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Abstract

We provide novel evidence that large-scale irrigation heterogeneously shifts the tem-
perature distribution towards cooler temperatures during the months of the growing
season relative to the rest of the year. We employ a triple-difference estimator using
a 59-year-long panel of weather records paired with the fraction of a county that is
irrigated in 393 counties over the Ogallala aquifer. Cooling-by-irrigation propagates
downwind and reduces the upper tail of the temperature distribution by up to 3◦C
(5◦F) during the month of August, which has positive externalities on downwind crop
yields ($120 million per year) and temperature-induced excess mortality ($240 million
per year) that are of equal magnitude as the direct benefits of irrigation by enhancing
heat tolerance ($440 million per year). The observed cooling helps explain why the US
has seen less warming, especially of very hot temperatures, than what climate models
project. Our findings highlight that weather shocks in highly irrigated areas are not
exogenous but are influenced by human responses in the form of irrigation.
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There is a strong consensus that human activity is causing the climate to change1, i.e., that

greenhouse gas emissions are affecting the climate and numerous natural systems. There

have been many studies in the economics literature documenting the reverse link, i.e., the

effect of a changing climate and the depletion of natural resources on human systems and

how humans can adapt to changing conditions.2

We provide novel evidence of an additional feedback loop that has received less attention,

namely that adaptive behavior to climatic conditions itself has a measurable effect on the

climate, especially in downwind areas, and the economic value this externality generates.

In the context of agricultural production, adaptive behavior to better cope with hotter

temperatures under the constraint of limited water resources induces significant regional

changes in irrigation practices – both decreases as aquifers run dry and increases via irrigation

expansion – which, as we show, affect local warming dynamics. More precisely, we empirically

demonstrate that the widespread adoption of large-scale irrigation over the Ogallala aquifer

has been historically responsible for a sizable and economically meaningful cooling externality

affecting regional weather patterns in the southern US by reducing extreme heat, while by

the same token areas that had to reduce irrigation as portions of the Ogallala aquifer got

depleted saw additional warming.

Our paper makes five major contributions to the literature. First, a common theme that

has emerged from recent empirical studies involving temperature effects is the detrimental

impact of the upper tail of the temperature distribution. While adaptive behavior may

counter-balance some of the harmful effects of higher temperatures3, such strategies come at

their own cost4 and, in the case of irrigation intensification, remain subject to the availability

of water suitable for sustainable irrigation.5 To the best of our knowledge, there is limited

causal evidence that adaptation to climate-induced constraints – such as the need for irri-

gation in the western tail of the Corn Belt or its progressive decline in northwestern Texas

1The American Association for the Advancement of Science put out a statement on December 9, 2006
that “the scientific evidence is clear: global climate change caused by human activities is occurring now.”

2A select list includes the effect on agriculture (Schlenker and Roberts 2009, Burke and Emerick 2016),
energy demand (Auffhammer and Aroonruengsawat 2011), mortality (Barreca, Clay, Deschenes, Greenstone
and Shapiro 2016), labor supply (Graff Zivin and Neidell 2014), GDP growth (Dell, Jones and Olken 2012,
Burke, Hsiang and Miguel 2015), amenity value of climate (Albouy, Graf, Kellogg and Wolff 2016) or
freshwater supply (World Bank Group 2016).

3For instance, alternative crop varieties (Butler and Huybers 2013, Moscona and Sastry 2021) or the
adaptation of irrigation (Haqiqi, Grogan, Hertel and Schlenker 2021) can reduce the sensitivity to extreme
heat.

4Higher heat tolerance can only be achieved at the cost of lower average yields (Schlenker, Roberts and
Lobell 2013)

5While some world regions have been in the position to grow large-scale irrigation in the long run (e.g.,
along the Ganges or the Yangtze), others have dramatically affected freshwater resources with significant
consequences on irrigation practices (e.g., around the Aral Sea).
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– has itself a measurable effect on the climate. While there have been farming myths (e.g.,

“the rain will follow the plow”), we demonstrate that large-scale irrigation can cause sizable

local temperature changes. Such cooling via irrigation manifests heterogeneously along the

entire temperature distribution with largest effects on the hottest temperatures and subsists

besides the reduction in maximal temperatures related to cropland intensification (Mueller,

Butler, McKinnon, Rhines, Tingley, Holbrook and Huybers 2016). Our findings are con-

sistent with Grosset, Papp and Taylor (2023), who show that a large-scale tree planting

program in response to the Dust Bowl has direct effects on downwind temperatures and

precipitation.

Second, we show that the cooling-by-irrigation phenomenon propagates and significantly

affects downwind areas. We quantify such positive externality on a few examples with

high economic relevance. In terms of agricultural production, reducing crop exposure to

extreme heat boosts yields. As far as corn and soybeans production is concerned, we find

that some counties benefit even more from irrigation practices from their upwind neighbors

than from their own “on-the-spot” irrigation efforts aiming at enhancing heat tolerance of

irrigated crops. In terms of human health, we show that intensive irrigation is associated

with a reduction in excess mortality during heat episodes for populations living downwind

of irrigated land. The effects on these two sectors are a lower bound, as other sectors of

the economy will also benefit from a decrease in extreme heat as soon as they are located

downwind.

Third, our paper provides a partial explanation for why the observed warming trends,

especially for hotter temperatures, has been lower than what is projected by climate models

over the agricultural area in the United States (Schlenker 2020). We show that without

the expansion of irrigation, the temperature trend would have been significantly altered in

downwind areas.

Fourth, our paper has implications on the damages estimates of climate change. As

regional irrigation practices are bound to continue to evolve in the coming decades due to

increasing constraints on freshwater resources or new irrigation technologies, it is important

to understand the extent to which irrigation is causing a cooling externality on extreme tem-

peratures in order to anticipate the implications of these changes on local weather patterns

besides the primary effect on crops and with numerous indirect effects on population health,

the economy as well as ecosystems.

Fifth, our study has methodological implications for panel models which have become

common place in the economics literature (Dell, Jones and Olken 2014). These paper gen-

erally assert that year-to-year weather shocks are exogenous. As we show below, in areas

close to highly-irrigated agriculture, they are influenced by human behavior and therefore
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endogenous.

Building a 59-year-long panel linking daily weather records with irrigation data interpo-

lated at the yearly level in a vast area surrounding the Ogallala aquifer (see Figure 1), we

empirically investigate the effect of large-scale irrigation on downwind summertime temper-

atures. Our identification relies on the comparison of temperature distributions along three

dimensions, namely in the long-run (across years), spatially (between counties with varying

irrigation practices) and in the short-run (across the months of the growing season relative

to the rest of the year). We find substantial cooling effect of irrigation that heterogeneously

affects the entire summertime temperature distribution and induces important externalities

propagating to the downwind county. In the region of interest, our fixed-effect specification

detects that this cooling-by-irrigation externality is strongest in August and with respect

to the highest temperature percentiles. Quantitatively, we estimate that irrigating all of a

county’s surface causes the August temperature distributions in downwind counties to shift

the 95th temperature percentile by -3.4◦C and the 5th temperature percentile by -1.5◦C. Im-

portantly, we observe this relationship is symmetric: while areas that expanded irrigation

saw a reduction in their hottest temperatures, areas that decreased the irrigated area saw

an increase, suggesting that continued irrigation temporarily limits temperature increases,

but this cooling effect ceases as soon as irrigation stops.

While the cooling-by-irrigation phenomenon is likely to affect multiple dimensions of

economic relevance, we focus on the quantification of two externalities that have been found

in the past to have the highest monetized cost of extreme heat in rural agricultural areas:

agricultural yield losses, for which we focus on corn and soybeans because they represent

predominant crops in the area and the two largest crops by planting area in the US, as well

as temperature-induced mortality.

First, by locally decreasing hot summertime temperatures, irrigation helps to safeguard

yields not only for irrigated crops by increasing tolerance to hotter and drier weather, but

also in nearby agricultural-intensive areas located downwind by reducing their exposure to

harmful degree-days. We quantify this positive externality in the form of avoided yield losses

for corn and soybeans and find this indirect (externalized) effect that is due to a cooling of

temperatures to be on average 27% of the direct effect of irrigation on making the crop

less vulnerable to hot temperatures. Although it is smaller on average, it can be locally

important as there is significant heterogeneity. In some circumstances, counties benefit as

much from the cooling effect induced by irrigation in upwind neighbors as from their own

irrigation efforts. The effect may protect up to 9% of total corn production and 12% of

total soybean production in specific counties and during relatively hot years. Moreover, this

cooling externality of large-scale irrigation on downwind temperatures also benefits other
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crop varieties besides corn and soybeans, and we hence provide a lower bound of the overall

effect.

Second, in terms of human health, intensive irrigation appears to curb the exposure to ex-

treme heat for populations living in downwind areas, with beneficial consequences on reduced

mortality during heat episodes. By fitting a regional and summer-specific temperature-

mortality response function, we estimate that irrigation around the Ogallala has reduced

1,579 premature deaths since 1959, net of any harvesting effect. Again, a similar positive

externality also exists with respect to animal health, with potentially significant effects on

cattle farming which is intensive in the Great Plains.6

Our paper is organized as follows. Section 1 describes the context of our study and moti-

vates the research question. Section 2 introduces the variables of interest and the underlying

data. Section 3 describes and motivates the empirical strategy relying on a three-way fixed

effect model. Section 4 presents and discusses the corresponding results while Section 5 ex-

amines the economic implications of the previous findings on the examples of boosted corn

and soybean production (5.1) and reduced human mortality (5.2). Section 6 concludes and

highlights perspectives for further investigation regarding the cooling-by-irrigation external-

ity.

1 Study Setting and Motivation

Only a few regions benefit from an appropriate geology to sustain large-scale and intensive

irrigation for agriculture. In the US, exceptional irrigation conditions are offered by one of

the vastest aquifer system in the world, namely the High Plains Aquifer (see Figure 1). Also

known as the “Ogallala Aquifer”, this shallow groundwater reservoir covers a total surface

of about 450,000 km2, i.e. about the size of California or 1.8 times the area of the Great

Lakes combined. Located in the Great Plains, it is shared by eight states in the central

southern US. It is formed by three connected networks: the northern system covers most

of Nebraska and only small portions of South Dakota, Wyoming, Colorado and Kansas; the

central system is mostly located in Kansas and the northern tip of Texas but also covers the

Oklahoma panhandle and small sections of Colorado and New Mexico; the southern system is

shared between northwestern Texas and eastern New Mexico. The water is flowing, through

porous soil and between impermeable layers, from the northern to the southern system at

an average speed of only 45m per year under unperturbed conditions.7

Thanks to its unique positioning relative to the Ogallala aquifer in terms of overlapping

6More than 2,000 cattle died in Kansas during a single heat stress episode over June 2022.
7See http://www.hpwd.org/aquifers/.
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area, underlying water volume8 and upstream location on the northern High Plains system,

Nebraska is the most vastly irrigated state in the US to this date, both in absolute irrigated

area (34,800km2 of irrigated land in 2017) and in relative proportion to its surface (17%

in 2017).9 Historically, however, and until the end of the 1950’s, the irrigation hot-spot in

eastern Nebraska was falling far behind several counties in northwestern Texas which had

experienced the fastest growth in irrigation adoption after World War II (see Figure A15). In

fact, large-scale irrigation in both Nebraska and Texas began in the second half of the 1940’s,

when the invention of center pivot irrigation and the widespread adoption of motorized

groundwater pumps made it possible to fully exploit the Ogallala aquifer’s unique irrigation

potential (Hornbeck and Keskin 2014). More than half of all Nebraskan counties have been

consistently growing their irrigation capacities over the last 80 years with some counties

irrigating about 75% of their total land surface in 2017. The opposite trend is observed

for some counties in northwestern Texas that irrigated an even higher proportion of their

area in 1959 but could not expand any further due to the geological constraints imposed

by the limited water recharge upstream. Over the last 59 years, high-irrigating counties in

this region subsequently experienced a progressive decline in their irrigated land proportion.

The divergent irrigation trajectories followed by, on the one hand, Nebraska (increasing

its irrigation coverage) and, on the other hand, northwestern Texas (decreasing irrigation

coverage) – due to their locations at opposite ends of the Ogallala aquifer – illustrate the

critical importance of a sustainable water use management in agreement with the constraints

imposed by hydrology as well as geology. Also, this contrast raises questions about the long-

run viability of irrigation practices as currently practiced in the Great Plains in general

(Harding and Snyder 2012). At the same time, it offers us the possibility to test whether

the observed relationship is symmetric for increases and decreases in irrigation.

From a climate perspective, Nebraska and South Dakota are of particular interest as

these states belong to the few regions in the US (besides some areas in Iowa) which did

not experience any warming in their summertime temperatures over the last few decades

(Schlenker 2020). In fact, coupled general circulation models typically fail to replicate the

so-called “warming hole” actually observed as of the 1950’s in summertime temperature

trends over the Central US (Kunkel, Liang, Zhu and Lin 2006), allegedly due to the phe-

nomenon’s relatively fine scale requiring regional circulation-precipitation models (Pan, Ar-

8About two thirds of all water in the Ogallala aquifer is physically stored in Nebraska.
9This compares to the 31,700km2 of irrigated land in the Central Valley (8% of total surface in Cali-

fornia) and the 19,600km2 of irrigated land around the Mississippi river in Arkansas (15% of total surface
in Arkansas). In terms of total water use for irrigation, Nebraska ranks only 7th (behind California, Idaho,
Arkansas, Montana, Colorado and Wyoming). In the present paper, we exclusively focus on the measure of
irrigation in terms of irrigated land area.
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ritt, Takle, Gutowski, Anderson and Segal 2004).10 While Pan et al. (2004) conceive that

“[t]he observed cooling may be partly attributable to irrigation on local scales”, they eventu-

ally largely dismiss the role of irrigation in explaining the overall warming hole phenomenon

despite working with a regional model. Their main argument is the mismatch in spatial

scales between the relatively small total surface of irrigated land in the Great Plains and

the relatively large extent of the observed warming hole. In fact, climatologists typically

relate the warming hole in the Central US to the interaction of decadal oscillations in sea

surface temperature in the Pacific and Atlantic oceans (Kunkel et al. 2006, Wang, Schubert,

Suarez, Chen, Hoerling, Kumar and Pegion 2009, Robinson, Ruedy and Hansen 2002) with-

out considering the potentially additional local influence of irrigation. Robinson et al. (2002)

find that warmer sea surface temperatures over the tropical Pacific decrease temperatures

in the Central US by impeding insulation through increased cloud cover and precipitation.

