase in the tariff burden leads to 0.9% and 0.7% increases in SO2 and PM2.5, respectively.
Firm-level emission data generate similar results. Interestingly, the hourly monitor-level air
quality data suggests that the pollution increases are concentrated at night. We hypothesize
that the surprising findings can be largely attributed to the lenient environmental policies
adopted by local governments when faced with the risks of economic downturn. We provide
suggestive evidence that cities more exposed to the U.S. tariffs attach less emphasis on
environmental regulations in local government reports and charge fewer fines on firms
violating environmental regulations. Cities with native and older party secretaries and
areas closer to province boundaries experience a less severe increase in pollution during the
trade war. Our findings are relevant as China scrambles to maintain growth in the face of
economic headwinds.
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1 Introduction

How do political incentives affect the trade-off between economic growth and environmental

enforcement? Many politicians face a challenging trade-off between short-term economic growth

and environmental protection, a conundrum that becomes more vexing during economic downturns.

Despite its importance, there is a lack of comprehensive research on this topic. This paper

investigates how politicians and firms respond to adverse economic shocks by providing compelling

evidence on a novel channel, namely lenient environmental regulations.

Our rationale is intuitive. A key concern for government officials is balancing economic growth

and environmental regulation. Economic growth is associated with a range of activities, such as

pollutant emission and natural resource exploitation, which can lead to adverse environmental

consequences. However, the implementation of stringent environmental regulations may cause

economic slowdowns, job losses, and social unrest in the short run. This trade-off highlights the

need to balance short-term economic gains and long-term sustainable development. Under the

pressure of economic downturn risk, political unrest (Campante et al., 2023), and short-term

performance evaluation (Li and Zhou, 2005), government officials tend to sacrifice long-term

sustainable development and give firms tacit permission to excess pollutant emissions to offset

the negative impacts of adverse economic shocks.

The U.S.-China trade war provides a good setting to test this trade-off. China has experienced

remarkable economic growth since 1978. However, there are concerns about the slowdown in

economic growth. The trade war stands out as a remarkable economic event, intensifying the

risk of economic disruptions. It is characterized by the sudden and substantial increases in U.S.

tariffs across a diverse range of products, which provides exogenous shocks on the heightened

risks of economic downturns. Moreover, despite the growing literature on the trade war (e.g.,

Amiti et al., 2019; Fajgelbaum et al., 2020; Cavallo et al., 2021; Jiao et al., 2021; Feng et al.,

2023), less is known about its environmental consequences in terms of environmental enforcement

and pollution emission.

In this paper, we study the impact of trade protectionism on pollution emissions and explore

the trade-off between economic growth and environmental enforcement. Using hourly air quality

data and firm-level pollution emission data, we investigate the impact of tariff escalations on

pollution emissions in China. We find that higher U.S. tariffs lead to worse air quality. Employing

a difference-in-difference design, we observe that cities with high exposure, characterized as being

in the top quartile of U.S. tariff increases, experience more pronounced air pollution after July

2018. In comparison to cities with low exposure, those burdened with tariffs witness a 10.3%

increase in SO2, a 7.1% increase in PM2.5, and a 6.5% increase in PM10 levels. To address the

dynamic effect of evolving trade patterns over time, we conduct a first difference estimation

and obtain a similar increase in pollution. Specifically, a 1% increase in U.S. tariffs corresponds

to a 0.9% increase in SO2 and a 0.7% increase in PM2.5. As SO2 is mainly generated from

power generation and manufacturing productions, the greater magnitude of the increase in SO2
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compared to other pollutants suggests the great contribution of industrial productions. The

findings are surprising because reduced economic activities due to adverse economic shocks

are supposed to generate fewer pollution emissions. A further exploration of hourly pollution

patterns reveals that the increase in air pollution is more pronounced after sunset and before

sunrise, suggesting secret pollution emission and lenient environmental policies.

To answer the question of who generates additional pollutants, we use the data on firms’

end-of-pipe emissions from the Continuous Emission Monitoring System to investigate pollution

emission patterns. Firms that emit more pollutants could be those more exposed to the increased

tariffs or those located in cities more negatively affected by the trade war. To disentangle the

two, we incorporate both industry-level tariffs and citywide tariffs into the regression. Firm-

level evidence suggests that it is citywide tariffs rather than industry-level tariffs that drive the

results. Firms located in high-exposure cities in targeted or non-targeted industries experienced

similar changes in emissions. In comparison, a 1% increase in city-level U.S. tariffs results in a

16.2% increase in particles and a 22.8% increase in SO2 emissions. Similar to the monitor-level

analysis, China’s retaliatory tariffs do not have any notable impacts on firm emission intensities.

Our findings show that firms in cities more exposed to the U.S. tariffs exhibit higher emission

intensities, suggesting a citywide rollback of environmental regulations by local governments.

To demystify the puzzling findings on increased pollution, we explore the mechanism in three

ways. First, we complement the above analysis by investigating the impact of the trade war on

Chinese exports. We find that a one percent increase in U.S. tariffs leads to a 0.6% decline in

exports to the U.S. Meanwhile, China’s exports to the rest of the world increase accordingly,

which almost offset the negative impact of the U.S. tariffs on China’s exports to the U.S. The

estimation of trade elasticity requires precisely measuring the changes in tariffs. During the

trade war, China lowered the Most-Favored-Nation (MFN) tariffs to boost imports from other

countries and had several regional trade agreements that granted preferential tariffs to some

trade partners, who accounted for 43% of China’s total imports in 2017. To account for these

changes, we hand-collected the daily announcement of Chinese tariff schedules by HS-8 instead

of using the annual MFN tariffs by HS-6, apart from collecting data on punitive tariffs.

Second, we provide evidence of the stringency of environmental policy. To test whether

the worsening of air quality is driven by the relaxation of environmental policies, we begin by

constructing a text-based stringency index based on annual reports from local governments.

Our results indicate that high U.S. tariffs result in a decrease in the index, suggesting that local

governments in high-exposure cities place less emphasis on environmental regulations in response

to trade escalation. Another measure of lenient environmental policies lies in the manipulation

of air quality data. We show that the bunching of pollution data reported by firms becomes

more pronounced after the trade war, suggesting an elevated prevalence of data manipulation.

It potentially reflects a decrease in regulatory oversight or inspections.

Third, we provide suggestive evidence that political incentives affect politicians’ decisions.

Cities with native or older party secretaries are less likely to experience worsened air pollution
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in response to U.S. tariff escalations. A likely explanation is that native officials care more about

long-term sustainable development and older officials have less incentive for promotion. Further

evidence using the environmental fine data shows that local environmental agencies in more

trade-exposed cities didn’t conduct inspections and charged smaller amounts of fines on firms

violating environmental regulations. Furthermore, we leverage the heterogeneity across various

locations as a proxy to examine variations in environmental enforcement. Our analysis reveals

that the rise in air pollution is particularly prominent near regional boundaries. These areas and

periods typically experience reduced monitoring of emissions by inspectors and a general decline

in environmental enforcement, which are likely to be the first areas affected by policy rollbacks.

The above evidence implies that local government officials soften environmental regulations and

enforcement during the trade war.

This paper is among the first to report evidence on local governments’ trade-off between

short-term economic growth and long-term substantial development. Despite its importance,

there is a lack of comprehensive research on this topic. In the context of trade protectionism,

we investigate how politicians and firms respond to adverse economic shocks. We show that

government officials tend to sacrifice long-term sustainable development and give firms tacit

permission to emit excess pollutant emissions.

This paper is related to the existing literature that studies the enforcement and effectiveness

of environmental regulations. Jia (2017) finds that gaining connections with key officials in the

central government increases pollution. China’s recent tightening of environmental regulation

and enforcement has been shown to decrease heavily polluting industries’ emission intensity and

production (Shi and Xu, 2018), generate substantial health benefits (Pope III and Dockery,

2013), and obtain efficiency gain (Wang et al., 2018). Regarding the latest environmental

regulations, Wong and Karplus (2017) provides a detailed review of the policies and argues that

the misalignment of incentives between the local and central governments is still present. Low

enforcement in local areas induces gaming activities in emissions and high pollution levels (Zhang

and Mu, 2018). Similar evidence is documented by Ghanem and Zhang (2014) that shows local

governments have suspicious air quality data especially when the anomaly is least detectable.

Karplus et al. (2018) compares ground-based firm emission data and remotely-sensed satellite

products to show that, after emission standards became stricter in 2014, firms in regions with

tougher standards are more likely to manipulate their emissions data. These studies highlight the

challenges posed by low environmental enforcement in China and the resulting gaming activities

in pollution. They shed light on the detrimental effects of weak enforcement, such as increased

pollution levels, corruption, and pollution offshoring. Relative to the literature, our paper

provides empirical evidence on the trade-off between long-term sustainable development and

short-run economic growth. We find that local officials have incentives to relax environmental

regulations when the region is at a higher risk of economic downturn.

Another related literature is on decentralization and political tournament. Li and Zhou

(2005) find that the likelihood of promotion of provincial leaders in China increases with their
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economic performance. Jia and Nie (2017) use China’s coal mine deaths to show collusion

between regulators and firms affects workplace safety because decentralization makes collusion

more likely. Li et al. (2019) proposes a Tullock contest model in a multi-layered tournament-

based organization, which predicts a top-down amplification of economic growth targets along

the jurisdiction levels.

Our paper contributes to the literature that studies the impact of trade on pollution. Despite

the growing literature on the impacts of the trade protectionism on trade flows and prices (Amiti

et al., 2019; Fajgelbaum et al., 2020; Cavallo et al., 2021; Fajgelbaum et al., 2021; Jiao et al.,

2021; Feng et al., 2023; Jiang et al., 2023), night light (Chor and Li, 2021; Feng et al., 2023),

employment (Flaaen and Pierce, 2019; Beck et al., 2023), politics (Blanchard et al., 2019), and

stock returns (Amiti et al., 2021; Feng et al., 2023; Han et al., 2023), little is known about its

impact on the environment.

Beyond trade conflicts, there are researches on the impact of trade on the environment. Poncet

et al. (2015) find that export has a positive effect on pollution in China, mostly attributable to

foreign firms in processing trade. Bombardini and Li (2020) shows that Chinese cities that had

high export growth in “dirty” industries between 1990 and 2010 experienced a bigger increase in

SO2 concentration and infant mortality. Cherniwchan (2017) find that the trade liberalization

following NAFTA reductions can explain about two-thirds of the reductions in PM10 and SO2

emissions among U.S. manufacturing firms between 1994 and 1998. Shapiro and Walker (2018)

uses plant-level data to show that the decline in air pollution produced by U.S. manufacturers

is mainly due to changes in environmental regulations instead of trade. While the previous

literature mainly focuses on pollution content and export expansion channels, our paper studies

the impact of unexpected adverse economic shocks on pollution by exploring a novel channel,

namely the lenient environmental policy.

The rest of the paper is organized as follows. Section 2 introduces the U.S.-China trade war

and highlights key data patterns. Section 3 describes the data and variable construction. Section

4 illustrates the econometric specification and displays empirical evidence of the impact of the

trade war on China’s air pollution. Section 5 explores the export effect as a potential channel

of pollution change. Section 6 tests the mechanism. Section 7 discusses the health effect due to

increased air pollution and concerns about environmental injustice. Section 8 concludes.

2 Background

2.1 The U.S.-China trade war

The U.S. government initiated a series of tariffs on imports from trade partners starting in early

2018, as described in Table A1. Punitive tariffs were unexpectedly raised on a large scale for a

wide range of products in a short time window and induced a set of tit-for-tat tariff measures

from trade partners. Specifically, the Trump administration imposed global safeguard tariffs on
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$8.5 billion worth of solar panel imports and $1.8 billion worth of washing machine imports on

February 7, which triggered WTO disputes initiated by China and South Korea. Furthermore,

additional tariffs on steel and aluminum were enforced under Section 232 on March 23, with

temporary exemptions granted to seven trade partners. In response, trade partners, such as

Canada, China, European Union, India, Mexico, and Turkey, imposed retaliatory tariffs on U.S.

goods.

From mid-2018, the U.S. government shifted its focus to China, as shown in Figure A1. On

June 16, the U.S. announced a list of $50 billion of goods imported from China at a rate of 25%.

Among the list, imports worth $34 billion were taxed from July 6 (wave 1), and the remaining

$16 billion were taxed from August 23 (wave 2). As a countermeasure, China released retaliation

lists targeting U.S. imports amounting to $50 billion, set to take effect on July 6 (wave 1) and

August 23 (wave 2). These goods were subject to 25% punitive tariffs. At the end of 2019, about

86% of the HS-10 products imported from China in 2017 were subject to the U.S. punitive tariffs,

accounting for around 54% of its total imports from China. Figure A1 plots the dynamics of

U.S. punitive tariffs on Chinese products (solid blue line) and its baseline tariffs, namely the

Most-Favored-Nation (MFN) tariffs (dashed blue line). It also displays the Chinese retaliatory

tariffs on the U.S. products (solid red line) and its MFN tariffs (dashed red line). By adding the

punitive tariffs with the baseline tariffs, we learn that the import-weighted average U.S. tariffs

rose from 2.7% in January 2018 to 13.8% in December 2019. Meanwhile, the Chinese tariffs on

U.S. products increased from 5.3% to 16.2%.

From the U.S. trade policy (Figure A2) and import structure (Figure A3), we learn that the

main target of the U.S. is the future competition from China in high-tech sectors rather than

manipulating the terms of trade and reducing the trade deficit. As shown in Figure A2, the first

few waves of punitive tariffs targeted high-tech products from China, such as aircraft, railways,

and optical instruments. Most of these were listed in China’s five-year plan "Made in China

2025". Their import values were relatively small compared to labor-intensive products that the

U.S. imported heavily from China, such as textiles and electronics (Figure A3). Feng et al. (2023)

further show that the U.S. tariffs were negatively correlated with U.S. imports from China. Apart

from high-tech sectors, the U.S. government was also preoccupied with product substitutability,

and the economic interest of U.S. importers and consumers, and political elections (Fajgelbaum

et al., 2020; Feng et al., 2023).

2.2 Environmental regulation in China

Since the 1990s, China has become a predominant recipient of international industrial transfers

and a pivotal global manufacturing hub. Following China’s accession to the World Trade

Organization in 2001, developed nations, especially its trade partners, increasingly outsourced

labor-intensive and capital-intensive industries to China, resulting in severe pollution problems

(Liu and Diamond, 2005). With rapid industrial expansion, China incurred a substantial
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environmental toll, leading to its recognition as one of the most environmentally compromised

nations globally (Li and Ramanathan, 2018). The concerns regarding severe air pollution affect

not only China but also the environments of neighboring countries and even the whole world

(Liu and Diamond, 2005).

To address the pollution problem, the central government of China declared a “war against

pollution” in March 2014 (Greenstone et al., 2021). The timing of this declaration, made at

the outset of a nationally televised conference typically reserved for discussing pivotal economic

targets, signified a significant departure from the country’s longstanding policy of prioritizing

economic growth at the expense of environmental protection. Furthermore, it marked a notable

shift in the official rhetoric of the government concerning the nation’s air quality. Historically,

state media had sought to downplay concerns about air quality. However, the government now

places a heightened emphasis on environmental responsibility, unequivocally stating that the

nation cannot afford to pollute first and clean up later. The central government is committed

to combating pollution with unwavering resolve.

Central policies serve as the foundational basis for environmental regulations, while local

governments are responsible for their implementation and governance enforcement. Both types

of governments play roles in the process of environmental regulation. The effectiveness of

environmental policies primarily hinges on the enforcement efforts of local governments. This

depends on local governments’ resources, management level, and willingness to implement

environmental policies. When local governments have low incentives to enforce environmental

regulations, rational polluting firms may choose not to undertake pollution control measures.

