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Abstract

An emerging literature examines how agents update their beliefs about climate change. Most
studies have relied on indirect belief measures or opinion polls. We analyze a direct measure:
prices of financial products whose payouts are tied to future weather outcomes. We compare
these market expectations to climate model output for the years 2002 to 2018 as well as
observed weather station data across eight cities in the US. All datasets show statistically
significant and comparable warming trends. Nonparametric estimates suggest that trends in
weather markets follow climate model predictions and are not based on shorter-term vari-
ation in observed weather station data. When money is at stake, agents are accurately
anticipating warming trends in line with the scientific consensus of climate models.
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Scientists overwhelmingly agree that the climate is changing because of human activity. The

American Association for the Advancement of Science (December 9, 2006) reported that “the

scientific evidence is clear: global climate change caused by human activities is occurring

now.” On the other hand, Oreskes & Conway (2010) argue that a handful of scientists

with strong ties to particular industries are “keeping the controversy alive” by spreading

doubt. Certain politicians in the US have questioned the evidence on climate change, with

some famously calling it an “elaborate hoax.” As a result, personal beliefs about climate

change have been shown to vary across geography, political affiliation, educational status,

and economic sector (Leiserowitz et al. 2016). Given the divergent beliefs about climate

change, the debate surrounding the accuracy of climate change predictions and whether

agents incorporate these predictions when deciding on their actions persists.

Economists have estimated the benefits and costs from a changing climate (Auffhammer

2018). Many of the recent micro-level estimates relate outcomes of interest to random

exogenous year-to-year weather fluctuations to obtain unbiased damage estimates (Dell,

Jones & Olken 2014). While random and exogenous year-to-year variation is preferable from

a statistical perspective, adaptation to a permanent change in climate might mitigate some

of the weather sensitivity that is observed in response to unknown random weather shocks.

Agents should undertake adaptation investments in response to anticipated permanent shifts

in the climate that are either unprofitable or even infeasible for a one-time unknown weather

shock. However, before agents can adapt, they first need to realize that the climate is

changing. Again, there is uncertainty regarding how well climate models predict the future

and whether agents base their decisions on model forecasts.

We address these questions by examining how market participants update their beliefs

about future weather. The Chicago Mercantile Exchange (CME) offers futures contracts for

eight cities on two main weather products: cooling degree days, which measure how much

cooling is necessary during hot temperatures in summer, and heating degree days, which

measure how much heating is required during cold temperatures in winter. The payoffs

from these contracts depend on the observed temperatures over the course of a month. The

contracts are traded before the month in which the weather is realized, and thus provide a

direct measure of the market’s view on future climate.

First, we show that the futures market capitalizes weather shocks, i.e., deviations from

historical averages, in the two weeks before an unexpected weather deviation occurs. This

is consistent with an earlier finding that for longer horizons of 8-10 days, “the nature of

temperature dynamics simply makes any point forecast of temperature unlikely to beat the
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climatological forecast at long horizons, because all point forecasts revert fairly quickly to

the climatological forecast” (Campbell & Diebold 2005). Therefore, futures prices more than

10 days before the start of a month therefore reflect expectations about a month’s weather

before a particular year’s outcomes are known.

Second, we find that market expectations as measured by futures prices when weather

outcomes are unknown have been trending at the same rate as temperature forecasts in the

CMIP5 archive, the latest repository where various climate modeling groups made predic-

tions for 2006 onward, as well as observed temperatures from weather station data. All find

significant warming, i.e., an increase in cooling degree days in summer and a decrease in

heating degree days in winter. Predictions of climate models have materialized, at least on

average, validating model forecasts, and financial speculators with money on the line have

fully internalized these forecasts.

Third, while climate models correctly predicted average trends in degree days, the spatial

heterogeneity among the eight cities does not match the observed distribution. This is

likely due to the limited duration of our time series and the influence of outliers that would

otherwise average out over space. It has also been argued that predicting average warming

is easier as it relies on a simple balance of energy (radiative forcing), while predicting spatial

heterogeneity requires predicting shifts of the atmospheric system like the jet stream (Hsiang

& Kopp 2018). There is an active discussion whether a shift in the jet stream will reduce

February temperatures as it allows for cold air from the arctic to influence weather on

the East Coast. The futures market seems to agree with this theory, as there has been a

significant increase in expected heating degree days in February.