Weaver (2013) further examine the role of the Great Plains low-level jet to induce additional

precipitation and subsequent cooling of surface temperatures in this region specifically in the

summer, without consideration for potential fine-scale impacts via irrigation practices.

Mueller et al. (2016) previously empirically estimated whether human management de-

cisions can affect temperatures. Their preferred explanatory mechanism involves cropland

intensification. They also find – specifically with respect to Nebraska, Arkansas and some

parts in the western US – that greater irrigation trends are statistically significantly associ-

ated with some decline in extreme temperatures. Acknowledging the above literature, they

nevertheless envisage that agricultural practices during the growing season may actually

drive some degree of summertime cooling, especially with respect to hot temperature ex-

tremes in the Midwest.11 However, their analysis relies on a correlation of trends in cropland

intensification and trends in temperature, where it is less clear whether intensification caused

cooling or whether cooling causes intensification. The novelty of our paper is threefold: first,

we use a triple-difference estimator comparing summer months when land is irrigated to re-

maining months to make the identification more defensible. Second, we focus not only on the

county itself but also on the beneficial cooling externality on neighboring countries. Third,

we focus on irrigation over the Ogallala rather than cropland intensification. We detect a

significant cooling-by-irrigation externality on the entire temperature distribution (and not

only on the hot extremes, i.e., temperature extremes) and mainly for downwind areas (and

10Without relying on any irrigation information, Pan et al. (2004) predict a cool spot over a region in
southeastern Nebraska when simulating maximum summertime temperature in the 2040’s. This spot roughly
corresponds to the nowadays most densely irrigated area in the US.

11Over their chosen time period, 1910-2014, Mueller et al. (2016) find evidence for some cooling of the
95th percentile in the quantile regression in trends for daily temperature maxima. By contrast, they consider
that “Midwest cooling is less evident” in the 50th percentile and that there is some warming at the 5th

percentile of the quantile regression in trends for daily temperature maxima.
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not only within-county effects). Therefore, while irrigation is unlikely to predominantly con-

tribute to the long-run and large-scale cooling dynamics observed over the Central US as of

the 1950’s and which scientists attribute to hemispheric-scale natural forces shaping regional

climate, we argue it may nevertheless leave some idiosyncratic, transient cooling signature

in local weather patterns.

In fact, as illustrated in Figure 2, the observed 59-year-long evolution of average tem-

perature changes12 in the 99th, 50th and 5th temperature percentiles in counties around the

Ogallala already suggests the existence of a cooling phenomenon where irrigated land ex-

panded in upwind counties (e.g., upstream of the Ogallala aquifer in eastern Nebraska) and,

conversely, of a warming phenomenon where irrigated land declined in upwind counties (e.g.,

downstream of the Ogallala aquifer in northwestern Texas). Every bubble in Figure 2 corre-

sponds to one of the 393 counties in the region of interest, with the size being proportional to

the average irrigated land proportion as observed in the upwind county and the color being

proportional to the observed irrigation trend in upwind neighbors.13 Strikingly, counties

with upwind irrigation in decline (red) have been, on average, warming the most in their

99th and 50th temperature percentiles during summer months, while those with increases

in irrigation in their upwind neighbors (blue) have seen the highest degree of cooling. In

other words, there is a vertical stratification of the warming/cooling dynamics according to

upwind irrigation practices that can only be seen during summer months, when irrigation is

actually taking place, but not during the rest of the year. Such stratification appears to be

mostly pronounced with respect to hotter temperature percentiles and almost absent from

the evolution of the 5th temperature percentile. Figure 2 therefore suggests14 the existence

of a fine-scale mechanism – likely involving direct evaporation of irrigated water as well as

stimulated transpiration by plants (Lobell, Bonfils, Kueppers and Snyder 2008, Mahmood,

Foster, Keeling, Hubbard, Carlson and Leeper 2006, Harding and Snyder 2012), that is not

only localized in space (visible at the county-level resolution) but also in time (as farmers

12Average changes in the 99th, 50th and 5st temperature percentiles are calculated as the estimated trend
in monthly county-level observations of the respective temperature percentile over the 1959-2017 period (in
◦C/y) multiplied by the duration of the time window (i.e., 59 years).

13Note that most (upwind) counties in the region of interest hardly irrigate at all, and only see a very
limited change in their irrigated land proportion over time (small bubbles are typically white). Conversely,
upwind counties that practice large-scale irrigation have been either on a steadily increasing or decreasing
trend (large bubbles are either blue or red).

14Since (upwind) counties with the strongest decline/increase in irrigation are mostly in Texas/Nebraska
(see Figure 1) and since Texas is likely to have warmed more than Nebraska irrespective of irrigation practices,
this preliminary observation of a correlation in the raw data is only suggestive of the cooling-by-irrigation
effect and needs to be complemented as explained in Section 3. We also note, however, that virtually none
of the control counties (in white) have been heating/cooling in a similar fashion despite being distributed
under all possible latitudes in the region of study – an important detail which motivates the existence of an
irrigation-specific effect irrespective of the previous reservation.
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only irrigate cropland during specific months of the year).

2 Data

2.1 Irrigation Data

We extract year-by-county information about irrigated acres from each of the 20 USDA

censuses which occurred between 1900 and 201715, and normalize by county area. The

widespread adoption of large-scale irrigation has only been possible after World War II and

the introduction of both pivot irrigation and motorized groundwater pumps (Hornbeck and

Keskin 2014) – with only a few documented exceptions in Colorado and in Scotts Bluff

county, Western Nebraska.16 Figures A15 and A16 show, for each county in the region of

study and by state, the county-by-county evolution of irrigated land proportion as well as

the number of observed counties for each available census year. 1959 is the first year in

the data for which (at least) some irrigation information is available in every county of the

region of interest and will therefore serve as starting year in the subsequent analysis.

As the opportunity to irrigate cropland primarily depends on the proximity to a river

or on the availability of water in an underlying aquifer, large-scale irrigation remains spa-

tially restricted to specific counties, with record levels only found in Nebraska or Texas

– although at different points in time as explained above. The irrigated land proportion

has been steadily increasing in most of Nebraskan counties since 1959: by 2017, half of all

counties in Nebraska irrigate more than 15% of their land, with some counties in eastern

Nebraska reaching US-wide records of approximately 75%. However, such evolution is in

stark contrast with the situation in (northwestern) Texas, where multiple counties achieved

their peak irrigation levels (up to 75%) in 1959 and have observed a steadily declining tra-

jectory since then. Several counties in Kansas have been irrigating more and more land since

1959 but in moderate proportions (in any event below 25%) when compared to Nebraska,

and the few counties in Colorado that were already irrigating in 1959 have been maintaining

their moderate irrigation levels throughout the period. Most counties in Colorado, however,

never adopted large-scale irrigation, similarly to counties in New Mexico, South Dakota

and Wyoming. In light of the above, it appears that the evolution of irrigated proportions

displays significant serial as well as spatial correlation.

15Agricultural censuses took place in 1900, 1910, 1920, 1930, 1940, 1950, 1954, 1959, 1964, 1969, 1974,
1978, 1982, 1987, 1992, 1997, 2002, 2007, 2012 and 2017, years which are marked by vertical lines in
Figures A15 and A16

16Early irrigation experiments have been conducted for instance in Scotts Bluff as early as 1890 by using
an atypical network of canals and aeromotor windmills for the irrigation and production of sugar beets. See
https://www.nps.gov/nr/travel/scotts bluff/essay agriculture.html
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To facilitate visualization of the raw data, we estimate long-run time trends in irrigation

as the slope coefficients ι̂i, separately estimated for each county i:

Iiy = ιio + ιiy + eiy (1)

where Iiy measures the proportion of irrigated area in county i in census year y (as of 1959).

The quantity ιio is the county-specific intercept, while the coefficient ιi measures the county-

specific trend in irrigation and eiy is the county-specific error term. Figure 1 shows the

resulting map of ι̂· in the region of interest.

2.2 Temperature Data

Temperature records are collected from an extended version of the fine-scaled dataset used

by Schlenker and Roberts (2009), which combines data from the Parameter-elevation Rela-

tionships on Independent Slopes Model (PRISM) with information gathered by a fixed set

of weather stations. The raw data correspond to daily minima and maxima in temperature

over a 4km-by-4km grid covering the region of interest from January 1st, 1959 to December

31st, 2017. The uptake of large-scale irrigation occurred as of the 1940’s following the in-

vention of center pivots and the introduction of motorized groundwater pumps. However,

the full coverage of the region by meteorological stations is only complete by the end of the

1950’s (see Figure A17 and Figure A18).17

For each grid cell and for each day within that period, we interpolate a (sinusoidal)

temperature profile following Snyder (1985) to calculate the amount of time spent at each

possible 1◦C-wide temperature bin (e.g., amount of time in a given day and for a given

grid cell for which the temperature falls between 19◦C and 20◦C, between 20◦C and 21◦C,

etc.). These daily counts are then aggregated to a county-by-month resolution to construct

individual distributions in temperature for each of the 393 counties around the Ogallala

aquifer and for each of the 708 months between 1959 and 2017.18 Specifically, the time

spent at each 1◦C interval allows us to construct the cumulative density function for each

month. In order to detect potentially heterogeneous effects at different temperature levels,

we extract from each of these individual county-by-month temperature distributions a set

of temperature percentiles (namely, from warmest to coolest: the 99th, 95th, 90th, 75th, 50th,

25th, 10th, 5th and 1st temperature percentiles).

To facilitate the visualization of the raw data and in line with the earlier approach

17On top of this, 1959 is the first census year for which some irrigation information is available in every
county of the region of interest (see below as well as Figures A15 and A16).

18While previous studies average the weather data by the cropland area in each PRISM grid, our main
interest is the effect of irrigation on weather throughout a county and we hence do not weight grids.
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adopted towards the raw irrigation data, we estimate for each county and month of the

year the long-run warming or cooling behavior by computing time trends in each of our

chosen temperature percentiles p over the period of interest. Formally, for any given county

i (e.g., Lincoln) and month m (e.g., April), we separately estimate the slope coefficients θ̂pim
of the regression:

T p
imy = θpimo + θpimy + epimy (2)

where T p
imy is the temperature level at some chosen percentile p, in county i during month

m of year y. θpimo is the county-month-percentile specific intercept, θpim measures the county-

month-percentile specific warming (or cooling) trend and epimy is the county-month-percentile

specific error term. Figure 2 illustrates the distributions of θ̂99·m, θ̂
50
·m and θ̂5·m (up to a factor

2017-1959+1=59) for each month m of the year and Figure A19 shows maps of θ̂99·April, θ̂
99
·July,

θ̂50·April and θ̂
50
·July.

2.3 Precipitation Data

Precipitation correlates with both temperature and irrigation levels as more rain is typically

associated with higher temperatures and lower requirements for irrigation. If omitted from

the analysis, precipitation may thus confound the naively estimated effect of irrigation on

temperature and negatively bias estimates.

Precipitation data come from the same source as our temperature variables (see Sec-

tion 2.2). The raw data consist in daily observations of total precipitation levels on a 4km-

by-4km grid over the region of interest, which we adjust to monthly totals at the county

level. Figure A20 illustrates the raw data under the form of maps in precipitation trends for

April and July. More specifically, it represents long-run changes in precipitation as measured

by the slope coefficients ρim in the regression:

Rimy = ρimo + ρimy + eimy (3)

where Rimy is the total rainfall (precipitation) in county i during month m in year y. The

quantity ρimo measures the county-month specific intercept, while the coefficient ρim is the

county-month specific trend in rainfall and eimy is the county-month specific error term.

2.4 Wind Data

In order to explore the extent to which irrigation induces a (cooling) externality on neigh-

boring counties, we exploit additional information about dominant wind directions. Since
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the dependent variable measures drybulb air temperature, any potential cooling effect of ir-

rigation should only propagate downwind. Verifying the absence (or more nuanced presence)

of any externality on counties located crosswind or upwind may thus serve as a falsification

check to validate our specification.

For this purpose, we use hourly measures of latitudinal and longitudinal wind speeds

between 1979 and 2019 on a 0.125◦ grid from the North American Land Data Assimilation

System (NLDAS). From the orthogonal wind speed components averaged at county level,

we deduce the hourly dominant direction of wind flow and, for each county in the region of

interest and month of the year, we eventually select among all adjacent counties – even if

located outside the region of interest – those which are most often located up-, cross- and

downwind. Importantly, we do not construct the average wind direction but rather choose

the county that is most frequently upwind as “upwind” county, etc. Wind direction may be

more or less consistent over the day (and a fortiori over the month), and in some instance

flip by 180 degrees for parts of the day, so that an average wind direction would be less

meaningful than selecting the county that is most often associated with a chosen direction.