The stronger the enforcement by local governments, the greater the effectiveness of environmental

policies, and the more obvious the regulatory effects.

In the process of environmental regulation, local governments do not always make choices in

line with the goal of maximizing social welfare (Fischer et al., 2003) or prioritizing environmental

regulation. Due to the obvious differences in social, economic, and other aspects among provinces,

local governments may exhibit different behavioral preferences when implementing environmental

policies, influenced by varying environmental regulation motivations. Due to other incentives

such as economic outputs and social stability, local governments may have different preferences

when implementing environmental policies. Consequently, China’s environmental enforcement

and implementation remain at a relatively low level.

3 Data and variable construction

3.1 Import and export

To capture each city’s exposure to tariff shocks, we draw on Chinese Customs data in 2015 to

calculate the initial import weights. The data is at the firm-HS-8 product-country level and
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covers the universe of Chinese importers and exporters. It provides information on each firm’s

customs declaration zone, based on which we can infer the city in which the firm is located.1

Apart from annual firm-level data, we also acquire monthly product-level export data from

the Customs General Administration of China to study the impact of the trade war on Chinese

exports. The data records export values (in USD) and quantities at the country-HS-8 product

level and ranges from January 2017 to December 2019. It contains over 7,000 HS-8 products

and over 200 trade partners. The tariff-exclusive unit value is calculated as the ratio of export

value to quantity.

3.2 Tariff

To construct the local exposure to the tariff shocks for each Chinese city, we collect four data

sets on monthly product-level tariff lines for China and the U.S. First, the annual baseline tariff

schedule. For the U.S., the data are available at the country-HS-8 product level and released by

the United States International Trade Commission (USITC). For China, the data are available

at the country-HS-10 product level and released by the Customs General Administration of

China. Second, punitive tariffs. For the U.S. punitive tariffs imposed on goods imported from

China, the data are available at the country-HS-10 product level and are from the United States

Trade Representative (USTR). For China, its retaliatory tariffs on US goods are available at the

HS-8 level released by the Ministry of Finance of China. Third, tariff exemptions, available at

the country-HS-10 product level for the U.S. and HS-8 product level for China. Fourth, China’s

adjustments in MFN tariff schedule and Free Trade Agreement (FTA) preferential rates, available

at the country-HS-8 product level. When aggregating the data to the monthly level, we scale

the punitive tariffs by the number of days of the month in effect following Fajgelbaum et al.

(2020). Table A31 displays the summary statistics.

Based on the above product-level tariffs, we construct city i’s exposure to the U.S. tariffs:

∆USTariffit =
∑
k

XUS
ik0

Xi0
∆USTariffkt (1)

where XUS
ik0

Xi0
denotes city i’s export of product k as a share of city i’s total export in 2015 prior to

the U.S.-China trade war. The variation in ∆USTariffit stems from: (i) differences in initial

export variety (product-country) composition at the city-level; and (ii) differences in the U.S.

tariff changes over time at product-level, ∆USTariffit. A location specializing in exporting

targeted products to the U.S. market would experience a huge drop in external demand when

U.S. tariffs hike.

Similarly, a city’s exposure to Chinese tariff shocks is calculated as:
1We assign each firm to a city based on the city’s administrative boundary in 2000.
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∆CHNTariffit =
∑
k∈K,j

Mikj0

Mi0
∆CHNTariffkjt (2)

where K is the set of products k which are defined as intermediate inputs based on Broad

Economic Codes (BEC). Mikj0

Mi0
denotes the import share of product k of city i from country j,

relative to total city-level imports in 2015. As constructed, the variation in ∆CHNTariffkjt

stems from: (i) differences in initial import variety (product-country) composition at the city-

level; and (ii) differences in China’s import tariff changes over time at variety-level, ∆CHNTariffkt.

The summary statistics are shown in Table A31. Because we use the data in 2015, the initial

export and import composition at the city level in 2015 (X
US
ik0

Xi0
and Mikj0

Mi0
) and variety-specific

tariff at national-level (∆USTariffit and ∆CHNTariffkjt) are arguably not correlated with

unobserved shocks uit to pollution, conditional on a set of observables.

3.3 Air pollution

To measure local air quality, we obtain hourly pollution data from China’s air quality monitoring

stations from 2013 to 2019. Due to increasing public concerns about air pollution, the Chinese

government built the National Urban Air Quality Real-Time Publishing Platform, which mandates

regular recordings of local pollution levels at each monitoring station. The platform is required

to report six primary pollutants — SO2, NO2, CO, O3, PM10, PM2.5 — and Air Quality Indexes

(AQI) since 2013. By the end of our study period, the reporting system covers 341 prefecture-

level cities and 2,016 monitors across China.

We collect data from official monitor reports and restrict our sample to monitor stations built

before 2015 that have consecutive monthly observations during our sample period. To exclude

outliers, we winsorize the pollution concentrations that are above the 99th percentile or below

the 1st percentile. While the monitor stations measure six major pollutants and the air quality

index, we focus our analysis on PM2.5 and SO2. PM2.5 is a mixture of solid and liquid particles

suspended in the air, consisting of various chemical species such as sulfate, nitrate, ammonium,

organic compounds, and elemental carbon. PM2.5 particles are small enough to be inhaled deep

into the respiratory system, posing health risks to exposed individuals. Among all common air

pollutants, PM2.5 is associated with the greatest proportion of adverse health effects related to

air pollution (Collaborators et al., 2015). SO2, on the other hand, primarily originates from the

combustion of fossil fuels, particularly coal, and industrial activities such as power generation

and manufacturing processes. Given its association with industrial emissions, SO2 serves as an

indicator of the environmental impacts of energy production and industrial activities. Due to the

long-standing acid rain problem, these two pollutants are also key targets of China’s National

Environmental Protection Plans, and hence face heavy environmental regulation.

We complement our city-wide air pollution measures with firm-level emission data, which were

scraped from China’s Continuous Emission Monitoring Systems (CEMS), initially constructed by
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Karplus et al. (2018). The systems include firms operating in various high-polluting industries,

including thermal power generation and manufacturing, which collectively contribute to 65% of

the total air pollution in China. To ensure compliance with emission standards, these firms were

mandated to install devices that automatically measure and upload hourly emission data to the

local environmental bureau’s website. For each firm, pollution intensity sensors are placed in

industrial air to monitor the flow rate and strength of many pollutants. A firm may have more

than one sensor as they have different end-of-pipe emission tunnels. If multiple sensors, CEMS

would include all the reports at the sensor-hour level. CEMS data is automatically uploaded to

government agencies. It allows officials to monitor emissions and detect any violations of the

prescribed standards. The CEMS data we utilize in our analysis are at the firm-hour level and

encompass the emissions of particles, SO2, and NOx. For subsequent analyses, we consider the

entire population of firms in the CEMS system, as well as a subset of balanced firms that have

reported data for each quarter.

4 Trade war and air pollution

4.1 City-level air quality

4.1.1 Event study

We start by exploring monthly changes in U.S. tariffs and air pollution. There was a sharp

jump in the U.S. tariffs in July 2018 in high-exposure cities, as shown in Figure A4. In contrast,

low-exposure cities experienced modest changes in tariff rates during the same period. This

discrepancy highlights the differentiated impact of U.S. tariffs across locations. As for air quality,

the pollution level measured in SO2 and PM2.5 experienced decreasing trends before the trade

war. However, the improvements rolled back and the slopes became positive after July 2018.

The flipped trends were primarily driven by high-exposure cities grappling with the augmented

burden of U.S. tariffs. In contrast, low-exposure cities experienced a smaller change in pollution

trends. This suggests that the escalated tariff burdens in high-exposure cities have evidently

hampered their progress in mitigating air pollution.

Motivated by the stylized facts, we employ a difference-in-difference empirical approach to

ascertain the causal impact of the trade war on local air pollution. We define high-exposure

cities as those that bore the heaviest tariff burden between July 2018 and December 2019. We

calculate the sum of tariff escalation at the city level, and we assign cities into quartiles. Cities

in the top quartile are categorized as high-exposure cities, while the remaining three quartiles

are regarded as low-exposure cities. We use the start of China-specific trade tariffs in July 2018

as the event time. Our regression model is specified as follows:

lnPit = β Postt × Treatedi + Cityi + Y earMonthit + ηt + ϵit (3)
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where lnPit is the logarithm of the average air pollution concentration in city i in month t. Our

independent variables include Treatedi, a binary variable indicating whether city i is categorized

as a high-exposure city affected by U.S. tariffs, and Postt that equals to 1 for the months from

July 2018 onwards and 0 otherwise. We also add city fixed effects to account for city-specific time-

invariant characteristics and year-month fixed effects to control for national monthly differences.

The coefficient of interest is β, the coefficient on the interaction between Postt and Treatedi.

In other words, β estimates the impact of the trade war shock on the level of pollution of cities

with high exposure relative to other cities, using their difference in pollution before the trade

war as the baseline.

Our identification strategy relies on the assumption that our treatment assignment based on

∆USTariffit is as good as random conditional on the controls. In other words, we assume that

in the absence of the trade war, high-exposure cities would have exhibited a similar trajectory of

pollution levels compared to other cities. To examine this parallel trend assumption, we employ

a dynamic difference-in-difference design and estimate the following regression model:

lnPit =
16∑

q=−8

βmI (eventt = m)× Treatedi + Cityi + Y earMonthit + ηt + ϵit (4)

The dynamic specification focuses on an event window spanning 8 months before and 16

months after the initiation of the trade war in July 2018. The variables I (eventt = m) are a

set of time dummy variables for each month in the event window. To establish a baseline, we

omit the month immediately preceding the start of the trade war (June 2018). The coefficients

of interest are the set of βm. It represents the estimated difference in average log air pollution

between the treatment high-exposure cities and the control cities during the specific event time

period m, relative to their difference before the trade war. Similar to equation (3), we include

the same set of control variables to account for city-specific time-invariant patterns and national

monthly differences.

In Figure 1, we compare cities that are in the top quartile and bottom quartile based on

total U.S. tariff burdens in the post period. The event study figure serves to validate our

identification strategy by examining the pre-trends in air pollution levels before the initiation

of the trade war in July 2018. We find no discernible pre-trends in air pollution levels in the

pre-periods, which supports our assumption that prior to the trade war, high-exposure cities

and other cities exhibited similar pollution trajectories. In the post period, there were minimal

changes in air pollution levels during the latter part of 2018. However, starting in 2019, we

observe a significant positive effect of the U.S. tariff shocks on high-exposure cities’ levels of

SO2. This finding suggests that the trade war had a notable impact on air pollution dynamics

four months after the tariff enactment.

We further explore the heterogeneity across U.S. tariff quartiles. As is shown in Figure A11,

our effects are mainly driven by the difference between the fourth and the first quartile. In other
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Figure 1: Event study of city-level air quality

Note: The figures plot the impact of U.S. tariffs on citywide air quality. We compare SO2 in the top quartile
and that in the bottom quartile. Figures using all four quartiles are displayed in Figure A11. We plot point
estimates and their 95% confidence intervals in each month, with month negative 1 dropped. We control for city,
year-month, and prov-month fixed effects. Standard errors are clustered at the station-month level.

words, cities subjected to the most substantial tariff increase experience a significantly larger

increase in air pollution levels, compared with control cities with minor tariff changes. As the

tariff decreases, the green and blue lines exhibit a diminishing magnitude. This suggests that

cities falling within the second and third quartiles do not display significantly different pollution

responses in comparison to the highest impacted group. This motivates our next empirical

design to study the intensive margin, whether the pollution responds to an additional increase

in U.S. tariff.

Table 1 Panel A shows a similar pattern to the patterns observed in Figure 1. In Column

(1), we observe that the air quality index in high-exposure cities is approximately 4.294 units

higher compared to low-exposure cities. This difference represents an increase of around 6.0%

relative to the average AQI across all cities. In Column (3), we find a significant increase of

1.997µg/m3 in SO2 levels in high-exposure cities, which corresponds to a relative increase of

10.3% compared to the mean. As SO2 emissions are primarily associated with power plants

and manufacturing productions, the larger magnitude observed in Column (2) suggests that the

trade war had a more pronounced effect on air pollution in these industries. Columns (4) and (5)

show an increase in PM2.5 and PM10 of 3.11µg/m3 (7.1%) and 5.19µg/m3 (6.5%) respectively.

These findings conclude that the trade war increased air pollution, especially SO2 and PM2.5.

4.1.2 Dynamic tariff exposure

Next, we show the impact of tariff changes over time on air pollution. To do so, we use year-

on-year changes in air pollution as dependent variables and year-on-year changes in tariff as

controls. Our econometric specification is as follows:
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∆ln(Pit) = β∆USTariffit + α∆CHNTariffit + γt + ηi + εit (5)

where ∆USTariffit represents the year-on-year log change in U.S. tariffs for city i in month

t relative to one year ago. Similarly, ∆CHNTariffit captures the year-on-year log change in

China tariffs for the same city and time period. The two Bartik-style shift-share instruments

USTariffit and it are constructed following equations 1 and 2, where we calculate the monthly

tariff exposures for each city by weighting product-level tariffs with city-product level import or

export shares. γt captures year-month fixed effects to control for common time-specific factors

that may affect air pollution changes. ηi includes city fixed effects to account for time-invariant

factors specific to each city that may influence air pollution levels. The coefficient of interest β

measures the effect of changes in U.S. tariffs on air pollution changes. α quantifies the impact

of changes in China tariffs on air pollution changes.

Table 1: Tariff effects on citywide air quality

Panel A: Event study
AQI SO2 NO2 PM2.5 PM10

(1) (2) (3) (4) (5)

High exposure × Post 4.294∗∗∗ 1.997∗∗∗ 1.322∗∗∗ 3.107∗∗∗ 5.192∗∗∗

(1.334) (0.488) (0.485) (1.065) (1.687)
Observations 39970 39970 39970 39970 39970
R-square 0.857 0.816 0.844 0.846 0.845
Y-mean 71.453 19.366 30.366 43.792 79.553
Y-sd 31.606 16.885 15.268 25.758 41.623

Panel B: Dynamic tariff exposure
∆AQI ∆SO2 ∆NO2 ∆PM2.5 ∆PM10

∆ln(USTariff) 0.596∗∗∗ 0.951∗∗ 0.914∗∗∗ 0.711∗∗ 0.662∗∗∗

(0.184) (0.436) (0.261) (0.279) (0.237)
∆ln(CHNTariff) -0.096 -0.115 0.430∗∗∗ -0.633∗∗∗ -0.031

(0.134) (0.272) (0.149) (0.182) (0.158)
Observations 48868 48868 48868 48868 48868
R-square 0.228 0.169 0.178 0.192 0.239
Y-mean -0.048 -0.193 -0.027 -0.075 -0.064
Y-sd 0.221 0.402 0.271 0.296 0.275
Monitor FEs Y Y Y Y Y
Year-Month FEs Y Y Y Y Y
Notes: Sample period is from 2017:1 to 2019:12. In Panel A, Columns (1) to (5) report air
pollution regressed the double difference interaction term. All columns include year-month,
prov-month, and monitor fixed effects. Variable High exposure is absorbed by monitor fixed
effects. Post is absorbed by year-month fixed effects. In Panel B, Columns (1) to (5) report
logged difference in air pollution regressed logged difference in tariffs. All columns include
year-month and monitor fixed effects. Standard errors are clustered at the station-month level.
Significance: * 0.10, ** 0.05, *** 0.01.