Fourth, market expectations have been trending up smoothly in line with climate model

predictions and do not seem to respond to year-to-year fluctuation in weather outcomes. In

other words, market participants do not myopically update based on weather outcomes in

the previous year, but proactively anticipate a warming climate.

Finally, we employ LASSO regressions to examine how oceanic oscillation indices affect

temperatures across the eight cities in our sample. Removing these large-scale effects reduces

the year-to-year variability, but does not change the observed trend. The observed warming

trend is hence not driven by the major oceanic drivers of the natural variability, but rather

caused by increased greenhouse gas emissions.
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1 Background and Model

Recent research has shown how weather fluctuations affect the corporate sector. The prof-

itability of the food industry responds to fluctuations in the Palmer drought index with

direct implications for the sector’s valuation (Hong, Li & Xu 2019). More broadly, corpo-

rate earnings of several sectors of the US economy are sensitive to temperature fluctuations

(Addoum, Ng & Ortiz-Bobea 2019). Weather markets offer companies a hedge against such

fluctuations as well as a direct measure of the market expectation of future climate.

A second strand of literature has emphasized how climate change policy that is designed

to limit emissions affects the profitability of various companies. Meng (2017) shows how the

stock market incorporates changes in the likelihood of US carbon regulation as measured

by betting markets. Furthermore, limiting emissions may render a company’s marginal

reserves, i.e., the most costly ones, worthless as they can no longer be extracted (McGlade

& Ekins 2015). Thus future climate expectations are key to the sector’s profitability.

A third strand of the literature focuses on how agents adjust their behavior in response to

environmental forecasts (Rosenzweig & Udry 2014, Neidell 2009). Shrader (2017) finds that

fishermen update their beliefs using El Niño medium-range weather forecasts in order to make

optimal fishing decisions. Before El Niño forecasts were available, the cost of weather shocks

was much higher because fisheries could not adapt. On the other hand, Burke & Emerick

(2016) find that yield changes in response to observable long-term temperature trends are

not significantly different from yield changes in response to random weather shocks.

What is common to most of the previous studies is that researchers infer indirectly how

agents update their beliefs on climate. Some authors have modeled how market participants

learn about and adapt to changing weather conditions. For example, Kala (2017) examines

how Indian farmers dependent on monsoon precipitation update their beliefs. Twitter reac-

tions show that people become habituated to extreme weather events as they become more

frequent over time (Moore, Obradovich & Lehner 2018). On the other hand, public opinion

surveys ask respondents to self-report their beliefs. We know there is significant variation

in public opinion about climate change across the U.S., which varies by location and demo-

graphic characteristics (Howe et al. 2015). Public opinion on climate change also seems to

be driven by recent weather events, especially extremes. Observed periods of cooling can

translate into climate skepticism (Kaufmann et al. 2017). It is also possible that agents

hold differing private and public beliefs about climate change, especially if certain views on

climate change are perceived as more expedient.

We add to this literature by using a different approach to directly measure beliefs about
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climate change in financial markets. It is possible to observe the market expectations about

climate by looking at the price of futures contracts that are linked to weather outcomes.

The predominant contracts are based on heating and cooling degree days which are indexed

to 65◦F, the temperature considered the most comfortable for humans on average. It is also

a common standard for utility companies because heating and cooling systems tend to be

turned on that level, respectively.

Cooling degree days (CDD) measure by how much and for how long temperatures exceed

65◦F and thus require cooling, hence the name cooling degree days. The exact formula to

derive CDD (CDDik) for day k in location i with average temperatures equal to τik is

CDDik = max{τik − 65, 0} (1)

These daily measures are then summed over all k = 1...K days of a week w, month m,

or season of the year y to derive the total number of cooling degree days per time interval t

CDDit =
K
∑

k=1

CDDik =
K
∑

k=1

max{τik − 65, 0} (2)

Likewise, heating degree days (HDD) measure by how much and for how long temperature

fall below 65◦F and thus require heating. The exact formula to derive HDD (HDDik) for day

k in location i with the daily average temperature equal to τik is

HDDik = max{65− τik, 0} (3)

The daily measures are again summed over all K days of a week w, month m, or season

of the year y to derive the total number of heating degree days per time interval t

HDDit =

K
∑

k=1

HDDik =

K
∑

k=1

max{65− τik, 0} (4)

