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Abstract

Global agricultural commodity markets are highly integrated among major producers.
Prices are driven by aggregate supply rather than what happens in individual coun-
tries in isolation. Estimating the effects of climate change hence requires a globally
representative weather data set. Recently, two widely used data sets that provide daily
or even hourly values, GMFD and ERA5-Land, became available. We formally test
whether these global data sets are as good as more fine-scaled country-specific data in
explaining yields and whether they give similar response functions. While GMFD and
ERA5-Land have lower predictive skill for US corn and soybeans yields than the more
fine-scaled PRISM data, they still correctly uncover the underlying non-linear temper-
ature relationship. Predicted crop yield losses are of similar magnitude and precision
using the daily data, but start to diverge from estimates using average temperature
under increasing warming. All specifications using daily temperature extremes under
any of the three weather data sets outperform models that use average temperatures.
Correctly capturing the effect of daily extremes has a larger effect than the choice of
weather data.
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Assessing the effect of climate change on global food systems requires a global analysis of
weather’s impact on agricultural productivity. Recent studies using fine-scaled weather data
for individual countries or regions have shown that temperature extremes, especially extreme
heat, are a main driver of agricultural yields (12; 16; 3; 2). Incorporating the full temperature
distribution between the daily minimum and maximum provides much better predictions of
heat-related yield losses (14; 6). Averaging over time (monthly rather than daily data)
or space (larger grids) can mask this nonlinear relationship (1). However, until recently,
most global data sets have only provided monthly data that can mask daily extremes (e.g.,
CRU, University of Delaware) and global studies were forced to rely on this more aggregated
monthly data (8).

Recently, two new daily data have become available and are used extensively. They
are the Global Meteorological Forcing Dataset (GMFD), which includes daily minimum and
maximum temperature measurements on a 0.25 degree grid. The other is ERA5-Land, which
provides some of the most detailed temperature data both temporally (hourly) as well as
spatially (0.1 degree) for the entire world. Given the global coverage over all agricultural
area, these two data sets have the advantage of offering a standardized weather product,
which is crucial for a unified global analysis that drives prices, comparative advantages,
production, and trade (5; 7; 9). However, these global daily weather data sets have not
been systematically assessed in how well they explain outcomes of interest compared to
more detailed fine-scaled weather data sets that are available for individual countries. If the
daily data include measurement error, the resulting estimates would suffer from attenuation
bias, which is especially important for studies of non-linear effects. For example, if the
daily maximum is not correctly captured due to measurement error in a data set, too much
(or too little, depending on the sign of the error) of the temperature exposure is counted as
harmful yield-decreasing heat rather than beneficial yield-increasing moderate temperatures,
severely biasing both coefficients, given that the sign of the coefficients switches between
these categories. The role of temperature extremes can only be uncovered if their exposure
is correctly captured in the underlying weather data set.

To better understand whether global climate data sets can uncover the effect of extreme
heat on crop yields, we estimate statistical yield-weather relationships using (1) a modified
version of the fine-scaled PRISM data set, which only provides weather measurements in
the United States, and (2) the same measurements constructed from the more aggregated,
but globally available, data sets, GMFD and ERA5-Land. We compare model performance
across data sets for the area where they overlap, i.e., the United States. We show that all
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three data sets give comparable response functions and climate change predictions. Our
paper focuses on agriculture, but similar response functions have been estimated for other
sectors (e.g., energy (11) or mortality (4)). While agriculture accounts for only 4% of global
economic activity, it comprises more than a quarter of GDP in some of the least developed
countries, which are among the most exposed to extreme weather and the least equipped to
invest in adaptation. Accounting for the sensitivity of yields in these locations is vital for
evaluating the extent of the inequalities associated with climate change impacts.

Our statistical analysis links yields to each weather data set. Yields data are publicly
available at the county level in the United States: 73% of all counties report corn yields,
while 63% of all counties report soybean yields in at least some of the years of our 70-year
sample period 1950-2019. We aggregate all weather data sets to the county level, weighted
by the share of cropland in a cell (as measured by a satellite-derived cropland mask that is
at the 30 × 30 meter scale). For the fine-scaled PRISM data set (1/24 degree grid), we link
each grid cell to the county in which the centroid is located. For the coarser ERA5-Land
and GMFD data set (0.1 degree and 0.25 degree, respectively), we weight by the area of
each grid cell that falls within a county. Given the importance of non-linearity, we first
derive all non-linear transformations before aggregating the data to the county level. We
construct measures of degree days, which represent the total heat experienced by crops above
a threshold in a day, as well as the length of time crops are exposed to each one-degree Celsius
temperature interval in each day, summed across the growing season April - September.