The identifying assumption relies on the exogenous changes in U.S. tariffs and China tariffs

over time. As shown in Figure 1, there are no significant pre-trends in air pollution changes

12



before the trade war period, supporting the assumption of exogenous tariff changes. Table 1

shows the regression results for dynamic tariff exposures from equation (5). In Column (1), a 1%

increase in U.S. tariffs leads to a 0.596% increase in city-month AQI. This suggests that higher

U.S. tariffs are linked to worsened overall air pollution levels. Disentangling different pollutants,

in Column (2) and (4), a 1% increase in U.S. tariff leads to a 1.0% increase in SO2 and 0.7%

increase in PM2.5. Like the results of the static difference-in-difference estimate in Table 1 Panel

A, increases in SO2 levels exhibit a larger magnitude compared to the overall increases in AQI.

This pattern suggests that the trade war has had a more substantial impact on the pollution

originating from power generation and manufacturing production.

However, as indicated by the coefficients on ∆CHNTariffit, China’s retaliatory tariff shocks

do not have a significant impact on air pollution. Estimates are small and statistically imprecise

when we use AQI, SO2 and PM10 as dependent variables. One potential explanation is that

China’s retaliatory tariffs may be targeted toward final goods or intermediate goods. In the

former case, the imposition of protectionist measures could potentially benefit local firms,

resulting in positive effects on air pollution. In contrast, if tariffs increase the cost of imported

intermediate goods, it could lead to higher production costs for local firms and potentially

negative effects on air pollution. It is possible that both channels exist and have similar

magnitudes, leading to an ambiguous overall impact on air pollution.

To test the robustness of our results, we conducted several additional analyses. Firstly, we

dropped the year 2017 from our analysis, as most tariff changes during that year were zero.

Results in Table A2 using a two-year sample period with more tariff variations demonstrate

positive and significant estimates for ∆USTariffit, with magnitudes stronger than those in

Table 1. In the second robustness check, we replaced year-on-year changes with month-on-month

changes in both tariff and pollution variables. Results in Table A3 continue to show a positive

relationship between higher U.S. tariffs and increased air pollution. However, the magnitudes

are smaller, possibly due to lower variability across months compared to years or the influence

of seasonality effects. For the third exercise, we tested the sensitivity of our sample by using air

quality at the city-month level as the dependent variable. Results in Table A4 are consistent

with the main findings, although the magnitudes are somewhat reduced. Importantly, we still

do not find significant effects of China’s tariffs on air pollution. Furthermore, we employed

weighted regression for the city-month level analysis, assigning weights based on city GDP in

2017. Results in Table A5 indicate that the increases in air pollution are primarily driven by

small cities with lower economic outputs, as estimates on ∆USTariffit become smaller.

Additionally, we conducted a falsification exercise by examining the matching of tariff changes

with air pollution changes in the following year. Results in Table A6 reveal that U.S. tariff

changes do not have significant effects on future air pollution levels. Estimates are small,

statistically imprecise, and even exhibit a flipped sign. Another placebo test is to examine

the tariff impact on weather conditions. We obtain temperature, wind speed, and humidity

data from the Climatic Data Centre, specifically from the National Meteorological Information
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Centre (CMA). Results in Table A7 indicate that U.S. tariff burdens do not exhibit any effects

on the observed weather variables.

Besides, we show dynamic effects in each quarter in Table A13. In Column (1), we observe

that AQI decreases in the third quarter of 2018, indicating improved air quality during that

period. However, AQI increases in the winter quarters of 2018-2019, suggesting a deterioration

in air quality during those months. Similar patterns are found in the case of SO2 and PM2.5.

The negative responses in air pollution during the first quarter may be attributed to transaction

costs associated with trade diversion from the U.S. to other countries. This could lead to a

decrease in production and subsequently lower air pollution levels. After the first quarter, the

higher responses in air pollution during the winter quarters may be due to higher emission

potentials and more intensive pollution regulations in winter before the trade war. There is

a higher emission potential during winter due to increased energy consumption for heating

purposes. As a result, governments often enforce more stringent pollution regulations during

the winter season to mitigate the impact of heating-related emissions. Manufacturing firms may

be required to operate at lower levels to compensate for higher emissions from power plants and

heating facilities. However, with the onset of the trade war, these enforced regulations may have

been relaxed initially, resulting in higher pollution increases during the winter quarters.

In addition, we consider the incidence of pollution levels exceeding established standards as

a binary outcome variable. In China, an AQI below 50 corresponds to “excellent” air quality,

while AQI levels between 50 and 100 are classified as “good”. The corresponding threshold

values for excellent air quality for SO2, NO2, PM2.5, and PM10 stand at 50µg/m3, 80µg/m3,

35µg/m3, and 50µg/m3, respectively. It’s noteworthy that the World Health Organization

(WHO) suggests PM2.5 should not exceed 15µg/m3 to avoid health harms, whereas the U.S.

EPA set a standard of 12µg/m3. We use air quality values and code dummies for each air

pollutant that is considered non-excellent air quality. This dummy aligns with the definition of

unhealthy air quality according to WHO standards. We use dummies at the monitor-day level

and re-estimate equation (3). Results in Table A8 show positive and statistically significant

estimates on ∆USTariffit. Specifically, a 1% increase in U.S. tariffs results in a 0.93% increase

in the likelihood of the city’s air quality being categorized as non-excellent. Delving into different

air pollutants, we find the elasticity of U.S. tariffs to non-excellent SO2 and PM2.5 is 0.349 and

0.314, respectively.

In a similar vein, we use non-good standards to code our outcome variables. Table A9 shows

the likelihood of AQI exceeding 100 is not significantly affected by U.S. tariffs, though the point

estimate is positive. This implies that tariff increases result in a small rise in air pollution

from excellent to good, but pollution levels are not above the second-tier threshold. Regarding

specific air pollutants, Column (2)-(5) shows statistically significant increases of 0.157% and

0.295% in the probability of SO2 and PM2.5 surpassing the designated good thresholds, for

every 1% increase in U.S. tariffs. In contrast, the impact on PM10 is small and imprecise.
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4.1.3 Heterogeneity across hours

Using detailed hourly data, we find that additional pollutants are emitted at night, providing

direct evidence of lenient environmental regulations and softening enforcement. In Table A14

Panel A, we use the air quality data at 2 pm to calculate city-month level pollution. Estimates

on ∆USTariffit are positive but small and statistically insignificant. This suggests that the

change in air pollution at 2 pm in response to tariff changes is minimal. In contrast, Panel

B reveals significant increases in pollution levels at 10 pm. These effects are consistent across

different pollutants and are more pronounced than in Table 1. Specifically, when the U.S. tariff

increases by 1%, SO2 and PM2.5 at 10 pm significantly increase by 1.12% and 0.58%, respectively.

These findings indicate that the effects of tariff changes on air pollution are more pronounced

during the late evening hours.

The stronger effect of tariff changes on pollution during night hours suggests the presence

of secret dark-time emissions. Pollution emitted at night is less visible, which reduces the

likelihood of environmental regulators being on patrol and decreases the chances of residents

filing complaints. This phenomenon is supported by Figure A12, which displays the nighttime

emissions of a paper mill plant in 2019. The existence of emissions during unwatched periods

has been documented by previous studies in both China and the U.S. (e.g. Zou, 2021; Agarwal

et al., 2023).

We use pollution difference after and before working hours — 8 am-6 pm — to code outcome

variables. Results are reported in Table A15. Estimates show positive and significant effects

of ∆USTariffit on the pollution differences. Specifically, as the U.S. tariff burden increases

by 1%, the pollution differences increase by 9.8%, 2.3%, and 6.3% when using AQI, SO2, and

PM2.5 as dependent variables, respectively. In contrast, estimates on ∆CHNTariffit remain

small and have inconsistent signs across pollutants, suggesting that China’s tariff burdens do

not have a significant impact on pollution differences during working hours.

In Table 2, we do a similar practice by using pollution difference as dependent variables.

Instead of using clock hours that are the same across time and cities, we collect daily sunset

times for each city in our sample and link it to our hourly pollution data reported by local

pollution monitors. We find a pattern similar to that in Table A15, and the point estimates in

∆USTariffit become larger. Specifically, a 1% increase in U.S. tariff leads to 11.1% increase in

AQI, 3.2%, 6.4% and 15% increase in SO2, PM2.5 and PM10 respectively. The larger magnitudes

observed suggest that secret pollutant discharges, which occur during the actual sunset hour

rather than clock hours, have a more pronounced response to U.S. tariff changes.

We plot the estimated coefficients using each hour’s pollution in Figure 2, with the X axis

representing the relative hour compared to the sunset hour and the Y axis representing the

estimated coefficients β. Before sunset, estimates are small and statistically insignificant, indicating

a minimal impact. However, pollution increases become more pronounced starting from hour 3

and continue to rise until hour 7. These findings suggest that the identified pollution increases
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are primarily driven by secret nighttime discharges, which are associated with less stringent

environmental enforcement during those hours.

Table 2: Pollution before vs. after sunset

Dark hour - daytime hour
∆AQI diff ∆SO2 diff ∆NO2 diff ∆PM2.5 diff ∆PM10 diff

(1) (2) (3) (4) (5)

∆ US Tariff 11.058∗∗∗ 3.173∗∗ 1.250 6.404∗∗∗ 15.003∗∗∗

(2.260) (1.352) (0.935) (1.918) (2.503)
∆ China Tariff -4.959∗∗∗ 0.738 0.912∗ -2.809∗∗ -5.264∗∗∗

(1.380) (0.892) (0.466) (1.103) (1.771)
Observations 48847 48847 48847 48847 48847
R-square 0.048 0.066 0.088 0.051 0.048
Y-mean -0.105 0.119 0.054 0.012 -0.033
Y-sd 2.032 1.213 0.915 1.717 2.345

Monitor FEs Y Y Y Y Y
Year-Month FEs Y Y Y Y Y
Notes: The sample period is from 2017:1 to 2019:12. Columns (1) to (5) report the impact of the log-
difference in tariffs on log-difference in excess dark air pollution. All columns include year-month and
monitor fixed effects. Standard errors are clustered at the station-month level. Significance: * 0.10, **
0.05, *** 0.01.
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Figure 2: Pollution before vs. after sunset

Note: This figure display coefficients on ∆US Tariff. We separately estimate coefficients at each sunset hour.
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4.2 Firm-level pollution emission

4.2.1 City-level tariff exposure

We complement the above city pollution measures with firm-level end-of-pipe emission data from

China’s Continuous Emission Monitoring Systems (CEMS). The econometric specification is set

as follows:

∆ln(Eit) = β1∆USTariffit + β2 ×∆CHNTariffit + γt + ηi + εit, (6)

where ∆ lnEit represents the year-on-year change in emissions for firm i in month t. Variables

∆ USTariffit and ∆CHNTariffit capture the changes in U.S. and China tariffs in the city

where firm i is located during month t. The coefficient of interest is β1, which indicates the impact

of U.S. tariff changes on the year-on-year changes in emissions, and the coefficient γ represents

the effect of China tariff changes. To account for firm-specific time-invariant unobserved factors,

we include firm fixed effects denoted by ηi.

Table 3 shows our regression results. In Column (1), there is a significant increase in firms’

end-of-pipe particle emissions. A 1% increase in U.S. tariffs leads to a 16.2% increase in particle

emissions. Column (2) shows a similar pattern, with a 22.8% increase in SO2 emissions linked to

U.S. tariff changes. However, no significant change is observed in firms’ NOx emissions, as shown

in Column (3). The magnitudes of the effects on SO2 and particle emissions are notably larger

than those reported in Table 1. This aligns with expectations, as city-wide air quality represents

a steady state resulting from a combination of firm emissions, pollutant transportation, and

settlement. On the other hand, end-of-pipe emissions are more directly influenced by tariff

changes, so they exhibit larger effects.

In the second row, the coefficient on ∆CHNTariffit is statistically insignificant. This

suggests that China’s retaliatory tariffs did not have a significant effect on firms’ air pollutant

emissions. These findings, together with the results in Table 1, provide evidence that China’s

tariffs had minimal influence on China’s air pollution levels.

We investigate the heterogeneity of firm emissions across different hours of the day by using

local sunset hours and running separate estimates during daytime and after sunset. In Table

A16, we find higher levels of Particles and SO2 emissions in both panels in response to higher

U.S. tariffs, indicating a consistent increase in emissions throughout the day. In Panel A, a 1%

increase in U.S. tariffs leads to a 15.9% rise in daytime particle emissions and a 12.6% increase

in SO2 emissions. In Panel B, the impact of U.S. tariff increases is slightly more pronounced

during dark hours. SOx experiences a 23% increase as the U.S. tariff increases. This disparity

in emissions before and after sunset aligns with our observations on nighttime emissions using

citywide air quality data in Table 2.

Given the identified evidence of increased emission intensity, what are firms’ actual behaviors
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in response to tariff escalations and relaxed environmental regulations? It is likely that firms

curtailed marginal abatement costs by turning off pollution control equipment. A sample

pollution scrubber is shown in Figure A13. The waste air undergoes sulfur and nitrogen removal

processes before being discharged into the atmosphere. The marginal cost of running scrubbers

is estimated to be $84-265 per ton of abated SO2 (Stoerk, 2018) and $80-89 per ton for CO2

abatement (Du et al., 2015). That said, the marginal cost of pollution abatement is still high,

which motivates firms to avoid the costs of operation and maintenance (Xu, 2011). This marginal

cost avoidance is supported by empirical findings. For instance, Karplus and Wu (2023) shows

that environmental inspections conducted by the central government prompt power plants to

operate their existing scrubbers. Though the abatement equipment has been installed prior to

the arrival of inspectors, running a scrubber requires variable inputs of labor and materials.

Plants with SO2 scrubbers show a statistically significant additional decrease in SO2 pollution

during the onsite period.

Table 3: Tariff effects on firms’ emissions

∆Particles ∆SO2 ∆NOx ∆Particles ∆SO2 ∆NOx

(1) (2) (3) (4) (5) (6)

∆ US Tariff 16.158∗ 22.830∗∗ -9.710 15.501∗ 23.022∗∗ -9.852
(8.854) (8.268) (7.900) (8.818) (8.399) (7.857)

∆ US Tariff_Industry 13.519∗ 7.878 -7.764
(7.046) (9.125) (11.218)

∆ China Tariff 2.572 -10.210 -0.619 2.741 -8.850 -0.754
(3.302) (7.846) (2.686) (3.145) (7.165) (2.430)

Observations 3965 3689 3705 3829 3561 3554
R-square 0.515 0.522 0.514 0.514 0.528 0.515
Y-mean -0.271 -0.276 -0.155 -0.274 -0.269 -0.160
Y-sd 1.111 1.300 1.035 1.106 1.295 1.042
Firm FEs Y Y Y Y Y Y
Year-Month FEs Y Y Y Y Y Y
Notes: The sample period is from 2018:1 to 2019:12. Columns (1) to (3) report the log-difference in firms’ air
pollutant emissions regressed logged difference in city-level tariffs. Columns (4) to (6) report log-difference in firms’
air pollutant emissions regressed log-difference in both industry-level and city-level tariffs. All columns include
year-month and firm-fixed effects. Standard errors are clustered at the provincial level. Significance: * 0.10, **
0.05, *** 0.01.

Since the CEMS data has many missing values and strategic reporting concerns, we conduct

a robustness check by requiring firms with complete data in each quarter between 2017 and

2019. This leads to a smaller sample size in Table A10. Estimates on ∆USTariffit remain

positive and significant when using firm-level particles and SO2 as dependent variables. This

suggests that the positive effect of U.S. tariffs on firms’ emissions holds when considering a more

restricted sample. In addition, we also use relative emissions compared with emission standards

as dependent variables. Results in A11 remain stable, indicating that U.S. tariffs are associated

with higher emissions at the firm-month level relative to the emission standards.
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Moreover, we test whether the number of firms with non-zero emission data is affected by

tariff burdens. We hypothesize that due to the imposition of rigorous environmental regulations

and pollution abatement costs, polluting firms may have refrained from operating prior to the

trade war but started operations afterward. To test this hypothesis, we use the count of firms at

the city-month level that have reported at least one particle, NOx, and SO2 values as dependent

variables. We also add province-specific time trends into the estimation to account for potential

improvements in data quality over time.