Clearly, the proposed identification of “upwind”, “crosswind” and “downwind” neighboring

counties only accounts for the dominant wind direction and may therefore hide some of the

variation inherent to changing wind patterns over any given month. However, we argue

this approximation is facilitated in the present case by the fact that wind is predominantly

blowing from South to North during summer months, as shown by the monthly distributions

of hourly wind directions aggregated across all counties in the area of interest and over the

entire 1979-2017 period (see Figure A21). As this observation holds at an aggregated level, it

necessarily also holds individually for most counties in the region of interest – a feature which

facilitates the identification strategy proposed in Section 3. On top of this, we assume that

wind speed observations made between 1979 and 2019 are representative of overall wind flow

conditions for the entire period between 1959 to 2017, an assumption we can only partially

validate by restricting the data to smaller subsets and verifying this does not materially

influence the classification into up-, cross- and downwind counties.19

2.5 Corn and Soybeans Yield Data

For each year in the 1959-2017 period, we extract yield data for corn and soybeans in each of

the 393 counties in the region of interest from the National Agricultural Statistical Service

(NASS) provided by the US Department of Agriculture.20 Yields are computed as total

19For instance, our classification is hardly affected when considering a much smaller proportion of the
wind dataset (e.g., 2007-2019, representing the most recent third).

20NASS does not report production data for soybeans in each of Wyoming, Colorado and New Mexico.
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yearly county-level production divided by the number of harvested acres.

2.6 Mortality and Population Data

Similarly to Barreca et al. (2016), we rely on the Multiple Cause of Death (MOCD) data

which has publicly available county-level information about deaths counts for each month

between January 1959 and December 1988. For the counties of the region of interest, we

restrict the data to the period from April to September because, on the one hand, the cooling-

by-irrigation externality is restricted to the growing season (i.e., we are not concerned with

excess mortality due to extremely cold days during winter months) and, on the other hand,

the mortality literature documents a temporal displacement of deaths caused by heat episodes

(harvesting) which may last more than one month.21 The data also includes categorical

information about causes of death and age of the decedent, but we do not exploit these

levels of information and pool all deaths together in order to work with county-by-year data.

In order to compute mortality rates, defined as the number of deaths per 100,000 people,

we collect county-level population counts from the Centers of Disease Control and Prevention

(CDC) for each year between 1968 and 1988. In order to complement this data to cover the

entire 1959-1988 period, we use population counts from the decennial US Censuses of 1950

and 1960 and linearly interpolate county-level population data for each year between 1950

and 1960 as well as between 1960 and 1968.

Eventually, while our temperature-mortality response function is fitted on the 30-year-

period spanning from 1959 to 1988, we will extrapolate the model fit to estimate death

counts until 2017. For this purpose, we rely on intercensal population estimates from the

US Census Bureau for each year between 1989 and 2017.

3 Empirical Strategy

We identify the effect of irrigation on local temperature in the region of interest around the

Ogallala by comparing monthly temperature percentiles along three dimensions, namely in

the long-run (across 59 years), spatially (between counties with varying irrigation levels) and

in the short-run (across months during the growing season and relative to the rest of the

year). While we do not actually observe irrigation at the monthly level and have to rely on

linearly interpolated data (across agricultural census years) at the yearly level, we exploit the

fact that irrigation is highly seasonal and it generally occurs between April and September,

21In the literature, the preferred duration of the displacement window to capture harvesting varies
substantially, between one month (e.g., (Barreca et al. 2016)) to up to one year (e.g., (Deschênes and
Greenstone 2011)).
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at least in our study region, when the soil water deficit is highest and the growing season is

active. Estimating the time profile of the delayed cooling effect is unfortunately not feasible

as we don’t have the data on when irrigation is exactly applied. Our data allows us to explore

whether temperature-related externalities may spatially propagate from one irrigated county

to its neighbors. In fact, as our dependent variable in temperature percentiles is related to

air temperature measures, one would expect such effects to travel with the dominant wind

direction. We compute the effect of irrigation on temperature for each month between April

and September by interacting month-level dummies with year-level irrigation data observed

in same, up-, cross- and downwind counties. Such specification is given by

T p
imy =

9∑
n=4

βp
n I iny 1{n=m} + εpimy (4)

where the vector I imy = (Iiy, Iiup(m)y, Iicross(m)y, Iidown(m)y)
′ measures the proportion of irri-

gated area in county i as well as in its (month-specific) up-, cross- and downwind neighbors

(iup(m), icross(m) and idown(m) respectively), 1{n=m} is a dummy variable equal to 1 in month

m and zero otherwise and εpimy is the error term. Note that, while the available irrigation

information Iiy in itself is independent of the month, its influence on temperature is mediated

by wind for which we have monthly observations, implying that I imy is month-dependent.

Equation (4) fixes October to March as reference period for comparison, a modelling choice

that reflects the fact that no irrigation is taking place during that half of the year.

Clearly, specification (4) is by no means causal and would merely reflect the existence of

some association between temperature and irrigation features. Several factors may correlate

with local evolution in both temperature and irrigation levels. For instance, more rain is

typically associated with higher temperatures and lower requirements for irrigation, lower

latitudes in the region of interest reflect hotter climate conditions as well as lower irrigation

potential due to the characteristics inherent to the Ogallala aquifer, elevation translates into

cooler temperatures and more difficult irrigation conditions, thickness of the sedimentary

deposit correlates with groundwater potential for irrigation (see Taylor (2021)) and may

influence temperature via the influence of soil moisture, several soil characteristics such as

permeability, erodibility or clay content may influence local water capacity, etc. If omitted

from the analysis or uncontrolled for in the specification, such confounders could bias the

naively estimated “effect” of irrigation on temperature.

Therefore, we propose to augment specification (4) into the following three-way fixed
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effect model with additional controls for monthly precipitation levels:

T p
imy =

9∑
n=4

βp
n I iny 1{n=m} + γpRiL(m,y) + πp

im + σp
my + τ piy + εpimy (5)

where the vectorRiL(m,y) = (RiL(m,y), Riup(m−1)L(m,y), Ricross(m−1)L(m,y), Ridown(m−1)L(m,y))
′ mea-

sures previous-month22 precipitation levels in current, up- cross- and downwind counties and

πp
im, σ

p
my and τ piy respectively denote county-by-month, month-by-year and county-by-year

fixed effects. Note that it would be inappropriate in specification (5) to control for con-

temporaneous precipitation information as same-month precipitation levels may itself be

influenced by irrigation as well as precipitation in downwind areas.23 As such, contempo-

raneous precipitation levels would constitute a “bad control” if included in our regression

framework. In light of the above considerations, all of our specifications will control for

observed county-level measures of precipitation but with a 1-month lag. As we show below,

including or excluding precipitation (whether lagged, both in time or space, or concurrent

levels are included and whether they are allowed to vary by month) has very limited effects

on our temperature coefficients. Since both crop yields and temperature-induced excess-

mortality responds much more strongly to temperature than precipitation, we focus on the

former as it is the main driver of the estimated economic benefits.

Also, note that the proposed set of fixed effects absorbs a vast panel of omitted features

(including any time-invariant confounders such as latitude, elevation, sedimentary soil depth,

groundwater potential, soil permeability, erodibility or local water capacity) and therefore

constitutes our preferred specification in the remainder.

For any chosen temperature percentile p, the set of 24 coefficients of interest (i.e., individ-

ual elements of the row vectors βp
n) measures the average month-specific effects of irrigation

in the same, up-, cross- and downwind counties relative to the reference period (which runs

from October to March), net of the influence of previous-month precipitation and from any

county-by-month, month-by-year and county-by-year specificities. Given that irrigation is

measured as the proportion of irrigated land, a “unit-increase” in irrigation reflects the fact

to fully irrigate a county that was not previously irrigated at all. By construction, such co-

efficients are estimated jointly for same, up-, cross- and downwind counties so that spillover

effects in various directions are simultaneously estimated, net from each other and net from

the same-county effect. Importantly, identification originates from variations of the variables

22L(m, y) denotes the monthly lag operator. For instance, L(1, y) = (12, y − 1) and L(2, y) = (1, y).
23Several studies – see for instance (Barnston and Schickedanz 1984, Moore and Rojstaczer 2001, Al-

ter, Fan, Lintner and Weaver 2015, DeAngelis, Dominguez, Fan, Robock, Kustu and Robinson 2010) –
substantiate that intensive irrigation in the Great Plains may result in higher downwind precipitation levels.
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of interest across counties, over years and between months. Any simple comparison of tem-

perature percentiles between month n of the growing season and the reference period in a

given irrigated county would be inappropriate as observed differences may in fact result from

changes unrelated to irrigation and that occur in all counties within the region of interest.

Similarly, any simple comparison between irrigated and non-irrigated counties in any given

month n of the growing season would fail to account for the fact that irrigated counties are

typically already hotter in the spring and before irrigation actually takes place. The under-

lying identification assumption is that, in the absence of irrigation, an actually fully irrigated

county would have experienced a parallel warming (or cooling) between the reference period

and month n when compared to a non-irrigated county.

As intensive irrigation can be reasonably expected to peak in the hottest months of the

year, we should expect to find the largest coefficient magnitudes during July and August and

to detect only small effects (if any) in the early season (April) and late season (September).

Similarly, since the dependent variable relates to drybulb air temperature, any cooling ex-

ternality should be expected to propagate exclusively downwind, meaning that the spillover

effects coming from cross- and downwind counties should be estimated close to zero, or

at least statistically indistinguishable from zero. This set of intuitive predictions with re-

spect to the relative magnitudes of the cooling-by-irrigation externality across months of the

growing season and to the expected direction of spillover effects from irrigating neighbors

located cross- and downwind allow to empirically appreciate and assess the performance of

the estimation strategy, the results of which are presented in the following section.

4 Results

For each of the 99th, 95th, 90th, 75th, 50th, 25th, 10th, 5th and 1st temperature percentiles, spec-

ification (5) consistently suggests the existence of some highly statistically significant cooling

externality offered by irrigation practiced in upwind neighbors, with a peak effect in August.

Results are summarized for the 99th, 90th, 75th, 50th, 25th and 5th temperature percentiles

in Figure 3 as well as Table 1, where standard errors are two-way clustered by county and

year. The cooling externality is most pronounced with respect to warmer temperatures and

progressively decreases in magnitude with cooler temperature percentiles. Quantitatively,

the fact to fully irrigate an upwind county is estimated to translate, in August and relatively

to the October-March period, into a -3.05◦C drop in the 99th temperature percentile and

only into a -1.45◦C decrease in the 5th temperature percentile, with intermediate values for

the other percentiles (e.g., -1.95◦C for median temperatures). Same-county irrigation is not

detected to cause any comparable cooling effect, with point estimates remaining in any event

15



below .4◦C in absolute value and typically much lower statistical significance. Given that

most of the economic implications involving temperature effects in the summer relate to

extreme heat, the significant externality from upwind irrigation on the hottest temperatures

is of greatest interest and will be discussed in more details in Section 5 with respect to the

examples of improved agricultural production as well as reduced excess human mortality.

While the cooling-by-irrigation externality appears to be strongest in August, results do

not typically exhibit statistical significance in either April or in September, which is consis-

tent with the fact that these early- and late-season months are outside of the peak irrigation

season and validates the choice of October-March as a reference period. As predicted, the

cooling-by-irrigation effect as measured by the drybulb air temperature travels with (and

not against or across) the dominant wind direction. In fact, coefficients in front of regressors

pertaining to the upwind irrigation information are systematically much larger in magni-

tude than their equivalent coefficients for cross- and downwind regressors. Similarly, the

former coefficients typically achieve much higher statistical significance levels and are all

statistically significant at the 1% level in each of June, July and August (except for the 5th

temperature percentile in July), which corresponds to the hottest months with presumably

the highest levels in irrigation. The fact that the latter coefficients are regularly significant

(albeit smaller in magnitude) may reflect the limitations inherent to our classification along

the dominant wind direction. In fact, such classification is only most frequently true and

does not account for the fact that wind flow may largely diverge from its modal direction

over the duration of a month. For instance, our classification does not capture bi-modal

distributions of wind directions, although shifts as large as 180◦ are not uncommon in prac-

tice. As such, the cooling externality coming from upwind counties is – for some fraction

of time – erroneously classified as coming from cross- or downwind. Figure A12 therefore

explores an alternative approach to the measure of upwind irrigation by averaging across

irrigation levels from all neighboring counties weighted by the amount of time each of these

is actually upwind. Estimates remain robust to this change in methodology to account for

upwind irrigation. The downside of the weighted average of all neighboring counties is that

we have no “faslification” sample in the form of cross- and downwind areas. In the remain-

der, we therefore focus on the cooling-by-irrigation externality from the upwind direction.

This approach is conservative as some of the cooling effect is actually “lost” in favor of other

(misclassified) wind directions.

We obtain similar findings under a series of sensitivity checks. Figure A1 compares our

baseline results that two-way cluster by county and year to using Conley standard errors that

account for both serial as well as spatial correlation with a Bartlett kernel and a 1,000km

cutoff distance, with comparable standard errors. Generally, same-county effects are the
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most precisely estimated with the smallest standard errors at every month between April

and September. Comparatively larger standard errors for coefficients related to neighboring

counties is likely to reflect the greater uncertainty inherited from the wind data via the

classification into up-, cross- and downwind neighbors.

Sensitivity checks to the chosen specification in terms of irrigation controls from neigh-

boring counties are explored in the Appendix (see Tables A1 - A3 for regression results and

graphical visualizations in Figures A2-A8 where we compare baseline estimates against mod-

ifications). Given the spatial correlation in irrigation trends, exclusively including the county

itself or any one neighbor gives significant results. As soon as upwind irrigation trends are

excluded, they become the stable dominant driver of observed temperature trends. Simi-

larly, we explore the sensitivity to various precipitation controls in Figures A9-A11), where

we vary what controls to include (if any at all). Including / excluding various effects has an

indiscernible effect on our estimated temperature effects.