In the first step, we estimate the timing of when the market updates its beliefs, i.e.,

capitalizes information into prices, by running a weekly regression of changes in futures

prices on the weather of that week and the weeks that follow. Weekly aggregation addresses

the discontinuous pricing given weekends, market closures, etc. We approximate the baseline

expectations of the seasonality in degree days by regressing the daily observed degree days on
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a flexible restricted cubic spline1 using data from 1950-2018. This gives us the average weekly

w degree days for each location i: DDiw. We then obtain weather shocks by subtracting this

average baseline from the observed weather outcome DDit. We regress weekly price changes

[pit − pi[w−1]] on these weather shocks. Since markets are forward looking and should only

respond to news, we include up to L = 3 leads, and vary the set of fixed effects αikw as

described in the regression table.

[piw − pi[w−1]] = αikw +

L
∑

l=0

βl[DDi[w+l] −DDi[w+l]] + ǫiw (5)

In our baseline specification we set leads beyond the end of a month equal to zero. A

weather derivative on the number of cooling degree days in June should not respond to

weather outcomes in July. For example, price changes in the last week of June should only

respond to what happened in that week, while leads on future weeks fall outside the month.

In a sensitivity check we limit the analysis to weeks that are at least L = 2 weeks from a

month’s end and find similar results.2

Confirming earlier findings that weather predictions beyond a narrow 10-14 day window

are not better than climatic normals, we argue that futures prices at least 10 days before

the start of a month represent ex-ante expectations. We estimate the annual time trends

in degree days from three different data sources: the market expectation as measured by

the price of weather contracts prior to when the random weather is known, predictions from

the CMIP5 archive of climate models, and the observed weather station data on which the

contracts are based. We aggregate the data by summer and winter season of each year y

and regress various contracts that are based on eight city-level weather stations on a simple

common time trend

DDiy = αi + βy + ǫiy (6)

In sensitivity checks we allow the time trend to vary by city and by each month within the

seasons.

We next relax the linearity assumption and present lowess regression for the average

residual after removing location fixed effects, i.e., the mean for each location. Mathemati-

cally, we derive the residuals DDit−DDit for each year and location, then obtain the annual

1Our specification uses 5 knots in the day of the year, subject to the constraint that the effect at the first
day of the year and the last day of the year are the same.

2The more leads that we include, the more weeks we have to drop.
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average residual riy

riy =
1

8

8
∑

i=1

[

DDiy −DDiy

]

(7)

before we run lowess regression on the annual observations for y = 2002 . . . 2018.

While we find consistent evidence in warming trends across various data sources, one

concern may be that oceanic oscillations, which have been shown to be strong predictors of

temperatures (Zebiak & Cane 1987), might have driven the trend in observed warming. To

rule this out we link the monthly observed station level data DDim in the 17 years 2002-2008

to the six oceanic indices for the same months as well as a linear time trend.

DDim = αim + βimy +

K
∑

k=1

γikmokm + ǫim (8)

Given the small degrees of freedom, we rely on machine learning to pick the optimal model,

specifically LASSO regression using the Extended Bayesian Information Criteria (EBIC). We

then partial out the effect of the observed oceanic oscillation indices, i.e., the γikm chosen

under the LASSO regression.

2 Data

2.1 Futures Data

Weather futures contracts are traded on the Chicago Mercantile Exchange (CME). The

products were first launched in the fall of 2001 and became fully operational for the first

full year in 2002. Contracts are available for eight geographically-distributed cities across

the US in 2018. Each city is linked to a specific weather station in the city at one of

the airports. These are: Atlanta (ATL), Chicago O’Hare (ORD), Cincinnati - Northern

Kentucky (CVG), Dallas Fort Worth (DFW), Las Vegas (LAS), Minneapolis - Saint Paul

(MSP), New York LaGuardia (LGA), and Sacramento (SAC). The location across the US is

displayed in Figure 1. In the past there were more cities with weather markets, but trading in

several cities was halted due to a lack of liquidity. Therefore, we focus on the eight US cities

for which contracts are still available in 2018. We have data ranging from the 2001/2002

winter through the 2018 summer. When we present seasonal aggregates, winter months are

assigned to the new year, i.e., November 2001 - March 2002 is recorded as winter 2002.

Our data ranges from November 2001- September 2018, but is aggregated as winter 2002 -
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summer 2018.