Results presented in Table A12 demonstrate a significant increase in the number of emitting

firms in response to U.S. tariff burdens. Specifically, with every 1% tariff increase, the number

of CEMS firms significantly increases by 17.9% to 26.8%. This pattern is consistent across the

three pollutants and the magnitudes are similar. As our main results in Table 3 include firm

fixed effects, the estimation does not take account of newly reporting firms. New firms that

started to report later would further increase the magnitude of pollution increase in response

to tariff escalation. It is important to note that firms without positive emission reports could

experience either non-operating hours or operating but non-reporting hours. The latter scenario

is considered data manipulation when firms hide their emissions. We provide further discussion

to disentangle pollution increase or manipulation decrease in response to U.S. tariff burdens in

Section 5.

4.2.2 Firm-level tariff exposure

In this section, we investigate whether the rollback of environmental policies affects the entire

city or if it is specifically targeted at affected industries. Based on our observations of local

environmental enforcement in Sections 5.2 and 5.3, we hypothesize that firms located in cities

with high overall exposure, but operating in low-exposure industries, also emit more pollutants.

We used the hourly end-of-pipe emissions at the firm level to test this hypothesis. To assign

industry codes to the 7,639 firms in our CEMS sample, we scrape firms’ basic information from

the Tianyancha website. Our data set includes 76 industries. We merge the industry names with

the HS-8 list and calculate the industry-month-level tariff burden. Then we add the industry-

level tariff as an additional control in equation (5) to examine whether city- or industry-level

tariff drives the observed pollution increase.

The results in Table 3 Column (4) to (6) report positive and statistically significant estimates

in ∆USTariff_Cityit, similar to those observed in Column (1) to (3). This suggests that our

observed citywide tariff impacts on firm emissions remain strongly robust. In the second row,

we find positive but smaller estimates for ∆USTariff_Cityit when using particle emissions as

the dependent variable. For firms located in the same cities, those operating in high-exposure

industries exhibit higher particle emissions compared to those in industries with lower tariff

escalation. Specifically, a 1% increase in industry-wide tariffs leads to a 13.5% increase in firms’

particle emissions. In Column (6), NOx emissions are not significantly affected by U.S. tariffs
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at the city or industry level. In Column (5), the estimate on ∆USTariff_Industryit becomes

smaller and statistically imprecise. This indicates that firms located in the same cities exhibit

similar responses in terms of SO2 emissions, regardless of the burden imposed by industrial

tariffs. In other words, non-targeted industries in treated cities also experience similar increases

in SO2 emissions, indicating a city-wide relaxation of environmental policies.

5 Mechanism

If local governments perceive that the trade war may have a significant adverse effect on the local

economy, they tend to relax environmental regulations to alleviate the adverse shocks (Karplus

et al., 2021). Previous sections show that higher U.S. tariffs indeed reduced China’s exports to

the U.S. However, it did not reduce China’s total exports and even resulted in a reduction in

SO2 and PM2.5 pollution levels. In this section, we provide suggestive evidence to show that

tariff burdens lead to lenient environmental policies.

5.1 Trade war, export, and economic outputs

We begin by investigating the impact of the U.S. tariffs on China’s exports to test the impact

of the production channel following Equation 7:

∆XIpct =α0 + β1∆USTariffpt + β2∆Tariffpct +Dp′I +Dp′c +Dct + µIpct, (7)

where ∆USTariffpt denotes the log change in tariffs imposed by the U.S. on product p compared

to last year and ∆TariffIpct denotes the log change in tariffs imposed by country c on product

p compared to last year. ∆ lnXpct denotes the log of Chinese exports (i.e., export values or

duty-inclusive unit values) of product p from province I to country c at time t between January

2017 and December 2019. The regression includes HS-6 product fixed effects (Dp′I) to control

for time-invariant heterogeneity at the product-province level, HS6-product-country fixed effects

(Dp′c) to control for time-invariant heterogeneity at the product-country level and country-year-

month fixed effects (Dct) to take all country-specific time trends affecting Chinese exports into

consideration. Under the assumption that the tariff changes imposed by exporting countries

are exogenous and not correlated with unobserved shocks to Chinese exports, the estimated

coefficients β1 capture the causal impact of tariffs on Chinese exports.

The estimation results are reported in Table 4. Columns (1) and (2) of Table 4 examine

China’s export value and quantity to the U.S. in response to the exporting tariffs, respectively.

As expected, the increased exporting tariffs reduce China’s export values (quantities) to the U.S.

with a β1 elasticity of -0.6 (-0.58). Combined with the summary statistics for tariff changes in

summary statistics in Table A31, we find that one percentage point increase in the U.S. tariffs

was associated with a 0.7% decrease in export value and a 0.4% decrease in export quantity.
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Columns (3) and (4) examine the trade diversion effect. Higher tariffs increase China’s export

value (quantity) to the rest of the world with a β1 elasticity of 0.14 (0.1). Columns (5) and (6)

examine the impact on China’s total export. China’s total export remains unchanged, as the

positive trade diversion effects offsets the decline in exports to the U.S.

Table 4: Tariffs and exports

(1) (2) (3) (4) (5) (6)
Export to the U.S. to third countries to the world
∆ln(V ) ∆ln(Q) ∆ln(V ) ∆ln(Q) ∆ln(V ) ∆ln(Q)

∆ ln (1 + τ_uspt) -0.60*** -0.58*** 0.14** 0.10** 0.10 0.06
(0.12) (0.12) (0.06) (0.05) (0.07) (0.05)

∆ln (1 + τpct) -0.22 -0.07 -0.53*** -0.44**
(0.29) (0.28) (0.20) (0.20)

Observations 109,340 108,968 4,479,791 4,434,843 4,589,131 4,543,811
R-squared 0.31 0.29 0.19 0.18 0.20 0.19
HS-6 FE YES YES NO NO NO NO
HS-6 × Country FE NO NO YES YES YES YES
Country × Year-month FE NO NO YES YES YES YES
Year-month FE YES YES NO NO NO NO

Notes. Columns (1) - (6) report export values and export quantities regressed on the export tariff rates.
Columns (1) and (2) include HS-6 product fixed effects and time fixed effects. Columns (3) - (6) include
HS-6-product-country fixed effects and country-time fixed effects. Sample in Columns (1) - (2): China’s
monthly HS-8-product-level export data to the U.S. from 2017:1 to 2019:12. Sample in Columns (3) - (4):
China’s monthly HS-8-product-country-level export data to third countries from 2017:1 to 2019:12. Sample
in Columns (5) - (6): China’s monthly HS-8-product-country-level export data to all countries from 2017:1
to 2019:12. Variables are in twelve-month log change. Regressions in Columns (1) and (2) are weighted by
HS-8 product-level export value last year. Regressions in Columns (3) - (6) are weighted by HS-8 product-
country-level export value last year. Standard errors in Columns (1) and (2) are clustered by HS-6 product.
Standard errors in Columns (3) - (6) are clustered by HS-6 product and country. Significance: * 0.10, ** 0.05,
*** 0.01.

Figure 3 plots the dynamic effects. The top two figures show the impact of U.S. tariffs on

China’s exports to the U.S. measured in value and quantity, respectively. There is a sharp

decline in export after the event. The two figures in the middle show the trade diversion effect,

namely the third-country effect. Chinese exports to countries other than the U.S. increase in

response to the U.S. tariffs. The bottom two figures show the overall effect of U.S. tariffs on

China’s total exports. The direct and third-country effects offset each other and the net impact

is zero.

In addition, we use night light data as a proxy to assess firms’ economic outputs. We use

the Version 1 Nighttime Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band

dataset provided by NOAA/NCEI. It is a radiance product after removing the impact of stray

light, lightning, lunar illumination, and cloud cover, and is produced at the monthly level in 15

arc-second geographic grids. To construct our sample, we compute the average digital number at

the firm-month level for each CEMS firm, using 1km and 5km buffers projected on the gridded

night light product.

We re-estimate the first difference model and report results in Table A18. Using night light

as dependent variables, estimates on ∆USTariffit remain small and imprecise. The U.S. tariff

burdens exert no discernible impacts on the light signals around by CEMS firms. Results remain
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Figure 3: Dynamic effects of tariffs on exports
Notes. The three figures on the left show the impact of U.S. tariffs on China’s export values to the U.S.,
other countries, and all the countries, respectively. The three figures on the right show the impact of U.S.
tariffs on China’s export quantities to the U.S., other countries, and all the countries, respectively. Sample
for the top two figures: China’s monthly HS-8-product-level export from 2017:1 to 2019:12. Sample for the
two figures in the middle: China’s monthly HS-8-product-country-level export to third countries from 2017:1
to 2019:12. Sample for the two figures in the bottom: China’s monthly HS-8-product-country-level export to
all trade partners from 2017:1 to 2019:12.
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robust when employing alternative buffer zones for analysis. This suggests that earlier findings

on increased emission intensities of CEMS firms are not likely to be driven by production changes.

5.2 Environmental regulation and enforcement

5.2.1 Environmental stringency index

We then measure how lenient environmental policies are by using the text-based environmental

stringency index, originally constructed by (Chen et al., 2018). Based on local government

reports, this index quantifies the extent to which environmental protection and emission reduction

are emphasized at the city-year level. It relies on official documents where local authorities

delineate their initiatives and strategies concerning various policies. The underlying assumption

is that if local officials prioritize environmental concerns, the reports will contain more words and

sentences related to the environment. We use 15 keywords and phrases related to environmental

regulation, including PM10, PM2.5, SO2, CO2, low carbon, emission reduction, COD, pollution,

pollutant discharge, environmental protection, protect the environment, ecology, air, green, and

energy efficiency. The environmental stringency index for each phrase p in city c in year y is

calculated as:

ESIpcy =
#words in phrase p-related sentences in city c year t’s work report

#words in city c year t’s work report

ESIcy =
∑
p

#words in phrase p-related sentences in city c year t’s work report
#words in city c year t’s work report

(8)

We use ESI as the dependent variable and re-estimate equation (5). In Table 5 Column (1),

we find a negative and statistically significant effect on ∆USTariff . Specifically, as the U.S.

tariff increases by 1%, the environmental stringency index decreases by 0.77 units, equivalent to

a decrease of 118% compared to the average index value of 0.652. In Column (2), we conduct

a phrase-city-year level analysis with phrase fixed effects. Here, we find that a 1% increase

in U.S. tariff leads to a 0.07 unit decrease in the phrase-specific stringency index, 1.7 times

the mean and 85% of the standard deviation of the index. These results further support our

previous findings, indicating that local officials diminish their focus on environmental priorities

and pollution reduction in response to higher U.S. tariff burdens.

5.2.2 Fines

Apart from measuring environmental regulation, we also measure environmental enforcement

using the environmental penalty data. Local environmental agencies conduct inspections on

illegal acts and impose penalties on firms found to violate environmental regulations. These

penalties are documented and made available through annual releases on government websites.
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Each ticket includes the culpable firm’s name, industry affiliation, location, details on illegal acts,

fine amount, and environmental agency involved. Additionally, we have access to the release

date — when the event is published online — and the event date. However, it is worth noting

that the latter is inconsistently recorded, with only 18.9% of records containing the exact event

dates. Therefore, we use release dates to determine the timing and aggregate the data at the

city-year level.2

Figure A5 displays the amount of environmental fines at the city-year level before and after

the trade war. The distribution of the whole sample shows an increase in fine amounts in each

year in 2016-2019, indicating a rising trend of environmental penalties over time. We then

separate cities into high-exposure and low-exposure groups using the classification in Section

4.1.1. In Figure 4, low-exposure cities experience a more pronounced increase in environmental

fines. Meanwhile, cities more exposed to U.S. tariffs show mild increases in environmental fines.

This graphical evidence suggests that high U.S. tariffs lead to a softening of environmental

enforcement, despite an increasing trend nationwide.
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Figure 4: Environmental fine distribution before and after the trade war
Note: We calculate total environmental fine at the city-year level, and plot kernel density curves for high-exposure,
and low-exposure cities in Panel (a) and (b) respectively. Gray areas denote the 95% confidence intervals.

Using the fine data, we construct four measures for environmental enforcement, namely the

number of penalty events, events resulting in fines, total fine amount, and fine amount per event.

Results of estimating equation (5) are presented in Table 5 Column (3) to (6). In Column (3), we

find U.S. tariffs have negligible impacts on both the number of penalty tickets issued and tickets

with fines. This suggests that the local government did conduct more environmental inspections

in response to the U.S. tariff increases, despite the significant impact on the deterioration of air

quality shown in Sections 4.1.1 and 4.1.2. Under similar levels of policy enforcement, greater

pollution levels would lead to more inspections and tickets. Our findings of no discernible effect
2Table A19 displays first-difference estimation results using fine month to merge with tariff months. Results

demonstrate qualitative consistency with our favored specification in Table 5 Columns (3) to (6). High exposure
to U.S. tariffs leads to a reduction in both the overall sum of environmental fines and the fines incurred per
individual event. This suggests less stringent penalties being imposed by local environmental agencies.
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provide suggestive evidence that local environmental agencies are not as stringent as they were

before the trade shock.

In Columns (5) and (6), the estimates for ∆USTariffit are negative, significant, and large.

We find that a 1% increase in U.S. tariffs causes the total fine amount to decrease by 6.9%.

We also find that the fine amount per event also decreases significantly by 8.5%. Condition on

inspections taking place, higher exposure to U.S. tariffs corresponds to a decrease in financial

penalties. In other words, local environmental agencies adopt less stringent enforcement when

cities face elevated tariffs.

Table 5: Tariff effects on environmental stringency index and environmental fine

Stringency index ∆#Events ∆#Events ∆Total fine ∆Fine
with fine per event

(1) (2) (3) (4) (5) (6)

∆ US Tariff -0.770∗∗ -0.074∗∗∗ 0.311 0.785 -6.912∗∗ -8.530∗∗

(0.331) (0.017) (0.769) (0.800) (3.130) (3.815)
∆ China Tariff 0.255 0.019 -3.590∗∗∗ -4.094∗∗∗ -9.622∗∗ -2.729

(0.189) (0.012) (0.639) (0.591) (4.483) (4.581)
Observations 10008 150120 11880 11880 11880 11880
R-square 0.701 0.714 0.435 0.326 0.301 0.263
Y-mean 0.652 0.043 0.199 0.080 0.285 0.171
Y-sd 0.239 0.087 0.611 0.564 1.671 1.595
Phrase FEs Y
City FEs Y Y Y Y Y Y
Year-Month FEs Y Y Y Y Y Y
Notes: Sample period is from 2017:1 to 2019:12. In Column (1) to (2), we stack our sample 12 times to merge city-
year level stringency index with city-month level tariff. Column (1) sums all 15 environmental phrases together.
Column (2) uses separate ESI for each phrase and adds phrase fixed effects. In Column (3) to (6), we stack
our sample 12 times to merge city-year level fine with city-month level tariff. #Events, #Events with fine, and
Total fine are divided by 12, i.e. we assume fine events are equally distributed across the year. All the six columns
include year-month and city fixed effects. Column (2) also adds phrase fixed effects. Standard errors are clustered
at the province-year level. Significance: * 0.10, ** 0.05, *** 0.01.