For each data set, we estimate nonlinear relationships between temperatures and corn or
soybean yields, controlling for precipitation, a quadratic time trend (to capture technological
change) as well as county fixed effect to capture all time-invariant confounding factors (e.g.,
soil quality). Earlier research has shown that different temperature ranges can have oppos-
ing effects, where moderate temperatures are yield enhancing while very hot temperatures
greatly reduce yields. We consider three functional form assumptions to capture possible
nonlinear relationships. First, we estimate piecewise linear regressions that separate the im-
pacts of moderate days and extreme days around a critical temperature threshold. Since this
specification requires a break-point between beneficial temperature days and costly tempera-
ture days, we apply a data-driven cross validation approach to inform this decision separately
for each crop and weather data set. Second, we estimate a flexible 8th order Chebychev poly-
nomial, which smoothly characterizes the temperature yield relationship and does not require
a threshold assumption. Third, we consider a semi-parametric specification, which estimates
a separate yield effect for each three-degree temperature range.
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1 Empirical Results

We find that relationships estimated on county-level yield data in the United States are
quantitatively similar for all three functional form assumptions.

We asses model performance using a cross-validation procedure that quantifies the ability
of the response functions to predict crop yields outside of the estimation sample. We show
that PRISM models outperform the ERA5-Land and GMFD models in predicting crop yield
impacts out of sample, particularly for soybean yields, with ERA5-Land and GMFD models
performing about the same despite different temporal and spatial resolutions. While there
are differences in out-of sample prediction accuracy, we also show that spatially-uniform
warming scenarios applied to the response functions project climate impacts of similar mag-
nitude and precision.

All specifications and weather data uncover an asymmetric relationship where yields are in-
creasing in temperature for moderate temperature ranges, but sharply decrease in temperature
at the upper end.

Figure 1 displays the response functions and 95% confidence intervals for the temperature
sensitivity of crop yields for all three weather data sets. The figure has six plots, with rows
examining different crops and columns different functional forms for the temperature-yield
relationship. In particular, we estimate responses for two crops, corn (top row) and soy-
beans (bottom row) with three functional form assumptions, a piecewise linear specification
following the agronomic concept of degree days (left column), an 8th order polynomial in
temperature (middle column), and a step function that estimates a separate temperature
effect for each three-degree bin (right column). Within each plot, response functions esti-
mated from PRISM, ERA5-Land, and GMFD data are indicated by color. The red lines
show responses based on PRISM, which provides spatially fine-scale daily data available only
for the United States. The blue lines show responses based on ERA5-Land, using the data
for the US in this globally representative hourly data set at the 0.1 degree resolution. The
green lines show responses based on GMFD, again focusing on the US portion of the data
for this globally representative daily data at the 0.25 degree resolution.

The dependent variable in all cases is the log of crop yield (i.e., bushels per acre). The
response functions in the figure are normalized at zero at the PRISM exposure-weighted
average temperature.1 All three climate data sets estimate similar response functions across

1Since our model includes county fixed effects, the results should be interpreted in relative terms, i.e., the
difference in height (y-value) for two different temperatures (x-values) rather than in absolute levels so the
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crops and specifications, with modest yield increases associated with going from cold to mod-
erate temperatures and sharp yield decreases once temperatures pass a threshold. Notably,
the cross validation procedure we use to choose the critical temperature threshold for the
piecewise linear specification yields different breakpoints for each climate data set. For corn,
the threshold varies from 27°C (ERA5-Land) to 30°C (GMFD). For soybeans, the threshold
varies from 28°C (ERA5-Land) to 30°C (PRISM).