In order to test the robustness of our model findings, we also fit specification (5) on

separate subsets of the initial data. As shown on Figure 1, the northern and southern halves

of the dataset have seen fundamentally different irrigation dynamics, and we propose to

verify whether each of these two observed dynamics individually confirm the existence of

some cooling-by-irrigation externality. Results for the northern part (including Nebraska,

Colorado, Wyoming, South Dakota and Kansas) and the southern part (including Texas,

Oklahoma and New Mexico) are displayed in Tables A4 and A5 respectively, as well as in

Figures A13 and A14. While the magnitudes of the upwind irrigation externality estimated

for the northern half remain in rough agreement with initial results, those estimated for the

southern half are smaller and slightly less statistically significant, likely due to the much

smaller amount of irrigated counties in the southern half (see Figure 1). Irrespective of

this, these also confirm the overall conclusions made earlier – in particular with respect to

the cooling-by-irrigation externality originating predominantly in upwind irrigation areas.

Importantly, this confirmation is found despite the fact that the northern part consists of

counties with a strong increase in irrigation, while the southern part consists of counties

with a strong decrease in irrigation. This is in line with the observation already made in

Figure 2 where counties which historically saw a decline in irrigation induced some warming

in neighboring areas. Such symmetric relationship has, to the best of our knowledge, not yet

been documented in the literature.
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5 Discussion

In order to illustrate some practical consequences of the cooling-by-irrigation externality, we

evaluate its unintended but beneficial effects for counties located downwind in the form of

avoided yield losses for agricultural production (Section 5.1) as well as on avoided excess

mortality (Section 5.2). In particular, we show that the cooling-by-irrigation externality can

generate locally sizable effects, with certain counties benefiting more from upwind than from

own irrigation practices when growing corn or soybeans, and with specific counties seeing

substantially lower mortality during heat episodes thanks to upwind irrigation.

5.1 Irrigation externality on downwind agricultural yields

Large-scale irrigation has historically allowed farmers to grow crops in parts of the Great

Plains that would otherwise be locally unsuitable for intensive agriculture. For instance,

corn and soybeans require a substantial amount of water for healthy growth and are very

vulnerable to droughts due to their shallow root systems. In the US, large-scale corn pro-

duction is primarily found in the Corn Belt – where corn is predominantly rainfed with the

notable exception of its western tail located in Nebraska and which is heavily irrigated – as

well as in specific regions with access to abundant water supply for irrigation such as above

the Ogallala aquifer or in the Arkansas delta. In fact, the very disposition of the Ogallala

aquifer can be easily recognized from a map of average corn area grown in the US.24 Soy-

beans are typically grown in rotation with corn due to complementary behavior in nitrogen

uptake (corn) and deposition (soybeans) in the soil and can therefore be found within the

same counties.

Besides allowing farmers to adjust water supply to precipitation conditions, irrigation

serves as an adaptation strategy against heat (Li, Guan, Peng, Franz, Wardlow and Pan

2020, Taylor 2021) as it increases the vegetation’s tolerance to high temperatures. While

yields for corn and soybeans only marginally benefit from moderate degree-days over the

growing season, they severely suffer from particularly hot degree-days (Schlenker and Roberts

2009). A primary consequence of irrigation is the alteration of this non-linear response

function linking crop yields to heat exposure so that plants become more resilient to extreme

temperatures (the “direct effect”).25 On top of this beneficial effect which occurs on the spot,

24See, for instance, Map 1 in Schlenker (2020)
25For instance, when fitting the piece-wise linear specification proposed by Schlenker and Roberts (2009)

on historic log yields for corn (or soybeans) between 1959 and 2017 in the region of interest, we find (i)
a steeper slope coefficient for the detrimental effect of heat and (ii) an earlier threshold for such effects to
manifest in non-irrigating counties when compared to irrigating counties.
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we have shown above that irrigation is also responsible for cooling downwind temperatures.26

Figure 4 illustrates the practical implications of this externality in terms of degree-days on

the example of Merrick county, NE and shows how irrigation in upwind neighbors has been

historically responsible for a substantial reduction in heat exposure. This secondary and

unintended effect on temperature patterns in turn indirectly benefits plant growth in counties

located downwind by cooling the entire temperature distribution and thereby protecting

crops from extreme heat exposure (the “indirect effect”). In other words, farmers who

practice large-scale irrigation do not only benefit from such investment in the form of higher

yields in their own fields but unintentionally also favor production levels in neighboring fields

located downwind. We propose to quantify this positive externality at the county level in the

form of avoided corn and soybean production losses, and to compare these benefits to those

induced by the direct effect in the region of interest. In order to appreciate each of these

effects in isolation, we simulate counterfactual production outcomes respectively (i) under

actual heat exposure but for alternative response functions to heat (i.e., with and without the

direct effect of irrigation) and (ii) for actual response functions to heat but under alternative

heat exposure (i.e., with and without the indirect effect of irrigation).

In order to quantify the direct effect of irrigation on agricultural production, we compute

the temperature exposure of every county in the region of interest, over the entire growing

season (i.e., from April to September) and for each year between 1959 and 2017. We then

combine these distributions with observed yields to empirically estimate irrigation-dependent

heat response functions under actual irrigation levels, and estimate a counterfactual scenario

without irrigation. The estimation is conducted separately for corn and soybeans. In order

to model the sensitivity of the heat response function to irrigation, we adapt the piece-wise

linear specification in (log) yield proposed by Schlenker and Roberts (2009) by allowing the

effect of harmful degree-days to vary linearly in a county’s irrigation level. Using the same

methodology as in Schlenker and Roberts (2009) and the same break-point temperatures

separating beneficial from harmful degree-days, we find, with respect to corn, a positive slope

of 0.00024 (p-value below 1%) for degree-days between 10 and 29◦C and a linearly-varying

slope of −0.00354+0.00467×Iiy (with respective p-values below 1%) for harmful degree-days.

With respect to soybeans, we find a positive slope of 0.00043 (p-value below 1%) for degree-

days between 10 and 30◦C and a linearly-varying slope of −0.00551 + 0.01156 × Iiy (with

respective p-values below 1%) for harmful degree-days. The respective irrigation-dependent

slopes suggest that, for counties irrigated at 25% of their surface, the substitution of a full

26Using satellite measurements of daytime land surface temperature in Nebraska between 2003 and 2016,
(Li et al. 2020) find that irrigation is correlated with some local cooling effect but do not investigate spatial
spillover effects.
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day at 33°C with a full day at 34°C during the growing season is associated, on average, with

approximate declines of 0.35% in corn and 0.55% in soybean yields for non-irrigated counties

but a decline of only 0.24% in corn and 0.26% in soybean yields. Left panels in Figure 5

(corn) and Figure 6 (soybeans) illustrate the spatial distribution of avoided production losses

in absolute levels as well as relatively to total production. On aggregate over the 1959-

2017 period and according to the proposed methodology, the direct effect is responsible for

the additional production of 3.8 billion bushels of corn and .6 billion bushels of soybeans,

respectively representing about 5% and 6% of total production or $26 billion (inflation-

adjusted to $2017) in aggregate market value.27 Virtually all of these avoided production

losses occur within the boundary of the Ogallala aquifer, in agreement with areas where

large-scale irrigation is possible: 64% of the total corn and 67% of total soybean production

in the region of interest comes from Nebraska, and high proportions of the beneficial effect of

irrigation on yields are also found in this particular state (66% for corn and 82% for soybeans).

Nevertheless, the direct effect also achieves sizeable proportions of additional production in

counties located in northwestern Texas (up to 30% for corn and 50% for soybeans) and

western Kansas (up to 26% for corn and 45% for soybeans), where temperatures are higher

and total agricultural production is more limited on average than in eastern Nebraska.

In order to estimate avoided production losses due to the indirect effect, we empirically

determine the heat response functions of corn and soybeans using the piece-wise linear spec-

ification in (log) yield proposed by Schlenker and Roberts (2009), i.e., without consideration

for irrigation information. With respect to corn, the effect of beneficial degree-days (i.e.,

10-29◦C) becomes 0.00026 (p-value below 1%) and the effect of harmful degree-days above

29◦C is fixed at -0.00325 (p-value below 1%); with respect to soybeans, the effect of beneficial

degree-days (i.e., 10-30◦C) becomes 0.00048 (p-value below 1%) and the effect of harmful

degree-days is fixed at -0.00483 (p-value below 1%). The slopes of harmful degree-days re-

spectively suggests that the substitution of a full day at 33°C with a full day at 34°C is

associated, on average, with approximate declines of 0.33% in corn and 0.48% in soybean

yields – which is in relatively close agreement with the previous models under no-irrigation

conditions. These irrigation-invariant response functions are then separately applied to the

actual heat distribution and to a simulated counterfactual scenario from which the cooling-

by-irrigation effect from upwind irrigation has been subtracted.28 More precisely, month-

27Historical corn and soybean prices are downloaded from Quick Stats by the National Agricultural
Statistics Service (NASS) of the US Department of Agriculture.

28For simplicity and in order to produce conservative estimates, we neglect to take into account the
cooling effect detected for irrigation in same, cross- and downwind counties (see Table 1). The cooling effect
originating from same-county irrigation is not statistically significant with respect to hottest temperatures,
for which the impact on corn yields is most important, and remains substantially smaller in magnitude when
compared to the effect from upwind-county irrigation. Similarly, the cooling effect measured with respect
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specific counterfactual temperature percentiles are predicted based on the effects obtained

from fitting specification (5). A cumulative distribution function of heat exposure is linearly

interpolated between the 0.001st, 1st, 5th, 10th, 25th, 50th, 75th, 90th, 95th, 99th and 99.999th

temperature percentiles for each individual month of the growing season in order to con-

struct the cumulative distribution function of heat exposure over the entire growing season.

Since irrigation is responsible for some cooling, the counterfactual distributions (without ir-

rigation) display a slightly heavier exposure to warmer temperatures, and especially so with

respect to the warmest temperature percentiles.

Right panels in Figure 5 (corn) and Figure 6 (soybeans) illustrate the spatial distribution

of avoided production losses due to the indirect effect in absolute levels as well as relatively

to total production. On aggregate over the 1959-2017 period and according to the proposed

methodology, the indirect effect is responsible for the additional production of 1.2 billion

bushels of corn and 0.1 billion bushels of soybeans, respectively representing about 1.6%

and 1.4% of total production or $7 billion (inflation-adjusted to $2017) in aggregate market

value. Again, the majority of avoided losses due to the indirect effect can be allocated to

Nebraska (72% for corn and 82% for soybeans) and almost all of these avoided production

losses occur within the boundary of the Ogallala, with large year-to-year and county-level

fluctuations depending on specific weather conditions. For instance, during extreme heat

episodes, avoided losses may constitute up to 9% of total corn production or 12% of total

soybean production in some selected counties. Figures A22 and A23 show the yearly evolu-

tion of avoided production losses in absolute terms and in proportions to total production for

the overall region of interest and for Nebraska in particular. Over the period of interest, the

proportion of avoided losses has been ramping up until the mid-1970’s before stabilizing at

around 1.5-2% on average, implying that the long-run evolution of avoided losses, in volume,

roughly follows the overall trend in production. By contrast, short-run shocks (e.g., during

the heat wave of 2012) evolve in opposite directions. Indeed, particularly hot years are asso-

ciated with both a marked decline in total production and a surge in the amount of avoided

crop losses due to the strong non-linearity in the yield response to extreme temperatures.

By contrast, years deprived from extreme heat episodes (e.g., in years following the eruption

of Mount Pinatubo in 1991) see relatively high yields irrespective of the cooling-by-irrigation

effect. In 2012, avoided losses culminated at 46 million bushels of corn and 7 million bushels

of soybeans (or an aggregate of $445 million given the market value in 2012)29, a record level

due to an extreme heat episode. Although exceptional in the last decade, such situations

to cross- and downwind irrigation levels reaches lower statistical significance and exhibits much smaller
coefficients than for upwind irrigation levels.

29This compares to 183 million bushels of corn and 40 million of bushels of soybeans (or an aggregate of
$1,963 million) for avoided losses due to the direct effect in 2012 alone.
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may in fact become far more frequent in the context of an overall warming climate and

exacerbated heat episodes.

In light of the above, the indirect effect appears to be smaller by an average factor of

3.7 (in terms of market value) than the direct effect. This is in rough agreement with (Li et

al. 2020) who explore a similar question in Nebraska and estimate that “16% or irrigation

yield increase is due to irrigation cooling, while the rest (84%) is due to water supply and

other factors”.30 However, in contrast to the “on-the-spot” feature of the direct effect, the

indirect effect consists in an externality and is typically shifted by one county northwards –

in agreement with the fact that wind predominantly blows from South to North in the

region of interest during the growing season (see Figure A21). This raises the question as

to whether the indirect effect occasionally benefits individual counties more than the direct

effect. Figure 7 answers this point by illustrating the ratio of the indirect effect to the direct

effect for Nebraskan counties, which concentrate the bulk of the corn and soybean production

in the region of interest. In several counties, the cooling externality caused by irrigation in

upwind neighbors and measured in the form of avoided corn production losses is as important,

or even more important, than the direct effect of same-county irrigation. Such situations

are typically observed in counties located immediately downwind from intensively irrigated

areas (for instance, north of the Platte River in Nebraska) that do not significantly irrigate

themselves. While these areas do not encompass major corn- or soybean producing counties,

it is important to stress that the cooling-by-irrigation effect is responsible for additional

positive externalities on the economy via the spillover it generates on local weather for

instance with respect to the production of other heat-sensitive crops, the reduction in energy

demand (less AC), the protection of entire ecosystems against extreme heat, the preservation

of labor productivity, etc. Below, we explore the arguably most important of such additional

benefits, namely the reduced excess mortality during summer months thanks to the reduced

exposure to extreme heat for populations living in downwind areas.