We further perform separate estimations of equation (5) using penalty classification in the

data. Each event is flagged with serious violations or other violations. Results presented in

Table A20 reveal that the decrease in tariff-induced fines is primarily driven by non-serious

violations. In Panel B, a 1% increase in U.S. tariffs results in a significant 7.5% decrease in

total environmental fines and an 8.9% decrease in the fine amount per event. However, the

impact is notably smaller in Panel A, implying penalties for serious environmental violations

remain largely unaffected. The relaxation of environmental policy appears to apply to less severe

violations primarily.

We also use the number of firms that experienced environmental violations with and without

fines as dependent variables. The same firm that was fined multiple times by local environmental

agencies is counted once. As presented in Table A22, the estimates on ∆USTariffit are negative

but have low statistical significance. This suggests that there are no significant changes in the
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number of firms subjected to fines. The observed reduction in fines is less likely attributed to

changes in firm composition but a result of behavioral changes from the local environmental

agencies.

Since each fine event is coded with violation records, we explore heterogeneity across environmental

fines for different pollutants. We separate events into air, water, and solid waste-related violations.

In Table A24 Panel A, we find similar estimates on ∆USTariffit compared with those in Table

5. This implies that a substantial portion of the local environmental penalties are linked to air

pollution violations. In Panel B, we do not observe any effects on water pollution-related fines. In

Panel C, Columns (3) and (4) show negative and significant estimates on ∆USTariffit. There

is a similar relaxation in solid waste regulation, and the magnitude is similar to air pollution

fine decrease.

Moreover, we explore the heterogeneity across industries. As illustrated in Figure A6, the

decline in environmental fines is particularly noteworthy in the manufacturing.3 Specifically, a

1% increase in U.S. tariffs results in a decrease in fines of 15.2% for computer and electronic

equipment manufacturing. The effect size is 8.7% for automobile manufacturing, 8.7% for metal

mining, and 21.5% for other manufacturing. Manufacturing and high-end goods industries

bear a heavier burden of U.S. tariff escalation. They also experience the strongest decrease

in environmental fines, indicating a considerable policy relaxation within these industries. In

contrast, changes in environmental fines due to tariff burdens are not statistically significant for

research and development, fishery, food production, and pharmaceutical industries.

As a placebo test, we examine the impact of tariff burdens on non-manufacturing industries’

environmental fines. Non-manufacturing industries include dining and restaurants, sports, entertainment,

insurance, education, hotels, and social work that primarily includes neighborhood committees

and street offices. While these industries are subject to environmental fines, they are deemed less

susceptible to the impact of tariff burdens. Results in Table A23 show estimates on ∆USTariffit

are negative but have low statistical significance, indicating no discernible effects of U.S. tariff

burdens on these unrelated industries.

5.2.3 Bunching of pollution data

Another measure of lenient environmental policies lies in the manipulation of air quality data.

In China, air quality is characterized as “excellent” when PM2.5 levels are below 35µg/m3,

and as “good” when PM2.5 levels are below 75µg/m3. This critical threshold of 35µg/m3 also

corresponds to the national objective outlined in the Air Pollution Prevention and Control Action

Plan for long-term air quality targets4. Notably, local officials’ career advancements hinge on

air quality outcomes, which has been demonstrated to notably stimulate pollution reduction

endeavors by local governments (Yin and Wu, 2022). Consequently, local administrations possess
3The fines are defined as the total fines for each industry in each city. Alternatively, we also change the

dependent variable to the fine per ticket and the results are very robust.
4State Council of China. http://www.gov.cn/zhengce/2018-06/24/content5300953.htm.
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strong incentives to manipulate air pollution reports, a phenomenon that is documented by

existing empirical studies (Chen et al., 2012; Ghanem and Zhang, 2014).

We investigate the impact of tariff burdens on the tendency of local governments to manipulate

PM2.5 data, as indicated by discontinuities around the threshold of 35µg/m3. Given that the

citywide PM2.5 levels are a result of a complex interplay between firm emissions, transportation

and residential usage, wind patterns, and pollution deposition, the inherent data generation

process is expected to exhibit a smooth pattern around the government-defined threshold of

35µg/m3. The presence of discontinuities at this point could indicate deliberate efforts to

manipulate data in order to attain the classification of “excellent” air quality.

We use PM2.5 data at the hourly-monitor level and perform separate discontinuity tests for

both pre- and post-trade war periods. As shown in Figure 5, significant instances of bunching

around the threshold of 35µg/m3 are evident in both periods under consideration. Specifically,

a high density of data points is observed preceding the 35 thresholds, followed by a distinct and

abrupt drop beyond this point. This pattern remains consistent across both periods, and aligns

with the anticipated outcome of data manipulation efforts and previous empirical evidence.

Separating data into pre- and post-periods, we find more bunching after the trade war.

In Panel A of Figure 5, the density of bunching experiences a modest decrease from 0.04 to

0.03, while in the post-trade war period, this density shows a substantial drop from 0.04 to

0.25. McCrary discontinuity tests show t-statistics of 9.1 for the pre-period and 11.5 for the

post-period. This suggests that the incidence of bunching becomes more pronounced after the

trade war. There is an elevated prevalence of manipulations in the air quality data, potentially

reflecting a decrease in regulatory oversight or inspections aimed at curbing such manipulation

efforts.
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Figure 5: Bunching of PM2.5 data before and after the trade war

Note: We use monitor-hour level reports of PM2.5 2017-2019, and test if there are discontinuities around 35µg/m3.
McCrary test shows t-statistics are 9.0949 and 11.5437 in the pre- and post-period respectively.

In a similar idea, we investigate the potential bunching in firms’ emission data. Given the
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differences in emission limits across provinces, sectors, and pollutants, we calculate the difference

between actual emission concentrations and the prescribed emission limits. We conduct similar

statistical tests to determine the presence of bunching behavior in proximity to the zero difference

point. The identification of significant bunching tendencies among negative values would substantiate

our hypothesis, suggesting that firms may deliberately underestimate emission intensities in order

to align with the stipulated emission limits.
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Figure 6: Bunching of CEMS data before and after the trade war
Note: We use firm-hour level reports of CEMS emissions for SO2, NOx, and Particles 2017-2019, and calculate
emission concentrations relative to the limits. We test if there are discontinuities around 0µg/m3. McCrary test
shows t-statistics are -52.4778 and -15.682 in the pre- and post-period respectively.

We identify significant instances of bunching activities both before and after the trade war,

as illustrated in Figure 6. The data exhibits concentration values towards negative, with

conspicuous declines observed after the zero point. These observations imply strategic conduct

by firms aimed at ensuring compliance with the emission threshold. Specifically, the density of

bunching manifests a more pronounced reduction from 0.004 to 0.001 during the pre-trade war

period, followed by a comparatively smaller decrease from 0.002 to 0.001 post the trade war.

Corresponding McCrary discontinuity test statistics are -52.5 and -15.7 respectively, signifying

diminished bunching endeavors subsequent to the trade war.

This change in the bunching pattern is the opposite with the trend observed in citywide air

quality data in Figure 5. If the relaxation of environmental policies results from the combined

efforts of firms and local governments, our findings indicate that it is predominantly the local

governments that grant leeway to firms regarding their emission levels. Consequently, firms

appear to have ceased their efforts to manipulate data in order to maintain emissions below

the prescribed thresholds. Conversely, in a scenario where firms wield greater influence than

local governments, one would anticipate an upsurge in data manipulation and an increased

prevalence of bunching beneath the threshold in the CEMS data. Our results provide suggestive

evidence that the primary authority for permitting elevated pollution emissions lies with local

governments, granting polluting firms permission to do so.
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In Figure A8, we separately explore bunching patterns before and after the sunset, before

and after the trade war. Both daytime and darktime bunching activities were severe before July

2018. Employing McCrary tests with cutoffs at 0, the T-statistics reveal significant values of

-41.51 and -50.44 before and after sunset, respectively. Post-July 2018, although the severity

of bunching behaviors diminishes, they are still statistically significant. The T-statistics have

values of -7.82 prior to sunset and -14.04 thereafter. We conclude that the reduction in efforts to

manipulate data in response to the relaxation of environmental regulations exhibits uniformity

across various hours.

We also test whether this bunching reduction arises from changes within individual firms or

a decrease in the number of firms engaging in bunching. To do so, we calculate the emission

differences relative to limits, add firm fixed effects, and estimate the residuals. We then employ

a McCrary test using residuals as the dependent variables. In Figure A9, the existence of

bunching near the limit cutoffs is not statistically different from zero. This implies that the

observed changes in bunching behavior are predominantly attributable to firm compositions.

There is a reduction in the number of firms attempting to manipulate emissions data rather

than changes within firms before and after the trade war.

As a robustness check, we conduct a falsification test employing a placebo cutoff of 10µg/m3.

Figure A10 visually represents the absence of notable bunching behavior in the vicinity of

this threshold. McCrary tests’ t-statistics are -0.324 and 0.177 and are no longer statistically

significant, further corroborating the robustness of our findings.

Apart from bunching, we also investigate the potential manipulation of CEMS data by using

satellite-derived pollution levels as a benchmark. The satellite pollution data is sourced from

the MCD19A2 V6.1 product, which quantifies aerosol optical depth (AOD) at the grid-day level,

with a spatial resolution of 1km. To measure firms’ surrounding pollution, we make 15km buffers

around firms and project them on the gridded AOD products. Then we calculate the mean AOD

at the firm-day level. If correlations between CEMS particle emissions and AOD are different

before and after the trade war, the tariff burden may have affected data manipulation efforts. To

test this hypothesis, we use AOD as the dependent variable, CEMS particle data as the running

variable, and add CEMS interaction with post event dummy.

Results in Table A17 Column (1) show a positive and statistically significant estimate on

CEMS, implying a positive correlation between CEMS particle data and the satellite AOD

measurements. A 1µg/m3 increase in firms’ end-of-pipe emissions corresponds to a 0.07-unit

rise in satellite AOD measurements. Focusing on the interaction term, we find a statistically

insignificant estimate on CEMS × Post, which implies that the correlation between satellite

and CEMS data remains consistent both before and after the trade war. We conclude there is no

evidence of data manipulation efforts triggered by the tariff escalations. The findings in Section

4 likely stem from actual increases in pollution levels rather than stemming from reductions in

the manipulation of emission data.
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In a similar idea, we employ citywide air quality monitoring as a benchmark for firms’

emissions. The potential of data manipulation is more substantial in firms’ end-of-pipe emissions

compared to citywide air quality reports. Compared with government-owned monitors, firms

have a relatively higher opportunity to alter CEMS readings or upload manipulated emission

reports onto CEMS websites. To do so, we use the nearest city air quality monitor to merge

with firms’ emission data. We then employ a similar difference-in-difference model to estimate

the correlation, and whether this correlation has changed in the pre and post-trade war periods.

In Table A17 Column (2) and (3), we find positive and significant associations between firms’

particle emissions and citywide PM2.5 and PM10 levels. This confirms a substantial contribution

from manufacturing firms and power plants to the overall particulate matter levels within the

city. The correlations are slightly stronger for PM10 than PM2.5, consistent with the fact that

manufacturing emissions tend to manifest as larger-sized particulates resembling dust, whereas

PM2.5 is more likely to originate from chemical conversions and represents an aggregated, steady-

state measure of multiple emission sources.

In the second row, estimates on CEMS × Post are negative, consistent with the result

in Column (1) when using satellite AOD serves as the benchmark. The interaction term is

negative and significant when using monitor PM10 as the dependent variable. These results

provide suggestive evidence that a same-level increase in CEMS emissions corresponds to a

proportionally smaller uptick in citywide pollution levels after the trade war. In other words,

with the same magnitude of actual pollution change, CEMS reports had a relatively smaller

increase before the trade war, suggesting the possibility of data manipulation and potential

underreporting of CEMS emissions are more prevalent in the pre-period. This finding, together

with lower bunching efforts after the trade war shown in Figure 6, suggests that firms may

not consider it necessary to manipulate emission data if local governments no longer regulate

emission activities that much.

5.2.4 Media exposure and public attention

In this section, we investigate the impact of tariff burdens on media attention and public

awareness of environmental issues. To measure public attention, we utilize the Baidu search

index and media index at the county-day level and merge them with U.S. and China tariffs.

Baidu is the most popular search engine in China, and its search index serves as an effective

indicator of public interest in specific topics. Previous research has shown that this index can

reflect public awareness of environmental problems (Barwick et al., 2019; Zheng et al., 2014).

The Baidu media index is derived from the number of news articles reported by major Internet

media and included in Baidu News. The index is calculated based on keywords found in the

headlines. We hypothesize that cities facing high tariff burdens would have a reduced emphasis

on environmental regulation by local governments. They would exhibit lower newspaper and

web page coverage, leading to a decrease in the media index. We use media and search index
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for the keyword ‘smog’ as dependent variables and estimate equation (5).

In Table A21, Column (1) shows a negative and significant estimate on ∆USTariffit, suggesting

that the media index on ‘smog’ significantly decreases with U.S. tariff burdens. Specifically, a

1% increase in U.S. tariffs leads to a 2.1% decrease in the media index. This result is in line

with Section 5.2 that local officials pay less attention to environmental issues in response to the

escalation of U.S. tariffs. As media in China is subject to strict control by officials, the local

media index serves as a reliable proxy for local officials’ attention. This finding supports our

hypothesis that U.S. tariffs result in an increase in pollution due to the influence of more lenient

local environmental policies.

In Columns (2) to (4), we find negative and imprecise estimates on ∆USTariffit, indicating

that U.S. tariff burdens have no significant impact on citizens’ search behaviors of environmental

topics. The decrease in local awareness is much smaller when compared to the decline observed

in official media coverage. Despite higher levels of air pollution, citizens show little discussion

or concern about environmental issues and their awareness remains unaffected. One potential

explanation is the nighttime emissions discussed in Section 4.1.3. The increase in pollution due

to tariffs predominantly occurs during dark hours, making it less likely for residents to witness

secret pollutant discharges. Consequently, the reduced visibility of these emissions could be a

contributing factor to the lack of public environmental concern.

5.3 Political incentives

5.3.1 Local officials’ background

Local officials’ place of birth, age, and political incentive can significantly influence local pollution

emission (Meng et al., 2019; Yu et al., 2019). To begin with, we test whether local officials are

born in the current city using the background information data for party secretaries and mayors

of prefecture-level cities between 2017 and 2019 to measure promotion incentives. In Table A25,

we interact ∆USTariffit with Native Party that equals one if the party secretary is from the

same province. We also code Native Mayor to indicate if the mayor is from the same province.

We find negative estimates on both interaction terms when using AQI as the dependent variable.

This implies that cities whose local officials are natives are less likely to experience worsened

air pollution in response to the same level of U.S. tariff increases compared to cities with non-

native party secretaries. For party secretaries, estimates on interaction terms are negative,

large, and significant other pollution indicators as well, except for the PM2.5 regression. For

mayors, the results are similar. Estimates on ∆USTariffit × Native Mayor are negative for

all pollutants except NO2, and magnitudes and precision are smaller than party secretaries.

A likely explanation for the above findings is that natives care more about cities’ long-term

sustainable development and personal reputation than short-run economic development and

promotion. Therefore, they tend to stick to environmental regulations and are less likely to have

rollbacks. Since party secretaries have the highest authority over other administrators on the
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same level, their political incentives dominate other local leaders, and we find stronger effects

for party secretaries than mayors. These political incentives provide suggestive evidence for the

trade-off between long-term sustainable development and short-run benefit.