Table 1 shows the effect of changes in the temperature exposure on annual crop yields.
Specifically, it gives the predicted yield change (in percent) for replacing a full day at a
moderate 20°C, i.e., a 24-hour exposure to 20°C (recall that we are counting partial days)
with either (i) a full day at 40°C or (ii) a full day at the model-specific yield-maximizing
temperature. The effect of extreme heat on crop yields is comparable across climate data
sets. Substituting a full day at a moderate 20°C with a full day at 40°C decreases corn
yields between 4.1% and 4.2% (SE 1.0%-1.3%) for all three data sets. However, models
disagree on the benefits of being at the yield-maximizing temperature. Substituting a full
day at a moderate 20°C for a full day at the yield-maximizing temperature increases yields by
1.1-1.2% (SE=0.3%) based on PRISM and GMFD relationships, but only 0.4% (SE=0.2%)
according to ERA5-Land. The pattern is similar for soybeans, with an additional full day at
40°C reducing yields between 3.6% to 4.4% and a full day at a yield-maximizing temperature
increasing yields between 0.3% and 1.1%.

All regression models include two additional sets of controls: a quadratic function of to-
tal growing season precipitation and state-specific quadratic time trends. The precipitation
control features a similar inverted-U shape with statistically significant linear and quadratic
terms for all crops and climate data sets, indicating that moderate precipitation levels are
optimal for yields. State-specific quadratic time trends control for technological progress
common to counties within a state. The temperature sensitivity of crop yields is robust to
changes in the time trend, e.g., by including more flexible controls like year fixed effects to
account for common year-specific shocks.

The fine-scaled PRISM data has the best out-of-sample model performance
We compare regression models from each data set using a cross validation procedure

that calculates the root-mean squared prediction error (RMS) of out-of-sample predictions.
In particular, we measure the reduction in RMS relative to a baseline model that includes
county fixed effects and quadratic state-level time trends but excludes the weather variables.

normalization is inconsequential.
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We thereby measure how much of the error can be explained by the inclusion of various
weather variables. The cross validation procedure consists of 1,000 repetitions in which we
randomly use 85% of the years in our panel data set in the estimation of the regression
coefficients and then predict crop yields for the remaining 15%. We sample years rather
than observations to avoid significant spatial correlation in yields across counties within a
year.

Figure 2 shows comparisons of RMS reductions across climate data sets for corn and
soybeans, with PRISM indicated by the red bar, ERA5-land indicated by the blue bar,
and GMFD indicated by the green bar. On average across our three main specifications
(piecewise linear, 8th order polynomial, and 3-degree bins), PRISM improves upon the base-
line model of corn yields by about 15.6%, which is a 32.0% larger reduction in RMS than
ERA5-Land (11.8%) and 28.5% larger reduction than GMFD (12.17%). For soybean yields,
PRISM reduces RMS by 14.2% on average, which is 29.8% larger than ERA5-Land (11.0%)
and 36.5% larger than GMFD (10.4%). Note that for both crops, Welch tests find a sta-
tistically significant differences in out-of-sample performance between PRISM and either of
the two global data sets, however, a statistically insignificant difference between the two
global data sets ERA5-land and GMFD. Consistent with prior work (12; 15), the three main
specifications, which leverage daily temperature extremes, outperform models that include
quadratic functions of the average temperatures over the growing season. This is even true
across models: the RMS reduction is larger using any of the weather data sets or non-linear
specifications than when using average temperatures. Accounting for daily extremes consis-
tently improves model fit.

Predicted yield declines from uniform warming scenarios are similar in terms of magnitude
and precision across all climate data sets for the models using daily temperature extremes,
but diverge for the model using average temperatures.

Figure 3 summarizes projected yield losses, in percent, from uniform warming scenarios
between 1°C and 4°C, including point estimates and 95% confidence intervals.2 The vertical
axis is the percent reduction in aggregate US crop yields relative to average yields between

2Many studies have used general circulation models (GCMs) to project agricultural losses of spatially
heterogeneous climate change scenarios, such as those from CMIP5 or CMIP6. However, biases in GCM
simulations can be large relative to historical observations from a particular data set (10). These biases
propagate through nonlinear response functions to projections of climate impacts. The CMIP ensembles
account for this error by bias-correcting GCM output to a single historical data set, e.g., GMFD for CMIP5
and ERA5 for CMIP6. For our purposes, uniform warming scenarios allow us to compare across data sets
and to highlight for what range of warming the models start to diverge.
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1960 and 1989 after a uniform shift in the temperature distribution, and the horizontal axis
indicate the four model specification we used: the first three use daily data, while the fourth
(average temperature) relies on the seasonal average. The top and bottom frames show
projected impacts for corn and soybean yields, respectively.