5.2 Irrigation externality on downwind mortality

Restricting the mortality data from April to September in each year between 1959 to 1988

in the region of interest, we adapt the temperature-mortality response function proposed by

Deschênes and Greenstone (2011) by fitting the following two-way fixed effect model

Miy = ϕT 35
iy + χPiy + ψi + ωy + ϵiy (6)

30(Li et al. 2020) do not explore spillover effects related to the cooling-by-irrigation externality and still
detect a considerable “on-the-spot” effect on daytime land surface temperature measurements (-1.63◦C in
July).
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where Miy is the mortality rate (per 100,000 inhabitants) in county i observed during the

183 days between April 1st and September 30th in year y, T 35
iy is the cumulative amount of

time (in days) spent above 35◦C by county i during the April-September period of year y,

Piy is the total precipitation level in county i during the April-September period of year y, ψi

are county fixed effects, ωy are time fixed effects for each (half of) year y and ϵiy is the error

term.31 Similarly to Deschênes and Greenstone (2011), we weight equation (6) by (the square

root of) county-level population, since larger counties are likely to produce more precise

estimates. Eventually, we cluster standard errors by state to allow for arbitrary correlation

within counties of the same state. The modification to Deschênes and Greenstone (2011) is

that we estimate the time spent above 35◦C using the full temperature distribution on a day

rather than average temperature on a day - the reasoning being that we found heterogeneous

impacts with higher cooling for upper percentiles of the temperature distribution. The

coefficient of interest is estimated to be ϕ̂ = .921∗∗ with a standard error of .4514. This

suggests that, on average and holding precipitation level constant, exchanging a full day

below 35◦C between April and September with a full day above 35◦C in any given county of

the region of interest is associated with an additional mortality of .921 deaths per 100,000

people in the same county.

Using a similar methodology as for the quantification of the indirect effect of irrigation

in improving corn yields (see Section 5.1), we estimate a counterfactual world without the

cooling-by-irrigation externality and measure the additional amount of time spent in each

county above the 35◦C threshold between April and September. Figure 8 shows for how many

more days each county in the region of interest would have been exposed to temperatures

above 35◦C during the heat wave of 2012. In numerous counties within the boundary of

the Ogallala aquifer, this amount of time exceeds 1 full day and reaches up to 4 days in

several counties. Adjusting these amounts computed for every year between 1959 and 2017

by a factor .921 and for historic county-specific population levels, we estimate that the

cooling-by-irrigation externality has allowed to avoid an aggregate of 1,579 premature deaths

in the region of interest excluding counties with the highest population density and that

fall outside the boundary of the Ogallala.32 On average, this represents about 27 avoided

31We also fit a more flexible version of equation (6) given by Miy =
∑

j∈J ϕjTiyj + χPiy + ψi + ωy + ϵiy,
where J is the set of seven separate temperature bins (below 5◦C, 5-10◦C, 10-15◦C, 15-20◦C, 20-25◦C,
30-35◦C and above 35◦C) and Tiyj is the cumulative amount of time (in days) spent in bracket j. Note
that, in this alternative specification, the 25-30◦C bin is omitted and serves as baseline category. None of
the estimated ϕ̂j is statistically significant (not even at the 10% significance level) except for ϕ̂35◦ = 1.614∗∗

(with a standard error of .728), meaning that exchanging a full day spent between 25 and 30◦C with a full
day above 35◦C is associated with an 1.614 additional deaths per 100,000. For simplicity, in the remainder,
we keep the more conservative estimate obtained by fitting (6).

32These counties are Dallas, TX (48113), Tarrant, TX (48439) and Oklahoma city, OK (40109). In terms
of population levels, these counties constitute outliers when compared to the remaining counties of the region
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deaths per summer, with peaks as high as 47 avoided deaths during particularly hot years

(see Figure A24). Such years, however, are likely to be the most representative for future

conditions given the present context of a warming world. Using the EPA’s Value of a

Statistical Life (VSL) of $7.4 million in $2006 (or $9.0 million in $2017) “regardless of the
age, income, or other population characteristics of the affected population” (as recommended

by the EPA)33, these counts translate into $14 billion ($2017) in total and $241 million per

summer of unintended benefits due to irrigation. We argue these figures constitute lower

bounds on the beneficial externality of large-scale irrigation given that, besides this important

reduction in terms of human mortality, the cooling-by-irrigation effect is likely to generate

several additional benefits in terms of reduced morbidity, higher comfort or even animal

health, with potentially significant effects on cattle farming in the Great Plains.

6 Conclusions

We empirically show that large-scale irrigation is responsible for a significant cooling exter-

nality which affects the entire distribution of summertime temperature and is most effective

at cooling the higher end of the temperature distribution by combining monthly tempera-

ture records over 59 years with irrigation statistics interpolated at the yearly level for every

county in a vast region around the Ogallala aquifer. The cooling effect extends strongly

to downwind counties. Our identification strategy relies on a three-way fixed effects setup

that compares changes in irrigation over time and space to changes in temperature distribu-

tions during the growing season relative to the remainder of the year. Our findings provide

a partial explanation for the observed larger-scale warming hole observed in the Central

United States as of the 1950’s. Conceptually, the unintended beneficial feedback mechanism

which we identify with respect to intensive irrigation is remarkable because it suggests that

adaptive behavior to regional climate (and by extension also to climate change or rising

constraints in water availability from freshwater aquifers) can have measurable and sizeable

effects on the climate – a channel which, to our knowledge, has not yet been accounted for

in the adaptation literature but certainly deserves more attention.

Practically, from an agricultural perspective, we show that large-scale irrigation does not

only benefit plant growth directly by controlling water supply and enhancing heat tolerance

of crops ($26 billion in aggregate and inflation-adjusted market value for corn and soybeans

of interest. Including these counties in the scope of the analysis mechanically increases the total number of
avoided premature deaths to 1,683, due to the interaction of de minimis irrigation levels in upwind counties
with very large population levels, but without this being reasonably representative of the cooling-by-irrigation
externality.

33See https://www.epa.gov/environmental-economics/mortality-risk-valuation
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over 1959-2017) but also indirectly by increasing yields through avoiding harmful degree-

days in downwind areas ($7 billion). Although being comparatively smaller in overall, this

positive externality appears to be occasionally, at the county-level, even more important

than the direct effect of irrigation on corn production with respect to its adaptation to heat.

As extreme heat is also detrimental to other spheres of the economy besides agriculture,

such as labor productivity or local population and ecosystem health, we argue that the ben-

efits of the cooling-by-irrigation externality actually exceed those from a purely agricultural

perspective, a consideration which we explore on the important example of reduced excess

mortality for populations living in downwind areas of irrigated land. We estimate that, over

the period and region of interest, 1,579 premature deaths ($14 billion based on the VSL rec-

ommended by the EPA) have been historically avoided over our 59-year-long sample thanks

to the unintended but beneficial cooling effect of intensive irrigation. During particularly

hot summers, which are likely to be the most informative for future climate conditions,

the benefit in reduced mortality can reach up to 47 avoided deaths in downwind areas of

irrigation-intensive counties. Besides improving crop yields and reducing human mortality,

the cooling-by-irrigation externality carries several additional benefits of economic relevance,

for instance in terms of reduced morbidity, higher comfort and reduced cattle mortality dur-

ing heat episodes, thereby locally facilitating adaptive behavior to climate change - as far as

water availability permits.

Despite having significantly improved crop yields in the Great Plains and generated

sizable positive externalities on the economy over the last 59 years, large-scale irrigation as

historically allowed by the Ogallala aquifer is unlikely to be replicable in other agricultural

settings within the US given fundamental geological constraints in freshwater availability. On

the contrary, the progressive depletion of the Ogallala aquifer may result not only in profound

changes in local agricultural production and productivity, but also in a localized warming of

summertime temperatures, a situation which is already empirically observed downstream of

the Ogallala aquifer and for which the indirect consequences could significantly exacerbate

potential losses in sectors seemingly unrelated to agriculture.

Finally, our study suggests that the common argument that year-to-year weather shocks

are random and exogenous does not hold for highly-irrigated areas, where the upper tail of

the temperature distribution can be lowered by as much as 3◦C in August downwind for

highly irrigated areas.
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Table 1: The Effect of Irrigation on Monthly Temperature Percentiles by Wind Direction

p n
Irrigation information from

R2-within
same upwind crosswind downwind

99th Apr -0.18 (0.38) 0.17 (0.46) -0.32 (0.68) -0.68 (0.76)
May -0.20 (0.19) -0.88 (1.06) -1.11∗ (0.60) -1.23∗∗ (0.61)
Jun 0.19 (0.33) -2.71∗∗ (1.02) -0.98∗ (0.55) -0.60 (0.79)
Jul -0.23 (0.41) -2.51∗∗∗ (0.85) -0.76 (0.47) -1.08 (0.70)
Aug -0.27 (0.46) -3.05∗∗∗ (0.96) -0.82 (0.56) -1.24 (0.85)
Sep -0.13 (0.23) -0.83 (1.23) 0.08 (0.57) -0.38 (0.87) 3.00%

90th Apr -0.38 (0.27) -0.26 (0.36) -0.20 (0.62) -0.51 (0.70)
May -0.06 (0.16) -1.18 (0.85) -0.72 (0.60) -0.66 (0.68)
Jun -0.08 (0.23) -1.88∗∗ (0.78) -0.63 (0.42) -0.44 (0.58)
Jul -0.27 (0.31) -1.87∗∗ (0.80) -0.77∗ (0.40) -0.77 (0.63)
Aug -0.16 (0.41) -3.31∗∗∗ (0.85) -1.16∗∗ (0.51) -1.74∗∗ (0.78)
Sep -0.39∗∗∗ (0.13) 0.35 (1.00) 0.46 (0.42) 0.32 (0.68) 3.00%

75th Apr -0.25 (0.25) -0.22 (0.30) -0.15 (0.49) -0.56 (0.63)
May -0.00 (0.17) -0.71 (0.70) -0.40 (0.54) -0.67 (0.63)
Jun -0.01 (0.19) -1.86∗∗ (0.72) -0.54 (0.40) -0.25 (0.55)
Jul -0.25 (0.22) -1.61∗∗ (0.65) -0.60∗ (0.31) -0.47 (0.52)
Aug -0.18 (0.26) -2.36∗∗∗ (0.75) -0.94∗∗ (0.41) -1.45∗∗ (0.70)
Sep -0.35∗∗∗ (0.09) 0.55 (0.87) 0.50 (0.34) 0.48 (0.59) 2.17%

50th Apr -0.16 (0.19) -0.21 (0.23) -0.07 (0.39) -0.27 (0.50)
May -0.01 (0.14) -0.72 (0.57) -0.37 (0.46) -0.42 (0.53)
Jun -0.01 (0.19) -1.95∗∗∗ (0.68) -0.61 (0.37) -0.40 (0.49)
Jul -0.23 (0.20) -1.38∗∗∗ (0.49) -0.53∗∗ (0.25) -0.40 (0.41)
Aug -0.20 (0.22) -1.95∗∗∗ (0.65) -0.74∗∗ (0.36) -1.08∗ (0.56)
Sep -0.33∗∗∗ (0.11) 0.20 (0.77) 0.20 (0.30) 0.35 (0.51) 1.14%

25th Apr -0.11 (0.16) -0.20 (0.19) 0.07 (0.31) 0.03 (0.41)
May 0.01 (0.11) -0.74 (0.54) -0.44 (0.45) -0.65 (0.50)
Jun -0.02 (0.12) -1.82∗∗∗ (0.59) -0.59∗ (0.30) -0.44 (0.42)
Jul -0.30∗∗ (0.14) -1.12∗∗ (0.46) -0.36 (0.22) -0.29 (0.40)
Aug -0.27∗ (0.16) -1.63∗∗ (0.61) -0.54 (0.35) -0.94∗ (0.54)
Sep -0.30∗∗ (0.12) 0.34 (0.75) 0.18 (0.33) 0.25 (0.57) 0.48%

5th Apr -0.09 (0.19) -0.44 (0.29) -0.03 (0.43) 0.04 (0.51)
May -0.17∗∗ (0.08) -0.70 (0.56) 0.17 (0.42) -0.30 (0.48)
Jun 0.06 (0.12) -1.52∗∗ (0.72) -0.44 (0.37) -0.61 (0.54)
Jul -0.31∗∗ (0.13) -0.85 (0.52) -0.01 (0.30) -0.11 (0.54)
Aug -0.34∗∗ (0.14) -1.45∗∗ (0.72) -0.38 (0.38) -0.79 (0.71)
Sep -0.36∗∗∗ (0.13) -0.55 (0.68) -0.01 (0.37) -0.04 (0.56) 0.10%

Notes: Each panel (separated by horizontal lines) presents regression results from a joint regression using

278,094 observations and controls for previous-month precipitation - see specification (5). Units are in
◦C/(fraction of county area that is irrigated). The six panels present results for the 99th, 90th, 75th, 50th,

25th and 5th temperature percentiles for each month between April and September relative to the rest of the

year. The four middle columns include information on the fraction of the county that is irrigated for same,

up-, cross- and downwind counties. Standard errors (in parenthesis) are two-way clustered by county and

year. ∗∗∗, ∗∗ and ∗ denote statistical significance respectively at the 1%, 5% and 10% levels. Results are

illustrated in Figure 3.
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Figure 1: Irrigation Trends over Ogallala Aquifer 1959-2017