We further assess the heterogeneous effect of age and political incentives. We interact ∆USTariffit

with variable Old Party and Old Mayor to indicate if the party secretary or city mayor is above

the age of 68. This practice is to test whether senior leaders exhibit different responses to U.S.

tariff increases compared to their younger counterparts. Table A26 shows negative estimates

on ∆USTariffit ×Old Party when using AQI, SO2, PM2.5 and PM10 as dependent variables.

Results are not statistically significant when studying mayor age differences, consistent with

Table A25 that party secretaries’ incentives play a more important role in environmental policy.

Our findings suggest that cities with senior local officials who will retire soon and have fewer

chances for promotion have fewer pollution emissions.

In addition, we examine the potential impact of tenure length on local governments’ decisions

regarding environmental relaxations. When local positions feature shorter tenures, there tends

to be a decreased emphasis on long-term environmental performance, with a heightened focus

on short-term economic growth instead. In this context, local officials prioritize addressing

immediate economic challenges such as tariff exposures, rather than the long-term environmental

impact. To delve into this dynamic, we introduce an interaction term between U.S. tariffs and the

duration of city-level tenures. Results presented in Table A27 reveal negative and statistically

significant coefficients on ∆USTariffit × Tenure. This suggests that local party secretaries

with shorter tenures tend to exhibit a more pronounced increase in pollution levels and a greater

inclination towards relaxed environmental regulations.

5.3.2 Heterogeneity across locations

For political incentives, we provide further evidence on how pollution emissions vary across

locations. Due to pollution externality, areas closer to administrative boundaries may receive

fewer complaints from citizens, and less monitoring and inspection from local governments,

leading to lower environmental enforcement. To make matters worse, due to the transboundary

pollution, local governments may have lower incentives to regulate air quality near boundaries

(Gray and Shadbegian, 2004; Du et al., 2020). With full enforcement, all polluters may be

regulated in the same way. When enforcement is relaxed, polluters far away from administrative

centers may be relaxed first. To test this hypothesis, we geocode the locations of pollution

monitors and calculate the distances between each monitor and the nearest administrative

boundary. We then interact these distance variables with the tariff burdens to explore whether

the pollution increases in response to the tariff burdens are more severe for polluters that are

farther away from administrative centers.

Results in Table A28 and A29 show positive and significant estimates on ∆USTariffit,

indicating a robust relationship between tariff burdens and pollution increases. Estimates on
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the interaction terms, ∆USTariffit×Dist are negative and significant. Monitors located closer

to provincial and city boundaries observe a stronger pollution increase in response to the tariff

burdens compared to monitors situated closer to administrative centers. These results support

our hypothesis that environmental leniency is more prevalent in remote areas near administrative

boundaries, where enforcement may be relatively relaxed.

6 Health effects of air pollution rollback

In this section, we examine the mortality effects of increased air pollution by using the identified

pollution increases from Section 4.1.2 to construct a counterfactual baseline pollution level in

the absence of trade shocks. Focusing on SO2 pollution, the marginal contribution of U.S. tariff

changes is calculated as: trade shock-free SO2 = observed SO2 − identified SO2 increases due to

tariffs. We follow a similar procedure for the case of PM2.5. The marginal contribution of tariffs

is calculated as: trade shock-free PM2.5 = observed PM2.5 − identified PM2.5 increases due to

tariffs.

The next step is to estimate air pollution deaths associated with the marginal contribution

of tariff burdens. We adopt the methodology outlined by Cropper et al. (2021) to calculate

baseline deaths caused by air pollution from anthropogenic sources:

∑
i

Mi = λi ×RR(Pollutioni)× Populationi (9)

where Mi represents deaths in city i. λi denotes the death rate at the background level. While λi

is not observable, we estimate λi using mortality caused by baseline air pollution, 4.5 million per

year documented by HEI (2020). RR(Pollutioni) is the relative risk of death at the exposure

level. Populationi is the population size at the city level. Air pollution deaths without the

contribution of tariff changes (
∑

i∆Mi) can then be estimated as:

∑
i

∆Mi = λi ×RR(Pollutioni − TradePollutioni)× Populationi (10)

where TradePollutioni is the identified SO2 or PM2.5 pollution increases in city i.

We separately estimate effects of SO2 and PM2.5 using dose-response functions from Orellano

et al. (2021) and Burnett et al. (2018). PM2.5 exhibits a concave relationship with mortality

risk, with hazard ratios ranging from 1 to 1.8. On the other hand, Orellano et al. (2021) conduct

a meta-analysis to aggregate individual results on SO2 exposure and death risks. They find that

an increase of 10µg/m3 in the 24-hour average exposure to SO2 is associated with a 1.0059

relative risk for all-cause mortality. Consequently, we employ a linear relative risk function for

PM2.5 estimates based on its levels, while a constant relative risk is utilized for SO2 estimates.
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Our findings reveal that a 1% increase in U.S. tariffs corresponds to a 1% increase in SO2 levels

and a 0.7% increase in PM2.5 levels when considering all city-months collectively. Considering

the dose-response function, the elevated levels of SO2 resulting from tariff burdens are associated

with a 1.1% increase in health risks or approximately 39.2 thousand additional air pollution-

induced deaths from 2017 to 2019. Similarly, for PM2.5, a 1.4% increase or approximately

49.9 thousand additional deaths can be attributed to pollution stemming from environmental

rollbacks. It is important to note that air pollution encompasses the accumulation of various

pollutants, and as such, we do not attempt to combine these two values, as the effects are not

mutually exclusive. Consequently, we consider the estimate of 1.4% additional deaths to be the

lower bound for mortality resulting from intensified air pollution.

Earlier studies on the health effects of anthropogenic air pollution vary to a large degree.

Vohra et al. (2021) documents 10.2 million global excess deaths per year are due to PM2.5 from

fossil fuel combustion. In the U.S., 350,000 premature deaths are attributed to emissions from

the fossil industry. The number in India is 2.5 million people per year, representing over 30% of

all-cause deaths. Penney et al. (2009) estimates 6,000 to 10,700 annual deaths are attributed to

88 publicly-financed coal power plants worldwide. Cropper et al. (2021) conclude that 112,000

deaths are attributable annually to coal-fired power plants in India. Lueken et al. (2016) finds

between 7,500 and 52,000 people in the U.S. could be saved if switching from all coal plants

to gas, equivalent to between $20 billion and $50 billion in monetized benefits. In Europe,

Kushta et al. (2021) identifies 18,400-105,900 deaths are avoided from the phase-out of coal

power plants’ emissions. In Africa, Marais et al. (2019) show 48,000 premature deaths due to

fossil fuel electricity generation. Results in our paper per unit pollution increase lie in the wide

range of previous estimates. Our findings indicate the significant impact of tariff-induced policy

relaxation on air pollution-caused deaths.

The health effects are not evenly distributed across Chinese cities. Cities with high exposure

experience greater increases in U.S. tariffs, higher levels of air pollution, and more severe health

burdens. The relationship between each city’s health burden and socioeconomic variables is

presented in Table A30. Our findings indicate that high-income cities with larger populations

and higher export values bear the brunt of health burdens. This aligns with our calculation of

tariff exposure based on export structures. In summary, our analysis does not reveal evidence

of environmental injustice concerns resulting from the pollution increases or mortality effects

caused by trade shocks.

7 Conclusion

Politicians are usually confronted with a difficult trade-off, as they need to balance economic

growth with environmental protection. Despite its importance, there is limited empirical evidence.

In this paper, we fill the gap and explore this trade-off in the context of international trade

conflicts. The U.S.-China trade war provides a good setting as it can be used as a quasi-natural
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experiment to test this trade-off. Between 2018 and 2019, the U.S. government implemented a

series of protective tariffs, which provoked a cascade of retaliatory tariffs from China and other

trade partners. The trade war provides us with a source of adverse economic shocks, which

allows us to investigate how local officials’ political incentives affect firms’ pollution emissions.

Adverse economic shocks are supposed to reduce production activities and thus reduce pollution

emissions. Interestingly, we find that cities exposed to higher U.S. tariffs had worse air quality. In

the main analysis, we use the air quality monitor data to explore the environmental consequences

of the tariff increase. As the tariff burden increases by 1%, SO2 and PM2.5 increase by 0.9%

and 0.7%, respectively. The additional pollutants are mostly emitted after sunset and before

sunrise, suggesting that local officials soften environmental regulations during the trade war.

To further explore the mechanism, we find that high-exposure cities also place less emphasis

on environmental regulations based on a text-based stringency index from local government

reports. More substantial pollution increases near provincial boundaries using hourly monitor-

level air quality data. Using detailed export data, we provide additional evidence that the U.S.

punitive tariffs reduce Chinese exports to the U.S. but barely affect China’s total exports due

to trade diversion. The above evidence suggests that local government officials adopt lenient

environmental policies to mitigate the negative effect on economic activities when the economy

is at a heightened risk of economic downturn.
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A Appendix: Tables

Table A1: Timeline

Wave Date of implementation Event
Panel A. United States
Prelude
1

2018-02-07 The U.S. imposes 30% tariffs on solar panels and
20% on washing machines under two Section 201
cases.

Prelude
2

2018-03-23 The U.S. imposes 25 % Section 232 tariffs on
steel and 10 % Section 232 tariffs on aluminum
imported from China and other countries,
temporarily exempting Argentina, Australia,
Brazil, Canada, Mexico, the European Union,
and South Korea.

Wave
1

2018-07-06 The U.S. imposes 25% Section 301 tariffs on $34
billion of imports from China.

Wave
2

2018-08-23 The U.S. imposes 25% Section 301 tariffs on $16
billion of imports from China.

Wave
3

2018-09-24 The U.S. imposes 10% Section 301 tariffs on $200
billion of imports from China.

Wave
4

2019-06-15 The U.S. raises Section 301 tariffs from 10% to
25% on $200 billion of imports from China.

Wave
5

2019-09-01 The U.S. imposes 15% tariffs on $101 billion of
imports from China.

Panel B. China
Prelude
1

2018-04-02 China imposes 15% or 25% retaliatory tariffs on
$2.4 billion of imports from the U.S. in response
to U.S. Section 232 tariffs on steel and aluminum
tariffs.

Wave
1

2018-07-06 China imposes 25% retaliatory tariffs on $34
billion of imports from the U.S. in response to
U.S. Section 301 tariffs imposed on July 6, 2018.

Wave
2

2018-08-23 China imposes 25% retaliatory tariffs on $16
billion of imports from the U.S. in response to
U.S. Section 301 tariffs imposed on August 23,
2018.

Wave
3

2018-09-24 China imposes 5% or 10% retaliatory tariffs on
$60 billion of imports from the U.S. in response
to U.S. Section 301 tariffs imposed on September
24, 2018.

Wave
4

2019-06-01 China imposes an additional 5%, 10%, or 15%
tariffs on a subset of the existing product list
implemented on September 24, 2018, in response
to the U.S. Section 301 tariff increase imposed on
June 15, 2019.

Wave
5

2019-09-01 China imposes an additional 5% or 10% tariffs
on $75 billion of imports from the U.S. in
response to the U.S. Section 301 tariff increase
imposed on September 1, 2019.
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Table A2: Robustness: Dropping 2017

∆AQI ∆SO2 ∆NO2 ∆PM2.5 ∆PM10

∆ US Tariff 0.733∗∗∗ 1.845∗∗∗ 0.900∗∗∗ 1.053∗∗∗ 0.696∗∗∗

(0.202) (0.459) (0.299) (0.309) (0.268)
∆ China Tariff 0.324∗∗ 0.330 0.794∗∗∗ -0.158 0.477∗∗

(0.159) (0.289) (0.171) (0.208) (0.190)
Observations 32334 32334 32334 32334 32334
R-square 0.265 0.230 0.209 0.236 0.282
Y-mean -0.065 -0.215 -0.061 -0.089 -0.089
Y-sd 0.217 0.383 0.251 0.291 0.271
Monitor FEs Y Y Y Y Y
Year-Month FEs Y Y Y Y Y
Notes: Standard errors are clustered at the station-month level.

Table A3: Robustness: Month-on-month change in pollution

∆AQI ∆SO2 ∆NO2 ∆PM2.5 ∆PM10

∆ US Tariff 3.402∗∗∗ 0.980 0.149 5.030∗∗∗ 1.920
(0.978) (1.176) (0.973) (1.277) (1.176)

∆ China Tariff -1.612∗∗∗ -1.017∗∗ -0.183 -1.777∗∗∗ -2.103∗∗∗

(0.354) (0.472) (0.459) (0.567) (0.463)
Observations 49044 49044 49044 49044 49044
R-square 0.400 0.211 0.444 0.409 0.438
Y-mean -0.008 -0.021 -0.004 -0.009 -0.010
Y-sd 0.227 0.301 0.250 0.309 0.275
Monitor FEs Y Y Y Y Y
Year-Month FEs Y Y Y Y Y
Notes: Standard errors are clustered at the station-month level.

Table A4: Robustness: City-month level pollution

∆AQI ∆SO2 ∆NO2 ∆PM2.5 ∆PM10

∆ US Tariff 0.629∗∗ 1.649∗∗ 0.482 0.853∗ 0.571
(0.309) (0.683) (0.337) (0.437) (0.393)

∆ China Tariff -0.084 -0.077 0.669∗∗∗ -0.658∗∗ -0.140
(0.229) (0.432) (0.207) (0.295) (0.265)

Observations 11844 11844 11844 11844 11844
R-square 0.241 0.209 0.239 0.206 0.257
Y-mean -0.052 -0.193 -0.034 -0.081 -0.069
Y-sd 0.213 0.333 0.223 0.278 0.266
City FEs Y Y Y Y Y
Year-Month FEs Y Y Y Y Y
Notes: Standard errors are clustered at the city-month level.

41



Table A5: Robustness: Weighted regression using city GDP

∆AQI ∆SO2 ∆NO2 ∆PM2.5 ∆PM10

∆ US Tariff 1.102∗∗ 0.289 0.600 1.529∗∗ 0.966
(0.558) (0.905) (0.490) (0.739) (0.649)

∆ China Tariff -0.107 -0.910∗ -0.244 -0.577 0.032
(0.354) (0.476) (0.268) (0.498) (0.392)

Observations 10332 10332 10332 10332 10332
R-square 0.251 0.254 0.288 0.220 0.268
Y-mean -0.050 -0.211 -0.035 -0.078 -0.065
Y-sd 0.202 0.283 0.186 0.257 0.240
City FEs Y Y Y Y Y
Year-Month FEs Y Y Y Y Y
Notes: Standard errors are clustered at the city-month level.

Table A6: Placebo: effect of the current tariff on last year’s pollution

∆AQI ∆SO2 ∆NO2 ∆PM2.5 ∆PM10

∆ US Tariff -0.788∗ -0.314 -0.338 -1.028∗ -0.772
(0.420) (0.627) (0.451) (0.580) (0.501)

∆ China Tariff -0.048 -0.003 0.036 -0.205 0.053
(0.238) (0.381) (0.215) (0.304) (0.266)

Observations 48630 48630 48630 48630 48630
R-square 0.232 0.161 0.158 0.194 0.232
Y-mean -0.051 -0.172 -0.010 -0.082 -0.057
Y-sd 0.233 0.433 0.306 0.308 0.287
Monitor FEs Y Y Y Y Y
Year-Month FEs Y Y Y Y Y
Notes: Standard errors are clustered at the monitor-month level.