While some counties experience yield benefits from moderate warming scenarios, neg-
ative aggregate impacts across all specifications, crops, and warming scenarios are driven
by increases in the number of extremely hot days. Disagreement between climate data sets
regarding the threshold between beneficial and harmful temperature days drives modest
differences in impacts for a given main specification and crop. Across the first three speci-
fications and all climate data sets, corn losses from a 2°C warming range from 13-16% and
soybeans losses range from 9-11%. A 4°C uniform warming is projected to reduce yields
between 31-35% for corn and 25-29% for soybeans. Consistent with earlier studies focus-
ing on the functional form of temperature in climate analyses (12; 15), all climate data
sets agree that excluding daily variation in temperature by focusing on seasonal averages
results in lower projected impact as they fail to capture the asymmetric relationship where
being above the optimal temperature is much worse than being below the yield-maximizing
temperature.

2 Discussion

Several studies have highlighted the importance of extreme temperatures on agricultural
yields using fine-scaled data. Recently, two global data sets have become available that are
temporally fine-scaled (providing daily minimum and maximum temperature or even hourly
temperature values), but spatially more aggregated. The effect of temperature extremes
might be masked if the weather data is aggregated, both temporally (a monthly average
hides peak exposure within a month) as well as spatially (aggregating over larger areas can
hide that some part of it experienced extremes).

While these global data sets have been used, there has not been a systematic assessment
of whether they uncover the non-linearities and crucial effects of temperature extremes. Our
results suggest that novel climate data sets with daily observations are useful additions for
estimating global crop yield response functions, particularly if the objective is to simulate
impacts of future climate scenarios. All three data sets correctly capture the harmful effects
of temperature extremes when linked to US corn and soybean yields. When we aggregate the
data to seasonal averages, the common approach undertaken in previous global assessments
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that relied on monthly weather measures that cannot adequately capture daily temperature
extremes, the out-of-sample predictive performance is greatly reduced. In fact, any of the
three data sets using any of the three specifications using daily data perform better than
any specification using monthly averages. The provision of daily global temperature data
is hence an important step forward to accurately simulate the effects of climate change on
agricultural yields and prices.

Differences in predictive skill may be driven by measurement error induced by a combi-
nation of the spatial and temporal resolution of the data sets as well as the interpolation
methods used to fill gaps in the weather record. Appendix Figure B1 further examines the
role of spatial and temporal aggregation. A “resampled PRISM model” estimated after spa-
tially aggregating PRISM to the ERA5-Land resolution before constructing our county panel
reduces the gap in RMS between the PRISM and ERA data sets by about 55%. In other
words, half of the lead PRISM has over ER5 in predicting yields is caused by the fact that
it is spatially more disaggregated. The remaining gap in RMS is likely due to interpolation
algorithms (or “reanalysis”) applied to the underlying weather observations. Reanalysis in-
corporates outputs of numerical weather prediction models to create a globally consistent
record, which, in the process, may mask the most extreme weather events that are critical
for accurately predicting yields.

On the other hand, temporally aggregating ERA5-Land from hourly temperature read-
ings to daily minimum and maximum temperature before calculating degree days using a
spline interpolation between minimum and maximum temperature negligibly reduces RMS,
suggesting that the sub-daily hourly records do not provide important additional informa-
tion. Taken together, a global data set on minimum and maximum temperature correctly
identifies the importance of temperature extremes and provides yield predictions that closely
mirror more fine-scaled weather data.

One qualification of our finding is that the global weather data sets obviously incorporate
the weather station network of a country, which is dense in the United States. Other countries
have fewer stations and the global weather data sets accordingly might be worse at capturing
extreme temperature extremes.

3 Conclusion

We find that two global data sets, ERA5-Land and GMFD, that provide daily temperatures
uncover a nonlinear relationships between extreme heat and US crop yields that closely

7



align with the results that are obtained using the high resolution PRISM data set. In
particular, we find similar effects of extreme temperatures on both corn and soybean yields
across three specifications and the three data sets. On the other hand, the benefits of
yield-maximizing temperatures vary somewhat between models: the estimated relationship
is lower under ERA5-Land than the other two climate data sets. Predictive power, in
terms of RMS, is lower for the global data sets than for PRISM, with GMFD and ERA5-
Land performing about the same. Despite these differences, projections of climate impacts
from spatially uniform warming are similar across models that include daily temperature
extremes. Finally, we validate the benefits of daily weather observations in the global data
sets. Specifying temperature as averages over the growing season rather than accounting
for daily extremes universally lowers predictive power and simulated climate impacts. The
appropriate functional form is more important than the choice of weather data set.
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Table 1: Crop Yield Sensitivity to Various Temperatures