Contracts are priced based on cumulative monthly heating degree days (HDD) in winter

months and cooling degree days (CDD) in summer months. Degree days are a measure

of how much a day’s average temperature, calculated as the mean of the day’s high and

low temperature, deviates from a baseline. The CME temperature product uses the same

baseline of 65◦F (18◦C). Thus, heating degrees for a given day are the number of degrees

that the average temperature of that day is below 65◦F, and cooling degrees are the number

of degrees that the average temperature is above 65◦F. The accumulation period of each

contract begins on the first calendar day of the contract month and ends on the last calendar

day of the contract month. Trading volume of contracts generally increases in the last two

months before the start of a month, and is more infrequent before then.

The final settlement price is based on the respective weather station HDD or CDD Index

for the month as reported by MDA Federal Information Systems, Inc. Each degree day in

a contract is $20. For example, if a customer buys one July CDD contract for 300 cooling

degree days, the cost would be $6,000. If the realized cumulative CDD for the month of

July settled at 330 cooling degree days, the clearance value would be $6,600, and the trader

would reap a profit of $600 ($20 times the increase of 30 degree days).

The main participants in the weather market are firms seeking to offset risk. For example,

an energy company may sell an HDD contract to mitigate the risk of lower demand for

heating oil due to a mild winter. Likewise, a citrus company may purchase a HDD contract

to mitigate the risk of a winter freeze. The other market participants are speculators who

take contract positions based on their expectations of future weather (i.e., private beliefs on

climate).

Daily futures prices (end of day) were obtained from Bloomberg terminals. In the absence

of market activity, prices are simply carried forward. For example, if there is a recorded trade

on June 17 at a price of 300 cooling degree days for the July contract, followed by no trade

on June 18, the Bloomberg data will show a price of 300 again. Unfortunately, the volume

data only includes contracts traded via the exchange and not privately over the counter,

and it is missing for most days. More generally, volumes in this market decreased in recent

years due to the entry of reinsurance firms offering bespoke weather-based hedging services

to market participants.

One concern that we will return to in our empirical analysis is the liquidity of the market.

CME has a process in place to update prices on days in which no transacted volume occurs.

Prices are updated based on the mid-point of outstanding but non-converging bids and offers
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that are registered on the exchange. In the absence of live bids and offers, price changes can

be derived from option prices linked to the relevant month’s contract and/or the seasonal

strip contract (the aggregated contract for the entire winter or summer months). We can

infer that there was market activity, i.e., either a market clearing trade or a new bid/offer,

when prices change over time. Such price changes are a sufficient but not necessary condition

for market activity, as trades might happen at the previous day’s price. Price fluctuations

tend to increase the closer one gets to the contract live month. In our baseline we exclude

city-year observations if city-month contract prices did not vary over the roughly 45-day

period ranging from 14 days prior to the start of the contract month and the end of the

contract month for any of the months of the season. We find similar results when they are

included.

Some data cleaning was necessary because of “sticky fingers,” e.g., sudden price jumps by

a factor of 10. For example, a price series was 91, 91, 910. We contacted Bloomberg about

whether these were data entry errors, but they assured us that the data had been cleaned.

The last trade might reflect an erroneous entry by a trader.3

2.2 Weather Station Data

Daily temperature data come from airport station monitors that are linked to each city’s

futures contract. We obtained the station ID of the weather station underlying the contract,

and downloaded the data on minimum and maximum temperature from the National Oceanic

and Atmospheric Administration’s FTP server. A very small number of days have missing

values, in which case we replace the missing value with the previous’ day value. We then

computed the daily mean by averaging the minimum and maximum temperature before

calculating the degree days for the 65◦F bound as given in equations 1 and 3 above.

2.3 Oceanic Oscillation Indices

Oceans exert strong influences on weather. One of the strongest and most famous is the El

Niño - Southern Oscillation, warming in the eastern Pacific Ocean that has been linked to

periodic climate shifts across the globe (Zebiak & Cane 1987). To rule out that recent trends

in observed weather are driven by trends in oceanic oscillations, we estimate monthly models

linking temperature data in a city to six monthly oceanic oscillation indices: ENSO (El Niño

- Southern Oscillation), NAO (North Atlantic Oscillation), PNA (Pacific/ North American

3The exact adjustments are listed in the online appendix A1.
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Teleconnection Pattern), AO (Arctic Oscillation), and AAO (Antarctic Oscillation). These

oscillations were downloaded from a FTP server of NOAA.4

2.4 Climate Model Data

The Coupled Model Comparison Project (CMIP) asks various modeling groups to simulate

changing temperatures under comparable assumptions. We rely on the 5th round, i.e., the

CMIP5 archive where these groups predicted trends in climate from 2006 onwards. These

runs were done only using observed climate data prior to 2006 in the calibration. We obtain

daily values from NASA NEX-GDDP, a dataset of 21 models that were spatially downscaled

to a common grid of 0.5◦ latitude and longitude. We pick the grid cell in which the weather

station is located.