Notes: Figure displays the 393 counties (i) with centroid coordinates falling between the minimum/maximum
latitude and longitude of the Ogallala aquifer (or crossing its boundary). They are color-coded by the ob-
served irrigation trend (ι̂i) over the 1959-2017 period: counties which saw an increase (decrease) in irrigation
are in blue (red).
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Figure 2: Change in Temperature Percentiles by Month of Year and Upwind Irrigation Trend

Notes: Average change in the 99th (top), 50th (middle) and 10th (bottom) temperature percentiles over

the 1959-2017 period as a function of the month (horizontally jittered) for each of the 393 counties in the

region of interest. Each county is represented by a bubble, the size and color of which respectively indicate

the average proportion of irrigated land and the irrigation trend observed in the county’s upwind neighbor.
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Figure 3: Effect of Irrigation on Monthly Temperature Percentiles by Wind Direction
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County: Same Upwind Crosswind Downwind

Notes: Each panel shows the estimated effects and 95% confidence intervals of irrigation in the same (black),

upwind (green), crosswind (blue) and downwind (red) county for the six months of the growing season relative

to the rest of the year. The six panels show results for the 99th, 90th, 75th, 50th, 25th and 5th temperature

percentiles, respectively. Each specification estimates 24 βp
n coefficients jointly while controlling for previous-

month precipitation - see specification (5). Units are in ◦C/(fraction of county area that is irrigated). 95%

confidence intervals (vertical bars) are based on the regression that twoway-clusters errors by county and

year. For clarity the y-scale is limited to [−5, 1] and some confidence bands might be truncated. Figures

illustrate results from Table 1.
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Figure 4: Degree-days in Merrick County (NE)With andWithout Effect of Upwind Irrigation

Notes: Figure shows the evolution of actual (continuous black line) and counterfactual (dotted gray line)

degree-days above 30◦C (top panel) and 35◦C (bottom panel) in county 31121 (Merrick County, NE)

aggregated yearly over the April-September period. The counterfactual scenario is based on the simulated

temperature distribution in county 31121 after removal of the cooling-by-irrigation externality. Trends are

summarized by linear regression lines with shaded 95% confidence bands.
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Figure 5: Avoided Corn Production Losses Due to Irrigation

Notes: The left column displays avoided corn production losses via the primary effect of within-county

irrigation (“direct effect”) i.e., the benefit of irrigation of making yields less susceptible to extreme heat. The

right column gives the avoided losses via the cooling externality induced by irrigation in upwind counties

(“indirect effect”). The top row gives the benefits in saved (millions of) bushels, while the bottom row shows

the results in proportion to total production over the 1959-2017 period.
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Figure 6: Avoided Soybean Production Losses Due to Irrigation

Notes: The left column displays avoided soybean production losses via the primary effect of within-county

irrigation (“direct effect”) i.e., the benefit of irrigation of making yields less susceptible to extreme heat. The

right column gives the avoided losses via the cooling externality induced by irrigation in upwind counties

(“indirect effect”). The top row gives the benefits in saved (millions of) bushels, while the bottom row shows

the results in proportion to total production over the 1959-2017 period.

35



Figure 7: Ratio of Externality Benefits to Direct Own Benefits of Irrigation

Notes: Figures show the ratio of the positive externality (avoided agricultural production losses due to

cooling induced by irrigation in upwind neighbors) relative to direct own benefits (avoided production losses

due to the effect of within-county irrigation) in Nebraska for each of corn (top panel) and soybeans (bottom

panel). Counties colored in red (green) benefit comparatively more from the direct effect (indirect effect),

while counties colored in yellow benefit equally from each effect. Color scale is top coded at 200%. The size

of blue bubbles is proportional to average fraction of a county that is irrigated in 1959-2017.
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Figure 8: Additional Time Spent Above 35◦C Without Irrigation in 2012.

Notes: Figure shows the estimated additional time (in number of days) spent above 35◦C during April-

September in 2012 for a counterfactual world deprived from the cooling-by-irrigation externality. Contour

of the Ogallala aquifer is indicated by the line in blue.

37



A Appendix

List of Tables

A1 Irrigation and Monthly Temperature Percentiles - Same County Only . . . . ii
A2 Irrigation and Monthly Temperature Percentiles - Same and Upwind County iii
A3 Irrigation and Monthly Temperature Percentiles - Neighboring Counties . . . iv
A4 Irrigation and Monthly Temperature Percentiles - Northern States . . . . . . v
A5 Irrigation and Monthly Temperature Percentiles - Southern States . . . . . . vi

List of Figures

A1 Sensitivity to Clustering: Conley Standard Errors . . . . . . . . . . . . . . . vii
A2 Sensitivity to Defining Neighbors: Upwind County Only . . . . . . . . . . . viii
A3 Sensitivity to Defining Neighbors: Same County Only . . . . . . . . . . . . . ix
A4 Sensitivity to Defining Neighbors: Same and Upwind County . . . . . . . . . x
A5 Sensitivity to Defining Neighbors: Neighboring Counties . . . . . . . . . . . xi
A6 Sensitivity to Defining Neighbors: Excluding Upwind Variables . . . . . . . . xii
A7 Sensitivity to Defining Neighbors: Excluding Crosswind Variables . . . . . . xiii
A8 Sensitivity to Defining Neighbors: Excluding Downwind Variables . . . . . . xiv
A9 Sensitivity to Chosen Control: Excluding All Precipitation Controls . . . . . xv
A10 Sensitivity to Chosen Control: Precipitation Controls by Month . . . . . . . xvi
A11 Sensitivity to Chosen Control: Including Concurrent Precipitation . . . . . . xvii
A12 Sensitivity to Defining Neighbors: Weighted Average Upwind . . . . . . . . . xviii
A13 Sensitivity to Spatial Coverage: Northern Subset . . . . . . . . . . . . . . . . xix
A14 Sensitivity to Spatial Coverage: Southern Subset . . . . . . . . . . . . . . . . xx
A15 Irrigation Trends in Nebraska and Texas 1900-2017 . . . . . . . . . . . . . . xxi
A16 Irrigation Trends in Remaining States 1900-2017 . . . . . . . . . . . . . . . . xxii
A17 Location of Weather Stations With Temperature Readings . . . . . . . . . . xxiii
A18 Location of Weather Stations With Precipitation Readings . . . . . . . . . . xxiv
A19 Observed Trends in Selected Temperature Percentiles in April and July . . . xxv
A20 Observed Precipitation Trends in April and July . . . . . . . . . . . . . . . . xxvi
A21 Distribution of Hourly Wind Directions 1979-2017 . . . . . . . . . . . . . . . xxvii
A22 Production and Avoided Yield Losses Due to Cooling-by-Irrigation . . . . . xxviii
A23 Fraction of Agricultural Production Saved by Cooling-by-Irrigation . . . . . xxix
A24 Avoided Premature Deaths Due to Reduced Heat Through Irrigation . . . . xxx

i



Table A1: Irrigation and Monthly Temperature Percentiles - Same County Only

p n
Irrigation information from

R2-within
same

99th Apr -0.80 (1.55)
May -2.52∗ (1.47)
Jun -2.82∗ (1.43)
Jul -3.22∗∗∗ (1.13)
Aug -3.81∗∗∗ (1.35)
Sep -0.93 (1.71) 2.75%

90th Apr -1.07 (1.39)
May -1.88 (1.45)
Jun -2.15∗ (1.11)
Jul -2.62∗∗ (1.13)
Aug -4.47∗∗∗ (1.25)
Sep 0.39 (1.35) 2.71%

75th Apr -0.92 (1.21)
May -1.26 (1.27)
Jun -1.86∗ (1.05)
Jul -2.10∗∗ (0.91)
Aug -3.48∗∗∗ (1.13)
Sep 0.72 (1.14) 1.96%

50th Apr -0.54 (0.95)
May -1.07 (1.04)
Jun -2.07∗∗ (0.95)
Jul -1.82∗∗∗ (0.68)
Aug -2.81∗∗∗ (0.95)
Sep 0.18 (0.97) 0.99%

25th Apr -0.16 (0.73)
May -1.27 (0.99)
Jun -2.01∗∗ (0.83)
Jul -1.51∗∗ (0.68)
Aug -2.43∗∗ (0.93)
Sep 0.23 (1.04) 0.39%

5th Apr -0.36 (0.98)
May -0.70 (0.99)
Jun -1.72∗ (1.02)
Jul -0.96 (0.86)
Aug -2.14∗ (1.14)
Sep -0.76 (1.03) 0.07%

Notes: Table replicates Table 1, but only includes own-county irrigation. Each panel (separated by horizontal

lines) presents regression results from a joint regression using 278,244 observations and controls for previous-

month precipitation. Units are in ◦C/(fraction of county area that is irrigated). The six panels present

results for the 99th, 90th, 75th, 50th, 25th and 5th temperature percentiles for each month between April and

September relative to the rest of the year. Standard errors (in parenthesis) are two-way clustered by county

and year. ∗∗∗, ∗∗ and ∗ denote statistical significance respectively at the 1%, 5% and 10% levels.
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Table A2: Irrigation and Monthly Temperature Percentiles - Same and Upwind County

p n
Irrigation information from

R2-within
same upwind

99th Apr -0.79 (1.04) -0.01 (0.85)
May -1.75∗∗ (0.78) -1.11 (1.18)
Jun -0.96 (0.88) -2.76∗∗ (1.05)
Jul -1.52∗∗ (0.72) -2.53∗∗∗ (0.86)
Aug -1.73∗ (0.88) -3.06∗∗∗ (0.98)
Sep -0.39 (0.95) -0.78 (1.24) 2.92%

90th Apr -0.82 (0.96) -0.39 (0.71)
May -0.98 (0.87) -1.33 (0.97)
Jun -0.86 (0.65) -1.91∗∗ (0.79)
Jul -1.34∗ (0.67) -1.92∗∗ (0.81)
Aug -2.21∗∗∗ (0.82) -3.33∗∗∗ (0.86)
Sep 0.14 (0.72) 0.40 (1.01) 2.90%

75th Apr -0.68 (0.84) -0.37 (0.60)
May -0.72 (0.79) -0.79 (0.81)
Jun -0.59 (0.60) -1.89∗∗ (0.74)
Jul -0.98∗ (0.55) -1.66∗∗ (0.66)
Aug -1.87∗∗ (0.71) -2.38∗∗∗ (0.76)
Sep 0.33 (0.59) 0.59 (0.87) 2.08%

50th Apr -0.38 (0.67) -0.26 (0.47)
May -0.54 (0.64) -0.80 (0.66)
Jun -0.75 (0.53) -1.98∗∗∗ (0.69)
Jul -0.86∗∗ (0.43) -1.42∗∗∗ (0.50)
Aug -1.48∗∗ (0.57) -1.96∗∗∗ (0.66)
Sep 0.04 (0.51) 0.21 (0.77) 1.07%

25th Apr -0.09 (0.52) -0.11 (0.35)
May -0.72 (0.60) -0.84 (0.63)
Jun -0.77∗ (0.46) -1.86∗∗∗ (0.60)
Jul -0.74∗ (0.42) -1.15∗∗ (0.46)
Aug -1.32∗∗ (0.55) -1.63∗∗ (0.62)
Sep -0.01 (0.57) 0.35 (0.75) 0.44%

5th Apr -0.11 (0.67) -0.40 (0.52)
May -0.27 (0.59) -0.67 (0.64)
Jun -0.70 (0.58) -1.54∗∗ (0.73)
Jul -0.39 (0.56) -0.84 (0.52)
Aug -1.17∗ (0.70) -1.44∗∗ (0.71)
Sep -0.40 (0.61) -0.54 (0.69) 0.09%

Notes: Each panel (separated by horizontal lines) presents regression results from a joint regression using

278,174 observations and controls for previous-month precipitation. Units are in ◦C/(fraction of county area

that is irrigated). The six panels present results for the 99th, 90th, 75th, 50th, 25th and 5th temperature

percentiles for each month between April and September relative to the rest of the year. The two middle

columns include information on the fraction of the county that is irrigated for same and upwind counties.