Yield relative to a full day at 20°C day PRISM ERA5-Land GMFD
Corn yields

40°C -4.15 -4.09 -4.24
(1.02) (1.25) (1.21)

Yield-maximizing temperature 1.06 0.39 1.19
(0.28) (0.20) (0.31)

Soybean yields
40°C -4.29 -4.33 -3.56

(0.44) (0.42) (0.23)
Yield-maximizing temperature 1.02 0.26 1.13

(0.22) (0.19) (0.20)

Notes: Table provides the predicted change in yields, in percent, associated with replacing a
day (24-hour exposure) at a moderate 20°C with (1) a day at 40°C day and (2) a day at the
yield-maximizing temperature, which varies based on the climate data set. Standard errors
are provided in parentheses.
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Figure 1: Comparing the Yield-Temperature Response across the Three Weather Data Sets

−0.06

−0.04

−0.02

0.00

0.02

10 20 30 40

Lo
g 

C
or

n 
Y

ie
ld

s 
(B

us
he

l/A
cr

e)

Piecewise Linear

−0.06

−0.04

−0.02

0.00

0.02

10 20 30 40

Polynomial

−0.06

−0.04

−0.02

0.00

0.02

10 20 30 40

3−degree Bins

−0.06

−0.04

−0.02

0.00

0.02

10 20 30 40
Temperature (Celsius)

Lo
g 

S
oy

be
an

s 
Y

ie
ld

s 
(B

us
he

l/A
cr

e)

−0.06

−0.04

−0.02

0.00

0.02

10 20 30 40
Temperature (Celsius)

−0.06

−0.04

−0.02

0.00

0.02

10 20 30 40
Temperature (Celsius)

Climate dataset PRISM ERA5−Land GMFD

Notes: Each graph estimates the relationship between yields and temperature using both the fine-scaled
PRISM data set (shown in red) as well as the more aggregate but globally available ERA5-Land (shown in
blue) and GMFD (shown in green). The 95% confidence bands are added. The top row provides results
for corn yields, while the bottom row gives the results for soybean yields. The left column estimates a
piecewise linear function, the middle column an 8th order polynomial in temperature, and the right column
uses temperature bins.
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Figure 2: Out-of-sample Model Predictions Across Specifications and Weather Data Sets
Corn Soybeans
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precipitation variables. For each data set, piecewise linear response functions are estimated 1,000 times,
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piecewise linear model’s prediction of the remaining 15% of years. Note that years are sampled rather than
observations because there is significant spatial correlation in yields across counties within a year, whereas
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data sets are indicated by color.
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Figure 3: Simulating Yield Losses For a Range of Uniform Warming Scenarios
1°C 2°C 3°C 4°C

C
orn

S
oybeans

Piec
ew

ise
 lin

ea
r

Poly
no

m
ial

3−
de

gr
ee

 b
ins

Ave
ra

ge
 te

m
p.

Piec
ew

ise
 lin

ea
r

Poly
no

m
ial

3−
de

gr
ee

 b
ins

Ave
ra

ge
 te

m
p.

Piec
ew

ise
 lin

ea
r

Poly
no

m
ial

3−
de

gr
ee

 b
ins

Ave
ra

ge
 te

m
p.

Piec
ew

ise
 lin

ea
r

Poly
no

m
ial

3−
de

gr
ee

 b
ins

Ave
ra

ge
 te

m
p.