NASA NEX-GDDP is bias corrected. There is a well-documented literature describing

how climate models can get the baseline averages wrong for various grids because the models

are primarily designed to simulate how shocks, i.e., deviations from the average, promulgate

through the system. NASA NEX-GDDP therefore adjusts for possible biases by ensuring

the baseline average match those observed for the grid cell. Regardless, subtracting the same

constant every year will not affect predicted changes in temperature, the relevant factor in

this and other trend analyses.

NASA NEX-GDDP has data for two scenarios: Representative Concentration Pathway

(RCP) 4.5, assuming an additional energy flux of 4.5 watts per meter square. This is a

moderate warming scenario in which greenhouse gas emissions are reduced and radiative

forcing stabilizes such that the global mean temperature increases by 1.8◦C (3.2◦F) by 2100.

There is large spatial heterogeneity, and warming in the US is usually projected to be higher

than the global average by a factor or two, i.e., 6.4◦F. RCP 8.5, on the other hand, simulates

major warming where emissions continue to rise such that there will be additional radiative

forcing of 8.5 Watts per square meter. This results in a global mean temperature increase

of 3.7◦C by 2100. However, in the short term (2005-2018) that includes our study period,

both models give very similar projections. They are only predicted to diverge towards the

end of the century as carbon emissions accumulate over time.

Figure 2 shows box plots for the number of cooling degree days by month for the eight

cities with weather futures contracts. The red line displays the weather station data and

4Monthly ENSO values were downloaded from ftp://ftp.cpc.ncep.noaa.gov/cwlinks/, while daily values
for the remaining indices was obtained from ftp://ftp.cpc.ncep.noaa.gov/cwlinks/ and averaged over all days
of a month.
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the blue line shows the climate model data. Both use data from 1950-2005, which was the

historical baseline period in the CMIP5 archive.5 There is close alignment in the mean values

as well variance around the means in both datasets. Recall that the climate models predict

average temperature over the entire grid, and hence it might differ from the observed tem-

perature at any given point (weather station) if there is spatial heterogeneity. For example,

a city close to a mountain might have a lower temperature than the temperature of the

surrounding area when averaged over the entire grid.

Figure 3 shows the analogous plot for heating degree days. Both plots show strong

seasonality: more cooling degree days in the summer, and more heating degree days in the

winter. As expected, more northerly cities (Chicago, Minneapolis, New York) have relatively

more HDD and less CDD, while more southerly cities (Atlanta, Dallas, Las Vegas) have less

HDD and more CDD. Across the eight cities, there are very few occurrences of HDD in the

summer months and CDD in winter months, which is why HDD futures contracts are not

traded in summer and CDD contracts are not traded in winter.

While Figures 2 and 3 compare the historic baseline period in the climate models, Figure 4

compares station level data on cumulative degree days for a given city-month with the settled

prices of the city-month’s futures contract (averaged over the seven days after the month’s

close). These data have been cleaned using the process described earlier. As expected, there

is close alignment between futures prices and observed weather station data at the month’s

end, at which point all uncertainty has been resolved, i.e., the weather has been realized.

The correlation of the two series is above 0.999. The scatter plot reveals a small number of

deviations from the 45-degree line, which may be explained if the futures did not trade at

the end of the month and hence the price may not reflect the final tally of observed degree

days.

3 Empirical Results

3.1 Market Capitalization of Weather Shocks

We start by analyzing the timing of when weather shocks are capitalized into futures prices,

which is akin to the market updating a particular year’s weather shock. Forecasting and pre-

diction skill of weather (short-term) and climate (medium to long-term) are closely connected

5Some of the 21 climate models do not account for leap years, i.e., February 29. For consistency, we
rescale February in both station and climate model data to 28 days, i.e., if a weather station or climate
model reports 29 days for February, we multiple the cumulative number of degree days by 28

29
.
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(Auffhammer et al. 2013). Climate models build on a foundation of short-term weather dy-

namics, and the same underlying physical laws apply to the predictions of both weather

and climate models. If market participants are accurately updating their longer-term beliefs

based on climate warming trends, it would be expected that they also accurately update

their short-term beliefs based on weather forecasts.