Table A7: Placebo: effect of the tariff on weather conditions

∆Temperature ∆Wind speed ∆Humidity

∆ US Tariff -0.192 -0.077 -0.056
(0.570) (0.278) (1.416)

∆ China Tariff 0.313 0.009 0.732
(0.357) (0.153) (0.576)

Observations 9306 9306 9306
R-square 0.275 0.223 0.218
Y-mean -0.001 0.000 -0.047
Y-sd 0.286 0.124 0.475
Monitor FEs Y Y Y
Year-Month FEs Y Y Y
Notes: Standard errors are clustered at the city-month level.
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Table A8: Effect on air pollution non-attainment for excellent standards

∆AQI ∆SO2 ∆NO2 ∆PM2.5 ∆PM10

∆ US Tariff 0.929∗∗∗ 0.349∗∗∗ 0.258∗∗∗ 0.314∗∗ 0.870∗∗∗

(0.122) (0.102) (0.083) (0.136) (0.128)
∆ China Tariff 0.178∗∗∗ 0.035 0.079∗ -0.106 0.271∗∗∗

(0.064) (0.054) (0.044) (0.072) (0.065)
Observations 52812 52812 52812 52812 52812
R-square 0.736 0.771 0.810 0.748 0.742
Y-mean 0.591 0.092 0.084 0.458 0.586
Y-sd 0.266 0.241 0.230 0.292 0.271
Monitor FEs Y Y Y Y Y
Year-Month FEs Y Y Y Y Y
Notes: Standard errors are clustered at the monitor-month level.

Table A9: Effect on air pollution non-attainment for good standards

∆AQI ∆SO2 ∆NO2 ∆PM2.5 ∆PM10

∆ US Tariff 0.153 0.157∗∗ 0.258∗∗∗ 0.205∗ 0.058
(0.107) (0.080) (0.083) (0.107) (0.091)

∆ China Tariff -0.015 0.098∗∗ 0.079∗ 0.012 0.057
(0.057) (0.045) (0.044) (0.054) (0.054)

Observations 52812 52812 52812 52812 52812
R-square 0.750 0.833 0.810 0.743 0.767
Y-mean 0.201 0.068 0.084 0.173 0.141
Y-sd 0.267 0.228 0.230 0.262 0.247
Monitor FEs Y Y Y Y Y
Year-Month FEs Y Y Y Y Y
Notes: Standard errors are clustered at the monitor-month level.
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Table A10: Restricting firms with observations every quarter

∆Particles ∆SO2 ∆NOx

∆ US Tariff 25.717∗∗∗ 30.882∗∗ -12.692
(8.629) (14.268) (8.894)

∆ China Tariff 0.347 -4.999 -2.744
(3.125) (5.251) (3.511)

Observations 773 702 762
R-square 0.512 0.501 0.494
Y-mean -0.115 -0.204 -0.106
Y-sd 1.066 1.228 0.745

Firm FEs Y Y Y
Year-Month FEs Y Y Y
Notes: Sample period is 2018-2019. Firms are required to
report data every quarter. Standard errors are clustered at
the province level.

Table A11: Emission concentration relative to limits

(Concentration - limit) / limit
∆Particles ∆SO2 ∆NOx

∆ US Tariff 26.817∗∗∗ 24.209 -10.608
(7.903) (27.569) (17.314)

∆ China Tariff 3.347 -7.400 2.419
(7.570) (17.809) (10.377)

Observations 2868 2739 2711
R-square 0.489 0.478 0.328
Y-mean -0.303 -0.309 -0.123
Y-sd 1.244 1.885 1.839

Firm FEs Y Y Y
Year-Month FEs Y Y Y
Notes: Standard errors are clustered at the province level.
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Table A12: Number of firms in the CEMS data

∆#Firms with ∆#Firms with ∆#Firms with
Particles data SO2 data NOx data

∆ US Tariff 17.884∗∗∗ 21.189∗∗∗ 26.785∗∗∗

(5.261) (6.049) (7.338)
∆ China Tariff 0.137 0.791 1.194

(2.368) (1.831) (1.837)
Observations 2090 1979 1974
R-square 0.625 0.624 0.601
Y-mean 0.219 0.215 0.227
Y-sd 1.260 1.260 1.222

City FEs Y Y Y
Year-Month FEs Y Y Y
Notes: Standard errors are clustered at the province level.

Table A13: Dynamic effects by quarter

∆AQI ∆SO2 ∆NO2 ∆PM2.5 ∆PM10

∆ US Tariff × 2018q3 -2.851∗∗∗ -4.270∗∗∗ -1.955∗∗ -4.981∗∗∗ -3.573∗∗∗

(0.588) (1.646) (0.936) (1.083) (0.728)
∆ US Tariff × 2018q4 1.959∗∗∗ 0.135 3.924∗∗∗ 2.611∗∗∗ 2.018∗∗∗

(0.627) (0.988) (0.623) (0.861) (0.743)
∆ US Tariff × 2019q1 1.507∗∗ -0.687 2.486∗∗∗ 0.986 2.713∗∗∗

(0.590) (0.929) (0.623) (0.830) (0.651)
∆ US Tariff × 2019q2 0.267 -2.643∗∗∗ 1.048∗ 1.278∗∗ 0.226

(0.342) (0.869) (0.545) (0.619) (0.481)
∆ US Tariff × 2019q3 .124 1.61∗∗∗ .538 .0703 .124

(.226) (.612) (.421) (.363) (.306)
∆ US Tariff × 2019q4 .689∗∗ 2.81∗∗∗ -.454 .976∗∗ .724∗

(.311) (.716) (.426) (.432) (.416)
∆ China Tariff -.124 -.0974 .35∗∗ -.673∗∗∗ -.0633

(.135) (.275) (.15) (.183) (.158)
Observations 48868 48868 48868 48868 48868
R-square 0.277 0.187 0.195 0.234 0.280
Y-mean -0.048 -0.193 -0.027 -0.075 -0.064
Y-sd 0.221 0.402 0.271 0.296 0.275

FEs Monitor, Prov-Month, Year-Month;
∆ US Tariff × 2017q1 to 2018q2

Notes: Standard errors are clustered at the monitor-month level.
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Table A14: Effects by hour

Effects at 2pm
∆AQI ∆SO2 ∆NO2 ∆PM2.5 ∆PM10

∆ US Tariff 0.036 0.650 0.097 0.306 -0.248
(0.217) (0.447) (0.365) (0.327) (0.285)

∆ China Tariff 0.063 -0.498∗ -0.205 -0.355∗ 0.048
(0.159) (0.298) (0.216) (0.212) (0.200)

Observations 48811 48811 48811 48811 48811
R-square 0.226 0.149 0.109 0.177 0.214
Y-mean -0.037 -0.188 -0.049 -0.076 -0.065
Y-sd 0.243 0.423 0.347 0.331 0.310

Effects at 10pm

∆ US Tariff 0.742∗∗∗ 1.118∗∗ 1.177∗∗∗ 0.575∗ 0.834∗∗∗

(0.209) (0.492) (0.313) (0.301) (0.265)
∆ China Tariff -0.298∗∗ -0.134 0.759∗∗∗ -0.839∗∗∗ -0.377∗∗

(0.144) (0.297) (0.165) (0.192) (0.167)
Observations 48813 48813 48813 48813 48813
R-square 0.201 0.152 0.171 0.180 0.209
Y-mean -0.054 -0.192 -0.024 -0.077 -0.068
Y-sd 0.237 0.442 0.293 0.313 0.295

Monitor FEs Y Y Y Y Y
Year-Month FEs Y Y Y Y Y
Notes: Standard errors are clustered at the monitor-month level.

Table A15: Before vs. after working hours (8am-6pm)

Off hour - working hour
∆AQI diff ∆SO2 diff ∆NO2 diff ∆PM2.5 diff ∆PM10 diff

∆ US Tariff 9.801∗∗∗ 2.279 1.151 6.250∗∗∗ 11.583∗∗∗

(2.343) (1.440) (1.089) (1.780) (2.425)
∆ China Tariff -2.744∗∗ -0.018 1.691∗∗∗ -1.804∗ -2.329

(1.383) (1.056) (0.437) (0.990) (1.793)
Observations 48855 48855 48855 48855 48855
R-square 0.066 0.078 0.124 0.064 0.055
Y-mean -0.169 0.068 0.073 -0.012 -0.034
Y-sd 2.057 1.353 0.955 1.597 2.284

Monitor FEs Y Y Y Y Y
Year-Month FEs Y Y Y Y Y
Notes: Standard errors are clustered at the monitor-month level.
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Table A16: Firm emissions before vs. after sunset

Panel A: Daytime
∆Particles ∆SO2 ∆NOx

∆ US Tariff 15.909∗ 12.566∗ -14.479∗∗

(9.197) (6.878) (6.288)
∆ China Tariff 3.431 -8.838 -0.382

(4.129) (8.536) (2.807)
Observations 3058 2935 3006
R-square 0.489 0.483 0.410
Y-mean -0.284 -0.293 -0.132
Y-sd 1.036 1.160 0.879

Panel B: Nighttime

∆ US Tariff 18.340 22.953∗∗ -10.737∗

(16.451) (10.912) (5.828)
∆ China Tariff 3.248 -12.100 0.850

(4.047) (7.758) (3.554)
Observations 2627 2607 2643
R-square 0.508 0.463 0.456
Y-mean -0.340 -0.292 -0.116
Y-sd 0.959 1.291 0.932

Firm FEs Y Y Y
Year-Month FEs Y Y Y
Notes: Sample period is 2018-2019. Firms are required to
report data every quarter. Standard errors are clustered at
the province level.

Table A17: Correlation of CEMS and satellite AOD and citywide air quality data

Satellite AOD Citywide PM10 Citywide PM2.5

CEMS 0.070∗ 0.029∗∗∗ 0.014∗∗∗

(0.037) (0.007) (0.005)
CEMS × Post -0.139 -0.028∗ -0.014

(0.090) (0.015) (0.011)
Observations 27983 26481 26406
R-square 0.662 0.750 0.745
Y-mean 626.941 72.864 40.816
Y-sd 208.329 32.779 20.668

Firm FEs Y Y Y
Year-Month FEs Y Y Y
Notes: Sample period is 2017-2019. Standard errors are clustered at the province-
month level.
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Table A18: Tariff effects night light around CEMS firms

Night light within 1km Night light within 5km

∆ US Tariff 1.392 0.999
(0.977) (0.927)

∆ China Tariff 0.641 0.747∗

(0.436) (0.388)
Observations 259416 259416
R-square 0.131 0.176
Y-mean 0.092 0.093
Y-sd 0.456 0.337

Firm FEs Y Y
Year-Month FEs Y Y
Notes: Sample period is 2017-2019. Standard errors are clustered at the city level.

Table A19: Tariff effects on environmental fine using fine month

∆#Events ∆#Events with fine ∆Total fine ∆Fine per event
(1) (2) (3) (4)

∆ US Tariff -1.836 -2.132 -8.263 -7.224
(1.915) (1.831) (10.657) (9.926)

∆ China Tariff -4.451∗∗∗ -4.729∗∗∗ -26.203∗∗∗ -23.055∗∗∗

(1.270) (1.189) (6.200) (5.738)
Observations 11593 11593 11593 11593
R-square 0.187 0.159 0.100 0.086
Y-mean 0.103 0.078 0.390 0.330
Y-sd 1.248 1.181 5.943 5.451
City FEs Y Y Y Y
Year-Month FEs Y Y Y Y
Notes: Sample period is from 2017:1 to 2019:12. We use the inconsistently-recorded fine month to merge
with city-month level tariff. All columns include year-month and city fixed effects. Standard errors are
clustered at the province-year level.
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Table A20: Tariff effects on environmental fine: serious and other violation

Panel A: Serious violation
∆#Events ∆#Events with fine ∆Total fine ∆Fine per event

(1) (2) (3) (4)

∆ US Tariff 0.606∗∗∗ 0.526∗∗∗ 3.692 -0.635
(0.189) (0.140) (5.789) (7.173)

∆ China Tariff -0.159 -0.160 -8.090∗∗ -9.531∗∗

(0.190) (0.147) (4.018) (4.838)
Observations 11880 11880 11880 11880
R-square 0.309 0.260 0.264 0.261
Y-mean 0.019 0.010 0.545 0.672
Y-sd 0.127 0.089 3.982 4.895

Panel B: Other violation

∆ US Tariff 0.087 0.694 -7.533∗∗ -8.887∗∗

(0.775) (0.811) (3.151) (3.798)
∆ China Tariff -3.621∗∗∗ -4.096∗∗∗ -9.329∗∗ -2.423

(0.660) (0.588) (4.489) (4.579)
Observations 11880 11880 11880 11880
R-square 0.432 0.326 0.298 0.261
Y-mean 0.195 0.078 0.272 0.164
Y-sd 0.614 0.565 1.678 1.592
City FEs Y Y Y Y
Year-Month FEs Y Y Y Y
Notes: Sample period is from 2017:1 to 2019:12. We stack our sample 12 times to merge city-year level
fine with city-month level tariff. #Events, #Events with fine, and Total fine are divided by 12, i.e. we
assume fine events are equally distributed across the year. All columns include year-month and city fixed
effects. Standard errors are clustered at the province-year level.

Table A21: Tariff effects on media and search index on “smog”

Media index Search index
Overall PC Mobile

∆ US Tariff -2.128∗∗∗ -0.334 -0.001 -0.177
(0.591) (1.541) (1.661) (1.384)

∆ China Tariff 1.090∗∗∗ -0.224 -0.622 -0.555
(0.245) (0.681) (0.952) (0.763)

Observations 10656 10656 10656 10656
R-square 0.917 0.863 0.788 0.833
Y-mean 2.434 3.812 2.658 3.358
Y-sd 1.849 1.422 1.427 1.476

County FEs Y Y Y Y
Year-Month FEs Y Y Y Y
Notes: Standard errors are clustered at the province-month level.
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Table A22: Tariff effects on the number of firms with environmental violations

∆#Firms ∆#Firms with fine
(1) (2)

∆ US Tariff -0.934 -0.863
(1.154) (1.249)

∆ China Tariff -5.684∗∗∗ -6.953∗∗∗

(1.096) (1.469)
Observations 11880 11880
R-square 0.471 0.333
Y-mean 0.301 0.121
Y-sd 0.904 0.871
City FEs Y Y
Year-Month FEs Y Y
Notes: Sample period is from 2017:1 to 2019:12. We stack our
sample 12 times to merge city-year level firm count with city-
month level tariff. Both columns include year-month and city
fixed effects. Standard errors are clustered at the province-
year level.