Standard errors (in parenthesis) are two-way clustered by county and year. ∗∗∗, ∗∗ and ∗ denote statistical

significance respectively at the 1%, 5% and 10% levels.
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Table A3: Irrigation and Monthly Temperature Percentiles - Neighboring Counties

p n
Irrigation information from

R2-within
upwind crosswind downwind

99th Apr 0.11 (0.55) -0.37 (0.75) -0.73 (0.85)
May -0.95 (1.07) -1.16∗ (0.59) -1.30∗∗ (0.63)
Jun -2.64∗∗ (1.00) -0.90∗ (0.52) -0.54 (0.78)
Jul -2.59∗∗∗ (0.84) -0.83∗ (0.43) -1.16 (0.70)
Aug -3.15∗∗∗ (0.94) -0.90∗ (0.49) -1.33 (0.84)
Sep -0.88 (1.20) 0.04 (0.54) -0.43 (0.85) 3.00%

90th Apr -0.38 (0.44) -0.31 (0.68) -0.63 (0.78)
May -1.20 (0.86) -0.73 (0.61) -0.69 (0.69)
Jun -1.92∗∗ (0.76) -0.64 (0.40) -0.47 (0.57)
Jul -1.97∗∗ (0.80) -0.85∗∗ (0.37) -0.86 (0.63)
Aug -3.37∗∗∗ (0.82) -1.21∗∗∗ (0.45) -1.79∗∗ (0.76)
Sep 0.20 (0.98) 0.34 (0.39) 0.19 (0.67) 3.00%

75th Apr -0.31 (0.37) -0.22 (0.56) -0.64 (0.70)
May -0.71 (0.71) -0.39 (0.55) -0.68 (0.65)
Jun -1.87∗∗∗ (0.70) -0.53 (0.37) -0.26 (0.53)
Jul -1.70∗∗ (0.65) -0.68∗∗ (0.29) -0.55 (0.52)
Aug -2.43∗∗∗ (0.73) -0.99∗∗∗ (0.36) -1.51∗∗ (0.68)
Sep 0.42 (0.84) 0.39 (0.31) 0.36 (0.57) 2.17%

50th Apr -0.26 (0.29) -0.11 (0.44) -0.32 (0.56)
May -0.72 (0.57) -0.37 (0.46) -0.42 (0.54)
Jun -1.95∗∗∗ (0.65) -0.60∗ (0.34) -0.41 (0.47)
Jul -1.47∗∗∗ (0.49) -0.60∗∗ (0.23) -0.48 (0.41)
Aug -2.02∗∗∗ (0.63) -0.80∗∗ (0.32) -1.15∗∗ (0.54)
Sep 0.07 (0.74) 0.10 (0.27) 0.23 (0.49) 1.14%

25th Apr -0.23 (0.23) 0.03 (0.34) -0.00 (0.45)
May -0.74 (0.53) -0.43 (0.44) -0.65 (0.50)
Jun -1.83∗∗∗ (0.57) -0.59∗∗ (0.28) -0.45 (0.41)
Jul -1.23∗∗∗ (0.45) -0.45∗∗ (0.21) -0.39 (0.40)
Aug -1.73∗∗∗ (0.59) -0.63∗ (0.32) -1.03∗∗ (0.51)
Sep 0.22 (0.73) 0.08 (0.31) 0.15 (0.54) 0.48%

5th Apr -0.47 (0.34) -0.06 (0.47) 0.01 (0.56)
May -0.76 (0.57) 0.13 (0.43) -0.36 (0.49)
Jun -1.50∗∗ (0.69) -0.41 (0.34) -0.59 (0.52)
Jul -0.97∗ (0.50) -0.10 (0.28) -0.21 (0.53)
Aug -1.58∗∗ (0.69) -0.49 (0.35) -0.90 (0.68)
Sep -0.68 (0.66) -0.12 (0.35) -0.17 (0.54) 0.10%

Notes: Table replicates Table 1, but excluded own irrigation levels . Each panel (separated by horizontal

lines) presents regression results from a joint regression using 278,174 observations and controls for previous-

month precipitation. Units are in ◦C/(fraction of county area that is irrigated). The six panels present

results for the 99th, 90th, 75th, 50th, 25th and 5th temperature percentiles for each month between April and

September relative to the rest of the year. The three middle columns include information on the fraction

of the county that is irrigated for upwind, crosswind, and downwind counties, respectively. Standard errors

(in parenthesis) are two-way clustered by county and year. ∗∗∗, ∗∗ and ∗ denote statistical significance

respectively at the 1%, 5% and 10% levels.
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Table A4: Irrigation and Monthly Temperature Percentiles - Northern States

p n
Irrigation information from

R2-within
same upwind crosswind downwind

99th Apr -.32 (.35) .35 (.36) -.67 (.44) -1.30∗∗ (.54)
May -.16 (.23) -.43 (.86) -.53 (.39) -.77 (.57)
Jun .09 (.26) -2.79∗∗∗ (.74) -.87∗∗ (.36) -.71 (.62)
Jul -.65∗∗∗ (.22) -2.86∗∗∗ (.57) -.30 (.32) -1.41∗∗∗ (.50)
Aug -.68∗∗∗ (.21) -3.06∗∗∗ (.68) .09 (.30) -1.01 (.62)
Sep -.08 (.21) -1.14 (.72) .18 (.33) -.98∗ (.54) 2.8%

90th Apr -.59∗∗∗ (.22) -.45∗ (.26) -.32 (.36) -.64 (.47)
May -.00 (.17) -1.00∗ (.57) -.34 (.36) -.12 (.48)
Jun -.19 (.17) -2.04∗∗∗ (.51) -.57∗∗ (.27) -.55 (.49)
Jul -.72∗∗∗ (.17) -2.16∗∗∗ (.51) -.34 (.26) -1.10∗∗∗ (.38)
Aug -.60∗∗∗ (.17) -2.89∗∗∗ (.56) -.04 (.25) -1.18∗∗ (.50)
Sep -.31 (.20) -.19 (.62) .15 (.29) -.52 (.46) 2.6%

75th Apr -.31 (.20) -.46∗∗ (.22) -.22 (.30) -.33 (.38)
May .02 (.15) -.72 (.49) -.22 (.34) -.48 (.42)
Jun -.04 (.14) -1.94∗∗∗ (.43) -.47∗∗ (.23) -.27 (.38)
Jul -.57∗∗∗ (.15) -1.79∗∗∗ (.40) -.30 (.21) -.68∗∗ (.32)
Aug -.45∗∗∗ (.15) -1.99∗∗∗ (.49) -.10 (.23) -1.05∗∗ (.46)
Sep -.17 (.17) .03 (.55) .19 (.27) -.30 (.40) 2.0%

50th Apr -.41∗∗ (.17) -.41∗∗ (.19) -.21 (.25) -.37 (.29)
May .01 (.12) -.81∗∗ (.41) -.31 (.29) -.34 (.37)
Jun -.02 (.13) -2.05∗∗∗ (.42) -.53∗∗∗ (.19) -.44 (.34)
Jul -.40∗∗∗ (.13) -1.52∗∗∗ (.32) -.37∗∗ (.18) -.59∗∗ (.27)
Aug -.36∗∗∗ (.12) -1.82∗∗∗ (.43) -.18 (.20) -.84∗∗ (.38)
Sep -.18 (.13) -.43 (.45) -.07 (.27) -.45 (.42) 1.1%

25th Apr -.39∗∗ (.16) -.30 (.19) -.24 (.23) -.32 (.26)
May -.01 (.13) -.67∗ (.38) -.49∗ (.29) -.64∗ (.35)
Jun -.04 (.11) -1.64∗∗∗ (.40) -.47∗∗ (.19) -.17 (.33)
Jul -.42∗∗∗ (.12) -1.19∗∗∗ (.33) -.32∗∗ (.16) -.33 (.30)
Aug -.39∗∗∗ (.12) -1.38∗∗∗ (.40) -.16 (.21) -.63∗ (.38)
Sep -.13 (.12) -.21 (.41) -.20 (.22) -.51 (.40) .4%

5th Apr -.28 (.24) -.34 (.30) -.27 (.34) -.49 (.44)
May -.18 (.16) -.53 (.46) .19 (.31) -.31 (.41)
Jun .09 (.17) -.82 (.56) .02 (.26) -.09 (.45)
Jul -.33∗∗ (.14) -.87∗∗ (.43) -.09 (.22) -.24 (.47)
Aug -.47∗∗∗ (.15) -.99∗∗ (.45) .10 (.23) -.37 (.46)
Sep -.20 (.16) -.78 (.49) -.13 (.26) -.31 (.47) .1%

Notes: Table replicates Table 1, but limits the data set to the five northern states (Nebraska, Colorado,

Wyoming, South Dakota and Kansas). Each panel (separated by horizontal lines) presents regression

results from a joint regression using 155,610 observations and controls for previous-month precipitation -

see specification (5). Units are in ◦C/(fraction of county area that is irrigated). The six panels present

results for the 99th, 90th, 75th, 50th, 25th and 5th temperature percentiles for each month between April and

September relative to the rest of the year. The four middle columns include information on the fraction of

the county that is irrigated for same, up-, cross- and downwind counties. Conley s.e. (in parentheses) are

computed using Bartlett kernel and a 1,000km cutoff distance. ∗∗∗, ∗∗ and ∗ denote statistical significance

respectively at the 1%, 5% and 10% levels.
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Table A5: Irrigation and Monthly Temperature Percentiles - Southern States

p n
Irrigation information from

R2-within
same upwind crosswind downwind

99th Apr .18 (.28) .20 (.58) .08 (.54) .17 (.60)
May .03 (.26) -.15 (.51) -.73 (.68) -.81 (.64)
Jun .21 (.30) -.87 (.73) -.19 (.65) .92 (.76)
Jul .29 (.28) -1.30∗∗ (.58) -.82 (.52) .08 (.68)
Aug .07 (.27) -1.02∗ (.56) -.40 (.58) .15 (.56)
Sep -.36 (.27) -.35 (.58) .16 (.57) 1.01∗ (.61) 3.4%

90th Apr .13 (.19) -.35 (.34) -.66∗ (.38) -.51 (.43)
May .23 (.21) -.05 (.40) -.66 (.52) -.47 (.57)
Jun .11 (.20) -.82 (.52) -.42 (.47) .31 (.52)
Jul .27 (.21) -.84∗∗ (.36) -.78∗∗ (.37) .32 (.45)
Aug .10 (.23) -.84∗∗ (.43) -.35 (.41) -.02 (.49)
Sep -.34∗ (.20) -.25 (.44) .43 (.45) 1.16∗∗ (.48) 3.9%

75th Apr .10 (.19) -.49 (.33) -.45 (.36) -.97∗∗ (.48)
May .23 (.18) .13 (.36) -.30 (.44) -.15 (.53)
Jun .08 (.20) -.89∗∗ (.44) -.33 (.40) .35 (.50)
Jul .11 (.19) -.99∗∗∗ (.37) -.78∗∗ (.36) .16 (.47)
Aug -.04 (.22) -.76∗ (.44) -.46 (.40) -.15 (.45)
Sep -.48∗∗ (.19) -.24 (.40) .36 (.42) 1.12∗∗ (.48) 2.9%

50th Apr .29 (.19) -.39 (.32) -.36 (.32) -.52 (.37)
May .04 (.16) .21 (.29) .11 (.38) .17 (.39)
Jun .00 (.16) -.94∗∗ (.43) -.55∗ (.33) .09 (.42)
Jul -.12 (.16) -.81∗∗ (.33) -.65∗∗ (.32) .05 (.40)
Aug -.22 (.20) -.61 (.40) -.51 (.35) -.25 (.37)
Sep -.49∗∗∗ (.15) -.49 (.37) -.24 (.39) .80∗∗ (.37) 1.4%

25th Apr .27 (.19) -.60∗ (.33) -.23 (.31) -.22 (.36)
May .13 (.14) -.05 (.26) .55∗ (.33) .20 (.30)
Jun .03 (.15) -.98∗∗∗ (.34) -.37 (.26) -.33 (.36)
Jul -.14 (.14) -.71∗∗∗ (.27) -.31 (.26) -.22 (.33)
Aug -.21 (.18) -.66∗∗ (.31) -.31 (.29) -.48 (.35)
Sep -.32∗ (.18) -.81∗∗ (.32) -.40 (.40) .35 (.38) .4%

5th Apr .04 (.24) -.53 (.42) .11 (.37) .52 (.46)
May -.02 (.21) -.60 (.41) .22 (.44) .08 (.44)
Jun .08 (.22) -.99∗∗ (.40) -.40 (.33) -.29 (.43)
Jul -.25 (.20) -.97∗∗∗ (.36) -.16 (.32) -.10 (.39)
Aug -.13 (.26) -.86∗∗ (.42) -.56 (.37) -.45 (.48)
Sep -.47∗ (.26) -1.27∗∗ (.56) -.73 (.54) -.20 (.51) .1%

Notes: Table replicates Table 1, but limits the data set to the three southern states (Texas, Oklahoma and

New Mexico). Each panel (separated by horizontal lines) presents regression results from a joint regression

using 122,484 observations and controls for previous-month precipitation - see specification (5). Units are in
◦C/(fraction of county area that is irrigated). The six panels present results for the 99th, 90th, 75th, 50th,

25th and 5th temperature percentiles for each month between April and September relative to the rest of the

year. The four middle columns include information on the fraction of the county that is irrigated for same,

up-, cross- and downwind counties. Conley s.e. (in parentheses) are computed using Bartlett kernel and a

1,000km cutoff distance. ∗∗∗, ∗∗ and ∗ denote statistical significance respectively at the 1%, 5% and 10%

levels.
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Figure A1: Sensitivity to Clustering: Conley Standard Errors
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County: Same Upwind Crosswind Downwind

Notes: Each panel shows the estimated effects and 95% confidence intervals of irrigation in the same (black),

upwind (green), crosswind (blue) and downwind (red) county for the six months of the growing season relative

to the rest of the year. The results from the baseline regression in Figure 3 are shown in faded colors - see

Figure 3 for details on the baseline model. The second set of estimates in full colors make one modification:

they use Conley standard errors that account for both serial correlation as well as spatial correlation with

a Bartlett kernel and a 1,000km cutoff distance. Units are in ◦C/(fraction of county area that is irrigated).