Weather forecasts are widespread and freely available sources of information, and un-

der efficient markets, we would expect that prices of weather futures to adjust based on

these forward expectations. Forecast skill is a function of forecast range. There has been

a sustained improvement in weather forecasting across all prediction ranges over the past

decades. Forecasting skill seems to have plateaued in the early 2000s when the weather

futures market was launched. At present, 5-day forecasts are very accurate with 90% skill,

7-day forecasts are good with 75% skill, and 10-day forecasts are poor with less than 50%

skill (Bauer, Thorpe & Brunet 2015). Given this, we would expect an inverted U-shape in

terms of the impact of weather shocks on current prices since long-term forecasts beyond 10

days have quickly diminishing value and since very short-term forecasts should have already

been incorporated into prices given their certainty. As such, anticipated changes in weather

around one week out should have the largest impact on current prices in an efficient weather

market.

To test this, we regress changes in weekly futures prices (Friday to Friday) on actual

weekly deviations in degree days from historical averages over the contemporaneous week

(Saturday to Friday), as well as the three leading weeks as given in equation 5. For CDD, we

include the four summer contract months (June to September), the months that showed the

highest average number of cooling degree days in Figure 2. The results are shown in Panel

A of Table 1. We find that the majority of price updating is driven by weather shocks that

occur one week out, when 41-47% of a weather shock (deviation from seasonal average) is

priced into futures. The concurrent week follows with an estimate of 17-22%, while shocks

two weeks ahead only get reflected 6-8% in the futures price. Leads three weeks into the

future have no significant coefficients. The sum of the coefficients for these three weeks

l = 0 . . . 2 implies that 78% of a weather shock gets capitalized into futures prices during

those three weeks, as shown in the most flexible model in column (7). Results are insensitive

to the fixed effects included in the regression, which range from no fixed effects in column

(1) to city by year by contract month fixed effects as well as week till settlement fixed effects,

e.g., a fixed effect for the June 2017 contract in Atlanta as well as fixed effects for the week’s

position relative to the contract’s maturity in column (7).
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Panel B of Table 1 presents the regression results for heating degree days during the

winter season from November to March. The coefficient for the period one week into the

future again has the largest magnitude, being reflected 35% in the current week’s price

change. HDD contract prices are also driven by weather shocks two weeks into the future,

which are capitalized 23-25%. Together they account for 60% of price changes, as shown in

column (7). Neither the contemporaneous week nor the one three weeks out are significant.

The insignificant coefficient on the contemporaneous week suggests that short-term weather

forecasting skill is better in winter months than summer months in the US.

Earlier we discussed how weather futures are sometimes not traded and hence might

not reflect the latest information and the market expectations. Our baseline regression

excluded week-on-week price changes if te prices remained constant throughout the entire

week. Table A1 includes all the available data, even when no price change occurred during

any of the trading days in a week (not just Friday to Friday). This increases the total

number of observations by roughly 10%. The resulting coefficients are slightly smaller in

magnitude, but not significantly different. The inclusion of these observations may induce

attenuation bias as the prices do not reflect true market expectations (the market price has

not adjusted). Excluding these observations has its own drawbacks, as the occurrence of

a trade is endogenous and might signal extreme weather events that might be easier (or

harder) to predict and hence have different forecast skill. However, the results are consistent

either way.

In another sensitivity check in Table A2 we exclude weeks where the leads fall beyond

the end of the contract month. In the baseline model, these weather shocks were set to zero

as they fall outside the time range for which the weather contract is based. We skip the

third lead as it was not significant, which allows for an extra week of data. The results are

again consistent.

3.2 Linear Trends in Expectations

We now turn to our main analysis of market expectations and climate change. With weather

futures contracts, we must be careful to separate price changes driven by short-term weather

forecasts and those that reflect longer-term market beliefs on climate change. Some shocks

are partially forecastable over the course of months based on oceanic-atmospheric phenomena

like El Niño - Southern Oscillation (ENSO) or the North Atlantic Oscillation (NAO). Ideally

we would like to use futures prices well before the contract’s delivery month to ensure that we

are capturing market expectations of climate and not short-term weather forecasts. However,
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precisely because weather is hard to forecast far in advance, trading does not pick up until

one is getting closer to the delivery month. Early dated prices may not be representative of

the market’s true expectation given the illiquidity.