Table A23: Tariff effects on environmental fine of unrelated sectors

∆Total fine ∆Fine per event
(1) (2)

∆ US Tariff -10.948 -27.959
(18.140) (21.690)

Observations 5904 5904
R-square 0.169 0.168
Y-mean 0.069 0.109
Y-sd 3.999 5.182
City FEs Y Y
Year-Month FEs Y Y
Notes: Sample period is from 2017:1 to 2019:12. We stack
our sample 12 times to merge city-year level fine with city-
month level tariff. Non-manufacturing industries include dining
and restaurants, sports, entertainment, insurance, education,
hotels, and social work, which primarily includes neighborhood
committees and street offices. All columns include year-month
and city fixed effects. Standard errors are clustered at the
province-year level.
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Table A24: Tariff effects on environmental fine: separate by pollution types

Panel A: Air pollution
∆#Events ∆#Events with fine ∆Total fine ∆Fine per event

(1) (2) (3) (4)

∆ US Tariff 0.298 0.768 -6.751∗∗ -8.370∗∗

(0.769) (0.798) (3.134) (3.823)
∆ China Tariff -3.557∗∗∗ -4.058∗∗∗ -9.620∗∗ -2.794

(0.638) (0.591) (4.484) (4.581)
Observations 11880 11880 11880 11880
R-square 0.434 0.326 0.301 0.263
Y-mean 0.199 0.081 0.286 0.171
Y-sd 0.612 0.565 1.668 1.595

Panel B: Water pollution

∆ US Tariff 0.050 0.075 4.689 6.267
(0.104) (0.103) (3.528) (4.415)

∆ China Tariff -0.054∗ -0.022 -1.894 -3.115
(0.030) (0.027) (1.634) (2.165)

Observations 11880 11880 11880 11880
R-square 0.451 0.446 0.140 0.134
Y-mean -0.002 -0.003 0.078 0.102
Y-sd 0.090 0.086 2.549 3.279

Panel C: Solid waste pollution

∆ US Tariff 0.043 -0.097∗∗∗ -6.319∗∗∗ -9.040∗∗∗

(0.047) (0.022) (1.588) (2.210)
∆ China Tariff 0.013 0.012 1.196 1.738

(0.019) (0.010) (0.855) (1.169)
Observations 11880 11880 11880 11880
R-square 0.044 0.098 0.152 0.159
Y-mean 0.000 0.000 0.008 0.014
Y-sd 0.032 0.019 0.776 1.038
City FEs Y Y Y Y
Year-Month FEs Y Y Y Y
Notes: Sample period is from 2017:1 to 2019:12. We stack our sample 12 times to merge city-year level
fine with city-month level tariff. #Events, #Events with fine, and Total fine are divided by 12, i.e. we
assume fine events are equally distributed across the year. All columns include year-month and city fixed
effects. Standard errors are clustered at the province-year level.
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Table A25: Local leaders are from native provinces or not

∆AQI ∆SO2 ∆NO2 ∆PM2.5 ∆PM10

∆ US Tariff 1.033∗∗∗ 3.107∗∗∗ 3.347∗∗∗ 0.466 1.265∗∗∗

(0.275) (0.619) (0.405) (0.416) (0.354)
∆ US Tariff × Native Party -0.475∗ -3.492∗∗∗ -3.252∗∗∗ 0.129 -0.760∗∗

(0.288) (0.636) (0.416) (0.425) (0.362)
∆ US Tariff × Native Mayor -1.672∗ -0.715 2.432∗ -1.599 -1.188

(0.941) (1.817) (1.283) (1.350) (1.368)
∆ China Tariff -0.018 -0.380 0.323∗∗ -0.578∗∗∗ 0.156

(0.138) (0.257) (0.147) (0.188) (0.159)
Observations 44375 44375 44375 44375 44375
R-square 0.231 0.170 0.173 0.192 0.243
Y-mean -0.047 -0.195 -0.027 -0.073 -0.062
Y-sd 0.218 0.403 0.269 0.293 0.270

Monitor FEs Y Y Y Y Y
Year-Month FEs Y Y Y Y Y
Notes: Standard errors are clustered at the monitor-month level.

Table A26: Local leaders are above or below 68

∆AQI ∆SO2 ∆NO2 ∆PM2.5 ∆PM10

∆ US Tariff 0.662∗∗∗ 0.471 0.905∗∗∗ 0.564∗ 0.701∗∗∗

(0.198) (0.441) (0.288) (0.298) (0.253)
∆ US Tariff × Old Party -1.032 -8.443∗∗∗ 0.855 -2.827 -2.959∗

(1.235) (2.258) (1.678) (1.960) (1.564)
∆ US Tariff × Old Mayor 0.905 9.644∗∗ 2.248 0.575 0.395

(2.202) (4.243) (2.425) (3.244) (2.888)
∆ China Tariff -0.020 -0.405 0.230 -0.549∗∗∗ 0.163

(0.138) (0.259) (0.147) (0.192) (0.159)
Observations 44375 44375 44375 44375 44375
R-square 0.231 0.170 0.171 0.192 0.243
Y-mean -0.047 -0.195 -0.027 -0.073 -0.062
Y-sd 0.218 0.403 0.269 0.293 0.270

Monitor FEs Y Y Y Y Y
Year-Month FEs Y Y Y Y Y
Notes: Standard errors are clustered at the monitor-month level.
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Table A27: Local leaders’ tenure length

∆AQI ∆SO2 ∆NO2 ∆PM2.5 ∆PM10

∆ US Tariff 1.169∗∗∗ 0.103 2.450∗∗∗ 3.391∗∗∗ 0.572
(0.448) (1.051) (0.675) (0.655) (0.566)

∆ US Tariff × Tenure Party -0.132 0.068 -0.471∗∗ -0.896∗∗∗ 0.086
(0.131) (0.298) (0.207) (0.193) (0.165)

∆ China Tariff -0.112 0.033 0.440∗∗∗ -0.620∗∗∗ -0.056
(0.136) (0.274) (0.152) (0.183) (0.160)

Observations 45182 45182 45182 45182 45182
R-square 0.230 0.172 0.175 0.193 0.241
Y-mean -0.047 -0.196 -0.027 -0.073 -0.063
Y-sd 0.218 0.404 0.270 0.292 0.270

Monitor FEs Y Y Y Y Y
Year-Month FEs Y Y Y Y Y
Notes: Standard errors are clustered at the monitor-month level.

Table A28: Heterogeneity across distances to province boundaries

∆AQI ∆SO2 ∆NO2 ∆PM2.5 ∆PM10

∆ US Tariff 1.018∗∗∗ 1.496∗∗ 1.417∗∗∗ 1.701∗∗∗ 0.893∗∗

(0.279) (0.606) (0.382) (0.422) (0.349)
∆ US Tariff × Dist -0.006∗∗ -0.008 -0.007 -0.014∗∗∗ -0.003

(0.003) (0.006) (0.005) (0.004) (0.004)
∆ China Tariff -0.095 -0.113 0.432∗∗∗ -0.629∗∗∗ -0.031

(0.134) (0.272) (0.149) (0.182) (0.158)
Observations 48868 48868 48868 48868 48868
R-square 0.228 0.169 0.178 0.192 0.239
Y-mean -0.048 -0.193 -0.027 -0.075 -0.064
Y-sd 0.221 0.402 0.271 0.296 0.275

Monitor FEs Y Y Y Y Y
Year-Month FEs Y Y Y Y Y
Notes: Standard errors are clustered at the monitor-month level.
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Table A29: Heterogeneity across distances to city boundaries

∆AQI ∆SO2 ∆NO2 ∆PM2.5 ∆PM10

∆ US Tariff 0.956∗∗∗ -0.911∗ 0.553∗ 1.413∗∗∗ 1.165∗∗∗

(0.245) (0.528) (0.328) (0.372) (0.308)
∆ US Tariff × Dist -0.014∗∗ 0.072∗∗∗ 0.014 -0.027∗∗∗ -0.020∗∗

(0.007) (0.013) (0.009) (0.010) (0.009)
∆ China Tariff -0.104 -0.077 0.437∗∗∗ -0.647∗∗∗ -0.042

(0.134) (0.273) (0.150) (0.181) (0.158)
Observations 48868 48868 48868 48868 48868
R-square 0.228 0.170 0.178 0.192 0.239
Y-mean -0.048 -0.193 -0.027 -0.075 -0.064
Y-sd 0.221 0.402 0.271 0.296 0.275

Monitor FEs Y Y Y Y Y
Year-Month FEs Y Y Y Y Y
Notes: Standard errors are clustered at the monitor-month level.

Table A30: Mortality effects and city covariates

PM2.5-induced
mortality increase

GDP 0.405
(0.603)

Population 8.579
(5.797)

Export value added 0.001
(0.001)

Observations 288 329 329
R-square 0.002 0.007 0.005
Y-mean 0.442 0.416 0.416
Y-sd 0.332 0.337 0.337

Notes: Sample period is average effect at the city level in
2017-2019.
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Table A31: Summary statistics

Obs Mean SD Min Max P1 P5 P10 P25 P75 P90 P95 P99
Panel A. China
∆lnp∗igtqigt 2,127,210 0.00 0.71 -14.89 14.81 -1.86 -0.82 -0.50 -0.19 0.20 0.50 0.82 1.87
∆lnqigt 2,127,210 0.00 0.76 -18.66 18.73 -1.91 -0.83 -0.52 -0.19 0.20 0.51 0.83 1.90
∆lnp∗igt 2,127,210 0.00 0.39 -17.39 16.11 -1.14 -0.34 -0.17 -0.05 0.06 0.17 0.33 1.13
∆lnpigt 2,127,210 0.00 0.39 -17.39 16.11 -1.14 -0.34 -0.17 -0.05 0.06 0.17 0.33 1.13
∆ln(1 + τigt) 2,127,210 0.00 0.01 -0.37 0.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Panel B. United States
∆lnp∗igtqigt 3,318,350 -0.00 0.66 -11.04 11.57 -1.96 -0.78 -0.48 -0.19 0.19 0.46 0.76 1.93
∆lnqigt 3,318,350 -0.00 0.73 -16.75 16.61 -2.24 -0.86 -0.52 -0.20 0.19 0.50 0.83 2.20
∆lnp∗igt 3,318,350 0.00 0.52 -15.60 15.47 -1.60 -0.47 -0.22 -0.06 0.07 0.23 0.46 1.62
∆lnpigt 3,318,350 0.00 0.52 -15.60 15.47 -1.60 -0.46 -0.22 -0.06 0.07 0.24 0.46 1.63
∆ln(1 + τigt) 3,318,350 0.00 0.01 -0.44 0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06

Notes. All the statistics are weighted by the country-product-level import data in 2017. For China and the
U.S., product codes are defined at the HS-8 level and HS-10 level, respectively. Sample in Panel A: China’s
monthly country-HS-8-product-level import data from all countries from 2017:1 to 2019:12. Sample in Panel
B: U.S. monthly country-HS-10-product-level import data from all countries from 2017:1 to 2019:12.
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B Appendix: Figures

Figure A1: U.S. and Chinese tariffs
Note: The figure presents the U.S. punitive tariffs on Chinese products (solid blue line) and its MFN tariffs
(dash-dotted blue line), as well as the import-weighted average Chinese retaliatory tariff rates on U.S. products
(solid red line) and its MFN tariffs (dash-dotted red line). U.S. tariffs are weighed by the U.S. country-HS-
10-product-level imports in 2017. Chinese tariffs are weighed by China’s country-HS-8-product-level imports in
2017.
Source: Authors’ calculations based on data from China’s Ministry of Commerce, Customs General
Administration of China, the United States Census Bureau, United States Trade Representative (USTR), and
United States International Trade Commission.
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(a) U.S. statutory tariffs (%)

(b) Chinese statutory tariffs (%)

Figure A2: U.S. and Chinese statutory tariffs by products
Note: Panel A presents the import-weighted U.S. tariff on Chinese products by industry, where weights are U.S.
HS-10 imports from China in 2017. Panel B presents the import-weighted Chinese tariff rates on U.S. products
by industry, where weights are China’s imports from the U.S. in 2017 varying by HS-8. Food refers to cooking
oil, sugar, drinks, and tobacco. Plastics refers to plastics, leathers, wood, and paper. Raw Materials refer to
chemicals, crude oil, and mineral products. Textiles refer to textiles and footwear, toys, and furniture. Electronics
refers to electronics and equipment. Vehicles refer to motor vehicles, ships, and boats. Aircraft refers to aircraft,
railways, and weapons.
Source: Authors’ calculations based on data from China’s Ministry of Commerce, Customs General
Administration of China, the United States Census Bureau, the United States Trade Representative (USTR),
and the United States International Trade Commission (USITC).
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Figure A3: Import share by products
Note: The figure presents China’s imports from the U.S. as a share of its total imports from the world (orange) and
U.S. import share from China in 2017 (pink) by product category. Food refers to cooking oil, sugar, drinks, and
tobacco. Plastics refers to plastics, leathers, wood, and paper. Raw Materials refers to chemicals, crude oil, and
mineral products. Textiles refers to textiles and footwear, toys, and furniture. Electronics refers to electronics
and equipment. Vehicles refers to motor vehicles, ships, and boats. Aircraft refers to aircraft, railways, and
weapons.
Source: Authors’ calculations based on data from UN Comtrade.
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Figure A4: U.S. tariff and air pollution over time
Notes: These figures display binscatter plots for the year-to-year monthly changes of U.S. tariffs, SO2, and PM2.5, where

city-level tariffs are weighted by exports. Cities are classified into two groups based on their U.S. tariff exposure.
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Figure A5: Environmental fine distribution

Note: We calculate total environmental fine at the city-year level, and plot kernel density curves for all cities.
Gray areas denote the 95% confidence intervals.
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Figure A6: Tariff effects on environmental fine, heterogeneity across industries

Note: This figure plots the estimated coefficients on ∆USTariffit and 95% confidence intervals. We use the total
fine of different industries as dependent variables. Sample and specifications are the same as Table 5 Column(5).
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(a) High-exposure cities, January 2017 - June 2018
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(b) High-exposure cities, July 2018 - December 2019
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(c) Low-exposure cities, January 2017 - June 2018
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(d) Low-exposure cities, July 2018 - December 2019

Figure A7: Bunching of PM2.5 in high- and low-exposure cities, before and after the trade war

Note: We use monitor-hour level reports of PM2.5 2017-2019, and test if there are discontinuities around 35µg/m3.
For high-exposure cities, McCrary test shows t-statistics are 9.1781 and 11.5564 in the pre- and post-period
respectively. For low-exposure cities, McCrary test shows t-statistics are 1.5069 and 2.1768 in the pre- and
post-period.
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(a) Daytime emissions, January 2017 - June 2018
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(b) Daytime emissions, July 2018 - December 2019
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(c) Nighttime emissions, January 2017 - June 2018
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(d) Nighttime emissions, July 2018 - December 2019

Figure A8: Bunching of CEMS data before and after the trade war, before and after sunset
hours

Note: We use firm-hour level reports of CEMS emissions for SO2, NOx, and Particles 2017-2019, and calculate
emission concentrations relative to the limits. We test if there are discontinuities around 0µg/m3. McCrary test
shows t-statistics are -41.5055 and -50.4410 in the pre-period before and after sunset hours respectively. After
July 2018, t-statistics are -7.8167 and -50.4410 in the pre- and post-sunset hours respectively.
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(a) January 2017 - June 2018
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Figure A9: Bunching of CEMS data before and after the trade war with firm fixed effects

Note: We use firm-hour level reports of CEMS emissions for SO2, NOx, and Particles 2017-2019, calculate
emission concentrations relative to the limits, and estimate residuals with firm fixed effects. We test if there are
discontinuities around 10µg/m3. McCrary test shows t-statistics are 6.475 and 0.6251 in the pre- and post-period
respectively.
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Figure A10: Bunching of CEMS data before and after the trade war using placebo cutoffs

Note: We use firm-hour level reports of CEMS emissions for SO2, NOx, and Particles 2017-2019, and calculate
emission concentrations relative to the limits. We test if there are discontinuities around 10µg/m3. McCrary test
shows t-statistics are -0.3242 and 0.1769 in the pre- and post-period respectively.
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Figure A11: Event study of city-level air quality, separate by quartiles

Note: The figures plot the impact of U.S. tariffs on citywide air quality. We plot point estimates and their
95% confidence intervals in each months, with month negative 1 dropped. We control for city, year-month, and
prov-month fixed effects. Standard errors are clustered at the station-month level.
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Figure A12: Night time emissions

Note: Steel mill pollution during the night in Guangxi, June 2019.

Figure A13: Sulfur removal scrubber

Note: This figure shows an example desulfurization equipment with the ammonia desalination method.
The discharged gas is treated with cooling and a wet electrostatic precipitator to achieve the elimination
of visible emissions at the chimney exit. The equipment is claimed to remove 99% of particulate
matter, tar, aerosols, acid mist, and free water from the flue gas, and 80% of sulfur dioxide and 40%
of nitrogen oxides. Source: Jufeng Environmental Protection Equipment Company, Guangdong, China,
https://www.jfhuanbao.com/xinwenzhongxin/huanbaoxinwenzixun/2209.html.
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