95% confidence intervals (vertical bars) are based on the regression that twoway-clusters errors by county

and year. For clarity the y-scale is limited to [−5, 1] and some confidence bands might be truncated.

vii



Figure A2: Sensitivity to Defining Neighbors: Upwind County Only
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County: Same Upwind Crosswind Downwind

Notes: Each panel shows the estimated effects and 95% confidence intervals of irrigation in the same (black),

upwind (green), crosswind (blue) and downwind (red) county for the six months of the growing season

relative to the rest of the year. The results from the baseline regression in Figure 3 are shown in faded

colors - see Figure 3 for details on the baseline model. The second set of estimates in full colors varies which

variables from surrounding counties are included. In this figure, only data from the upwind county (green

line) is included, while the same, crosswind and downwind measures are excluded. Units are in ◦C/(fraction

of county area that is irrigated). 95% confidence intervals (vertical bars) are based on the regression that

twoway-clusters errors by county and year. For clarity the y-scale is limited to [−5, 1] and some confidence

bands might be truncated.
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Figure A3: Sensitivity to Defining Neighbors: Same County Only
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County: Same Upwind Crosswind Downwind

Notes: Each panel shows the estimated effects and 95% confidence intervals of irrigation in the same (black),

upwind (green), crosswind (blue) and downwind (red) county for the six months of the growing season

relative to the rest of the year. The results from the baseline regression in Figure 3 are shown in faded

colors - see Figure 3 for details on the baseline model. The second set of estimates in full colors varies which

variables from surrounding counties are included. In this figure, only data from a county itself (black line)

is included, while the upwind, crosswind and downwind measures are excluded. Units are in ◦C/(fraction

of county area that is irrigated). 95% confidence intervals (vertical bars) are based on the regression that

twoway-clusters errors by county and year. For clarity the y-scale is limited to [−5, 1] and some confidence

bands might be truncated.
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Figure A4: Sensitivity to Defining Neighbors: Same and Upwind County
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County: Same Upwind Crosswind Downwind

Notes: Each panel shows the estimated effects and 95% confidence intervals of irrigation in the same (black),

upwind (green), crosswind (blue) and downwind (red) county for the six months of the growing season

relative to the rest of the year. The results from the baseline regression in Figure 3 are shown in faded

colors - see Figure 3 for details on the baseline model. The second set of estimates in full colors varies which

variables from surrounding counties are included. In this figure, irrigation from a county itself (black line)

as well as its most frequent upwind neighbor (green line) are included, while the crosswind and downwind

measures are excluded. Units are in ◦C/(fraction of county area that is irrigated). 95% confidence intervals

(vertical bars) are based on the regression that twoway-clusters errors by county and year. For clarity the

y-scale is limited to [−5, 1] and some confidence bands might be truncated.
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Figure A5: Sensitivity to Defining Neighbors: Neighboring Counties
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County: Same Upwind Crosswind Downwind

Notes: Each panel shows the estimated effects and 95% confidence intervals of irrigation in the same (black),

upwind (green), crosswind (blue) and downwind (red) county for the six months of the growing season

relative to the rest of the year. The results from the baseline regression in Figure 3 are shown in faded

colors - see Figure 3 for details on the baseline model. The second set of estimates in full colors varies which

variables from surrounding counties are included. In this figure, only measures from neighboring counties

are included, while the county itself (black line) is excluded. Units are in ◦C/(fraction of county area that is

irrigated). 95% confidence intervals (vertical bars) are based on the regression that twoway-clusters errors by

county and year. For clarity the y-scale is limited to [−5, 1] and some confidence bands might be truncated.
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Figure A6: Sensitivity to Defining Neighbors: Excluding Upwind Variables
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County: Same Upwind Crosswind Downwind

Notes: Each panel shows the estimated effects and 95% confidence intervals of irrigation in the same (black),

upwind (green), crosswind (blue) and downwind (red) county for the six months of the growing season relative

to the rest of the year. The results from the baseline regression in Figure 3 are shown in faded colors - see

Figure 3 for details on the baseline model. The second set of estimates in full colors varies which variables

from surrounding counties are included. In this figure, variables from upwind neighbors are excluded. Units

are in ◦C/(fraction of county area that is irrigated). 95% confidence intervals (vertical bars) are based on

the regression that twoway-clusters errors by county and year. For clarity the y-scale is limited to [−5, 1]

and some confidence bands might be truncated.
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Figure A7: Sensitivity to Defining Neighbors: Excluding Crosswind Variables
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County: Same Upwind Crosswind Downwind

Notes: Each panel shows the estimated effects and 95% confidence intervals of irrigation in the same (black),

upwind (green), crosswind (blue) and downwind (red) county for the six months of the growing season

relative to the rest of the year. The results from the baseline regression in Figure 3 are shown in faded

colors - see Figure 3 for details on the baseline model. The second set of estimates in full colors varies

which variables from surrounding counties are included. In this figure, variables from crosswind neighbors

are excluded. Units are in ◦C/(fraction of county area that is irrigated). 95% confidence intervals (vertical

bars) are based on the regression that twoway-clusters errors by county and year. For clarity the y-scale is

limited to [−5, 1] and some confidence bands might be truncated.
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Figure A8: Sensitivity to Defining Neighbors: Excluding Downwind Variables
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County: Same Upwind Crosswind Downwind

Notes: Each panel shows the estimated effects and 95% confidence intervals of irrigation in the same (black),

upwind (green), crosswind (blue) and downwind (red) county for the six months of the growing season relative

to the rest of the year. The results from the baseline regression in Figure 3 are shown in faded colors - see

Figure 3 for details on the baseline model. The second set of estimates in full colors varies which variables

from surrounding counties are included. In this figure, variables from downwind neighbors are excluded.

Units are in ◦C/(fraction of county area that is irrigated). 95% confidence intervals (vertical bars) are based

on the regression that twoway-clusters errors by county and year. For clarity the y-scale is limited to [−5, 1]

and some confidence bands might be truncated.
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Figure A9: Sensitivity to Chosen Control: Excluding All Precipitation Controls
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County: Same Upwind Crosswind Downwind

Notes: Each panel shows the estimated effects and 95% confidence intervals of irrigation in the same (black),

upwind (green), crosswind (blue) and downwind (red) county for the six months of the growing season relative

to the rest of the year. The results from the baseline regression in Figure 3 are shown in faded colors - see

Figure 3 for details on the baseline model. The second set of estimates in full colors make one modification:

they exclude all precipitation variables, while the baseline jointly controlled for previous-month precipitation

(four variables). Units are in ◦C/(fraction of county area that is irrigated). 95% confidence intervals (vertical

bars) are based on the regression that twoway-clusters errors by county and year. For clarity the y-scale is

limited to [−5, 1] and some confidence bands might be truncated.
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Figure A10: Sensitivity to Chosen Control: Precipitation Controls by Month
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County: Same Upwind Crosswind Downwind

Notes: Each panel shows the estimated effects and 95% confidence intervals of irrigation in the same (black),

upwind (green), crosswind (blue) and downwind (red) county for the six months of the growing season relative

to the rest of the year. The results from the baseline regression in Figure 3 are shown in faded colors - see

Figure 3 for details on the baseline model. The second set of estimates in full colors make one modification:

they allow the effect of the precipitation variables to vary by month (24 variables), while the baseline jointly

controlled for previous-month precipitation (four variables). Units are in ◦C/(fraction of county area that is

irrigated). 95% confidence intervals (vertical bars) are based on the regression that twoway-clusters errors by

county and year. For clarity the y-scale is limited to [−5, 1] and some confidence bands might be truncated.
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Figure A11: Sensitivity to Chosen Control: Including Concurrent Precipitation
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County: Same Upwind Crosswind Downwind

Notes: Each panel shows the estimated effects and 95% confidence intervals of irrigation in the same (black),

upwind (green), crosswind (blue) and downwind (red) county for the six months of the growing season

relative to the rest of the year. The results from the baseline regression in Figure 3 are shown in faded

colors - see Figure 3 for details on the baseline model. The second set of estimates in full colors make

one modification: they additionally include the current month precipitation of the county (same) and allow

the effect of the precipitation variables (both the four temporal lags in the four direction as well as the

concurrent precipitation in a county) to vary by month 30 variables), while the baseline jointly controlled

for previous-month precipitation (four variables). Units are in ◦C/(fraction of county area that is irrigated).

95% confidence intervals (vertical bars) are based on the regression that twoway-clusters errors by county

and year. For clarity the y-scale is limited to [−5, 1] and some confidence bands might be truncated.
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Figure A12: Sensitivity to Defining Neighbors: Weighted Average Upwind
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County: Same Upwind Crosswind Downwind

Notes: Each panel shows the estimated effects and 95% confidence intervals of irrigation in the same (black)

and upwind (green) county for the six months of the growing season relative to the rest of the year. The

full-color results from regression in Figure A4 are shown here in faded colors. The second set of estimates in

full colors varies how irrigation level from neighboring counties are included. In this figure, upwind irrigation

level is the average between irrigation of neighboring counties weighted by the amount of time each of these

is upwind. Units are in ◦C/(fraction of county area that is irrigated). 95% confidence intervals (vertical

bars) are based on the regression that twoway-clusters errors by county and year. For clarity the y-scale is

limited to [−5, 1] and some confidence bands might be truncated.
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Figure A13: Sensitivity to Spatial Coverage: Northern Subset
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County: Same Upwind Crosswind Downwind

Notes: Each panel shows the estimated effects and 95% confidence intervals of irrigation in the same (black),

upwind (green), crosswind (blue) and downwind (red) county for the six months of the growing season

relative to the rest of the year. The results from the baseline regression in Figure 3 are shown in faded colors

- see Figure 3 for details on the baseline model. The second set of estimates in full colors limits the data set

to the five northern states (Nebraska, Colorado, Wyoming, South Dakota and Kansas) for a total of

155,610 observations. Units are in ◦C/(fraction of county area that is irrigated). 95% confidence intervals

(vertical bars) are based on the regression that twoway-clusters errors by county and year. For clarity the

y-scale is limited to [−5, 1] and some confidence bands might be truncated.
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Figure A14: Sensitivity to Spatial Coverage: Southern Subset
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County: Same Upwind Crosswind Downwind

Notes: Each panel shows the estimated effects and 95% confidence intervals of irrigation in the same (black),

upwind (green), crosswind (blue) and downwind (red) county for the six months of the growing season

relative to the rest of the year. The results from the baseline regression in Figure 3 are shown in faded colors

- see Figure 3 for details on the baseline model. The second set of estimates in full colors limits the data

set to the three southern states (Texas, Oklahoma and New Mexico) for a total of 122,484 observations.

Units are in ◦C/(fraction of county area that is irrigated). 95% confidence intervals (vertical bars) are based

on the regression that twoway-clusters errors by county and year. For clarity the y-scale is limited to [−5, 1]

and some confidence bands might be truncated.
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Figure A15: Irrigation Trends in Nebraska and Texas 1900-2017

Notes: Panels display the fraction of a county that is irrigated over the time period 1900-2017 in black (left

y-axis). The total number of counties with available information about irrigated acres are shown as dashed

blue lines (right y-axis). The top panel uses data from Nebraska, the bottom panel uses data from Texas.

The median proportion of irrigated county area is indicated by dashed red lines. Vertical lines represent

years with an agricultural census, among which the year 1959 (in green) marks the start of the period of

interest.
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Figure A16: Irrigation Trends in Remaining States 1900-2017

Notes: Figure replicates Figure A15 for the remaining six states. Panels display the fraction of a county that

is irrigated over the time period 1900-2017 in black (left y-axis). The total number of counties with available

information about irrigated acres are shown as dashed blue lines (right y-axis). The median proportion of

irrigated county area is indicated by dashed red lines. Vertical lines represent years with an agricultural

census, among which the year 1959 (in green) marks the start of the period of interest.

xxii



Figure A17: Location of Weather Stations With Temperature Readings

Panel A: Maximum Temperature Panel B: Minimum Temperature

Notes: Figure displays the location of the weather stations used in the interpolation of maximum temperature (Panel A) and minimum temperature

(Panel B) as circles, which are colored by the first year the station reported data (see right legend). Outlines of state borders, Ogallala aquifer and

counties of interest are added in black, blue and gray respectively.
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Figure A18: Location of Weather Stations With Precipitation Readings

Notes: Figure displays the location of the weather stations used in the measurement of precipitation as

circles, which are colored by the first year the station reported data (see right legend). Outlines of the state

borders, Ogallala aquifer and counties of interest are added in black, blue and gray respectively.
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Figure A19: Observed Trends in Selected Temperature Percentiles in April and July

Notes: Panels display observed temperature trends for the 393 counties covering the Ogalalla aquifer. The

left column shows results for April, the right column for July. The top row shows the trend for the 99th

percentile and the bottom row shows the trend for the 50th percentile. Counties having experienced an

average cooling (warming) over the 1959-2017 period are colored in blue (red). The color bar is on a

common scale and given in units of ◦C/y.
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Figure A20: Observed Precipitation Trends in April and July

Notes: Panels display observed precipitation trends for the 393 counties covering the Ogalalla aquifer. The

left column shows results for April, the right column for July. Counties having experienced an average

increase (decrease) over the 1959-2017 period are colored in blue (red). The color bar is on a common scale

and given in units of mm/y.
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Figure A21: Distribution of Hourly Wind Directions 1979-2017

Notes: Polar distributions (by month) of hourly wind directions for counties covering the Ogallala for the

years 1979-2017. Contrary to the usual convention for wind roses, we orient directions in agreement with

(not against) the wind flow.
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Figure A22: Production and Avoided Yield Losses Due to Cooling-by-Irrigation

Notes: Top panel is for corn and bottom panel is for soybeans. Total production (in billion bushels) are

shown as black lines (left y-axis). Avoided losses via the cooling externality due to irrigation in upwind

counties (in million bushels) are shown as green lines (right y-axis). Solid lines show the results for counties

covering the Ogallala aquifer, while dashed lines are for counties in Nebraska.
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Figure A23: Fraction of Agricultural Production Saved by Cooling-by-Irrigation

Notes: Proportion of avoided losses in total corn (top panel) and soybean (bottom panel) production via

the cooling externality induced by irrigation in upwind counties since 1959, for the region of interest (solid

line) and Nebraska (dashed line).
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Figure A24: Avoided Premature Deaths Due to Reduced Heat Through Irrigation

Notes: Evolution of the number of avoided premature deaths due to the externality induced by irrigation

in upwind counties for the region of interest excluding Dallas (TX), Tarrant (TX) and Oklahoma city (OK)

counties.
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