−40

−30

−20

−10

−40

−30

−20

−10P
er

ce
nt

 c
ha

ng
e 

in
 y

ie
ld

Climate dataset PRISM ERA5−Land GMFD

Notes: The four panels in each row provide projected climate change impacts on crop yields under uniform
warming scenarios between 1°C and 4°C. Each panel provides the point estimates (circle) and 95% confidence
bands (vertical bars) for twelve estimates when each of the four specifications are paired with the three
weather data sets. The four specifications are listed on the horizontal axis: piecewise linear, eighth-order
Chebychev polynomial, 3-degree bins, and a quadratic in average temperature. Colors indicate the climate
data set used to estimate the response functions (PRISM in red, ERA5-Land in blue and GMFD in green).
The top panel shows projected impacts on log corn yields, while the bottom panel displays the results on
log soybean yields. The vertical axis is the predicted decline in overall US yields in percent.
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A Methods
Weather data. The three climate data sets used for this analysis are (1) a modified version
of the the Parameter-elevation Regressions on Independent Slopes Model (PRISM) data set
from the Northwest Alliance for Computational Science and Engineering based at Oregon
State University; (2) the fifth generation of the European Reanalysis (ERA5-Land) data
set from the European Centre for Medium-Range Weather Forecasts; and, (3) the Global
Meteorological Forcing Dataset (GMFD) from the Terrestrial Hydrology Research Group at
Princeton University.

The following paragraphs outline the data construction methods used to obtain county-
level temperature and precipitation records from each data source. For each grid cell, we
approximate the distribution of temperatures within each day using a sinusoidal curve fit
between minimum and maximum temperature measurements (13), except for ERA5-Land,
which provides hourly measures (see below). We calculate two measures of daily temperature
exposure. The first is the amount of time a pixel is exposed to each 1°C interval each day.
The second follows the agronomic concept of degree days, which measures for how long and
by how much temperatures exceed a threshold. For example, for a threshold of 30°C, a
hypothetical day of constant 32°C temperature contributes 2 degree days, as would two days
at 31°C, while a day of constant 28°C temperature contributes 0 degree days. Note that
in order to preserve nonlinearities in the temperature record, it is important to construct
daily temperature measurements at each weather grid cell before aggregating measurements
to the county level. All daily grid cell-level temperature and precipitation measurements are
combined with a high resolution cropland raster that allows us to weight cells based upon
the share of cropped area.3 Weather data are linked to counties in the contiguous US in two
ways: for the fine-scaled PRISM data we link a cell to county if it’s centroid falls within the
county. For the spatially coarser GMFD and ERA5-Land data sets, we derive the fraction
of a grid cell that overlaps with the county boundary as described next in more detail:

PRISM provides daily minimum temperature, maximum temperature, and total precip-
itation data on a 4 km × 4 km grid across the contiguous United States. To stay consistent
with the other weather sets, we focus on the period 1950-2019.4 We link a PRISM cell to
the county in which its centroid is located.

ERA5-Land provides average hourly temperature and total precipitation measurements
on a global 0.1 degree (≈11.1 km) grid for the period 1950-2019. The process of aggregating
these data to the county level is similar to the process applied to PRISM with two exceptions.
First, hourly temperature data allow us to calculate daily temperature exposure directly

3We obtain high resolution cropland information from the USDA National Agricultural Statistics Service
Cropland Data Layer (CDL). CDL provides crop-specific land cover masks for the continental US. Data are
available annually from 2008 to 2021. We take an average of all available cropland rasters at the native 30
meter resolution before aggregating to the appropriate climate grid cell size.

4The raw PRISM data is modified to maintain a constant set of stations over time, thereby ruling out
that changes in temperatures are due to a change in station coverage. To obtain a balanced panel of weather
observations, we fill in missing weather measurements with the distance-weighted average of the cumulative
density function of surrounding stations. For example, if the 10 closest weather stations are on average at
their 70th percentile, the station’s missing value is set to the 70th percentile of its own measurements.
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instead of interpolating the within-day distribution using a sinusoidal curve.5 Second, we
aggregate weather observations to counties weighted by cropped area as well as the share of
each grid cell that intersects the county. Thus, a cell that only partially overlaps a county’s
boundary is weighted less than one that lies entirely within the county.

GMFD provides daily minimum temperature, maximum temperature, and total precipi-
tation data on a global 0.25 × 0.25 degree (≈28 km) grid for the period 1950-2010. GMFD
observations are aggregated to the county level using a combination of the methods described
above. We use a sinusoidal interpolation of within-day observations to measure temperature
exposure, and we include area weights in the spatial aggregation to account for the low
resolution of the data.

Yield data. Yield data are collected from the U.S. Department of Agriculture’s National
Agricultural Statistical Service. We use corn and soybean yields from the years 1950 to 2019
for the main analysis; however, 9 years are dropped for regressions with GMFD, which only
provides a weather record through 2010. When merged with the weather data, our panel
consists of 128,169 observations for corn yields and 102,674 observations for soy yields, with
approximately 14,000 observations dropped for regressions on GMFD weather variables.

Regression models. We model the relationship between weather and yields following
(12), which assume that temperature effects are additively separable over the growing season:
an additional growing degree day experienced just after planting has the same effect on yields
as an additional growing degree day experienced right before harvest.6 In particular, we
model plant growth g(h) as a nonlinear function of heat h. Thus, log yield yit in county i
and year t is

yit =

∫ h

h

g(h)ϕit(h)dh+ zitδ + ci + ϵit. (A1)

ϕit(h) is the time distribution of heat over the growing season for county i and year t; h and
h are the lower and upper bounds of temperatures observed over the growing season; zit is
a vector of additional time-varying controls, including a quadratic function of total growing
season precipitation and quadratic state-specific time trends,which account for technological
progress common to all counties within a state; ci are county fixed effects, which flexibly
control for time-invariant characteristics of counties that confound the weather-yield rela-
tionship, such as soil quality. Standard errors are clustered at the state level.

We focus on the months April through September to capture the main growing season
for both corn and soybeans. Using the temperature constructions described above for each

5Hourly data should produce temperature variables with less measurement error than those derived from
PRISM. In Appendix B, we assess the degree to which this impacts model performance by applying the
sinusoidal fit to the minimum and maximum daily temperatures from ERA5-Land and comparing out-of-
sample predictions. We find that models estimated with interpolated ERA5-Land data perform negligibly
worse than those based on the raw hourly data.

6Note that this assumption diverges from some crop simulation models, which account for different tem-
perature effects over the life cycle of a plant.
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1°C temperature interval, we approximate A1 with

yit =
41∑

h=−4

g(h+ 0.5) [Φit(h+ 1)− Φit(h)] + zitδ + ci + ϵit (A2)

where Φit(h) is the cumulative distribution function of heat in county i and year t. We model
g(h) with three functional form assumptions: a piecewise linear function estimated via degree
days at a crop-specific threshold temperature, an eighth order Chebychev polynomial, and
a non-parametric specification in which a separate yield effect is estimated for each 3°C
temperature bin up to 36°C.

B Contrasting Spatial and Temporal Resolution
There are two differences between the ERA5-Land and PRISM model. The former is spa-
tially more aggregated (11km grid versus 4km grid size), yet temporarily less aggregated (24
hourly temperature observations rather than providing the daily maximum and minimum
temperature).

To further examine the effect of spatial and temporal aggregation, we aggregate the raw
temperature data from the finer scale to the more aggregate scale and then derive again our
non-linear temperature transformation. Specifically, in the case of the spatially disaggregated
PRISM data, we first aggregate minimum and maximum temperature on the 4km PRISM
grid to the same 11km resolution of the ERA-5grid and then re-derive the temperature
measures (degree-days, etc). Similarly, for the temporally more disaggregated ERA-Land
weather data, we take the minimum and maximum of the 24 hourly observations and then
use the sine-interpolation between minimum and maximum temperature.

The results are shown in Figure B1. Note that aggregating the PRISM data to the same
spatial resolution as the EAR5 grid (second bar) is in between the height of the PRISM grid
(first bar) and ERA-5 bar (third bar), i.e., half of the difference in the better out-of-sample
prediction of PRSIM is attributable to a finer scale that better captures local extremes. On
the other hand, the finer temporal resolution of the ERA-5 has no benefit - when we aggregate
the hourly data to the daily minimum and maximum (4th bar), it is indistinguishable from
using the hourly data (3rd bar).
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Figure B1: Out-of-Sample Model Prediction Accuracy: Spatial and Temporal Resolution
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Notes: Figure compares out-of-sample corn yield predictions for piecewise linear regression models estimated
using weather observations from PRISM and ERA5-Land data sets. Dark red and cyan bars show the percent
reduction in root-mean-squared error (RMS) relative to a baseline model as shown in Figure 2. The light red
bar shows results for a piecewise linear model estimated on PRISM data aggregated from a 1/24 degree grid
to a 0.1 degree grid. The light cyan bar shows a model estimated on degree days calculated using a sinusoidal
interpolation of daily maximum and minimum temperature values, rather than from hourly observations in
the raw data. For each data set, piecewise linear response functions are estimated 1,000 times, each time
randomly sampling 85% of the years from the full panel. RMS is calculated based on each piecewise linear
model’s prediction of the remaining 15% of years.
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