Balancing these two tradeoffs, our baseline model uses average futures prices between 30

to 10 days prior to the start of each contract month, e.g., the average price between June 1 and

June 20 for a July CDD contract, which ensures that prices reflect future expectations and

not contemporaneous weather as confirmed in the previous section. For the CDD contracts,

this average price for each contract-month is again summed over the summer months from

June to September, and for the HDD contracts, it is again summed over the winter months

from November to March. To capture overall trends, Table 2 regresses the total degree days

for each city and season, e.g., annual summer cooling degree days from June to September,

on an annual time trend as shown in equation 6.

Column (1a)-(1d) all use the same set of observations where futures data are non-missing.6

Column (1a) uses the baseline average of futures prices traded 30 to 10 days prior to the

start of the contract month. Panel A shows cooling degree days in summer and Panel B

shows heating degree days in winter. Both show statistically significant warming in the US

with anticipated cooling degree days increasing by about 10 per year during the summer and

anticipated heating degree days declining by about 8 per year during the winter. Column

(1b) uses weather station data. The observed trends are larger in magnitude with an increase

of 12 cooling degree days per year during the summer and a decrease of 17 heating degree

days during the winter. The standard errors are much larger given the greater year-to-

year swings due to random weather fluctuations, e.g., cold spells during the so-called Polar

Vortex. Given these larger standard errors, they are not significantly different from the

trends anticipated by the futures market as shown in (1a). The smaller standard errors in

the futures data relative to the station level data suggest that we are correctly measuring

market expectations over the longer term and not annual weather realizations, which are

much noisier. Finally, columns (1c)-(1d) give the predicted trends that climate models had

forecast for the same time period in the CMIP5 archive under the RCP4.5 and RCP8.5

model, respectively. Recall that these forecasts were made using climate data from 2005 and

before, i.e., the modeling groups had no chance to match their forecast to observed trends.

These annual warming trends closely mirror the trend in the futures data, i.e., the markets

seem to have fully internalized the projections of climate scientists.

6For some cities, the futures contracts were established in later years and hence have a shorter time span.
In addition, we excluded contracts that had a constant price over the entire contract month and leading up
to it as further outlined in Section A1.
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While columns (1a)-(1d) purposefully keeps the set of city-year observations constant,

columns (2a)-(2d) replicate the analysis with different subsets of the data. Column (2a)

excludes seasons where any of the monthly contracts did not experience a price change

between 30 to 10 days before the start of a delivery month, an indication that no trading

activity occurred. This exclusion has a very limited effect on the estimated coefficients.

Next we address concerns about the endogeneity of this market, e.g., contracts are especially

traded in cold or hot years as firms realize they need a hedge. Columns (2b)-(2d) use

all available months with weather station and climate model data (even if no futures data

existed) and again find very similar trends.

3.3 Nonlinear Trends in Expectations

Figure 5 relaxes the linearity assumption of the time trend and instead plots lowess regres-

sions of the average annual residuals, i.e., after city fixed effects have been removed to account

for different average climates (Atlanta is hotter than Minneapolis) and residuals have been

averaged over the eight cities. The exact formula is given in equation (7) above. The lines

in green, red, cyan, and blue are the same as in columns (1a)-(1d) of Table 2, respectively.

All of them show a steady upward trend for cooling degree days and a downward trend

for heating degree days. The year 2017/2018 was especially warm, leading to a sharp drop

for that winter.7 The observation for summer 2018 is missing because data for June 2018

contracts were not available. Figure A2 replicates the analysis for the summer months from

July to September and finds comparable results. Mirroring the heating degree day trend,

there is an accelerated increase in warming in 2018.

Next, we look at variability in the non-linear warming trends. The red line showing

actual weather outcomes from station data is the most variable as it is influenced by annual

and city-level weather anomalies. The magenta line, an additional trend from those included

in Table 2, partials out the effects of the ocean oscillation indices that we obtained from

the LASSO regression in equation (8) that are summarized in Table 3. Several monthly

degree day totals are influenced by the phase of various oceanic oscillation indices. The

trend is less variable than the one based on the raw weather station data, i.e., the standard

deviation around the trend is lower for the magenta line than the red line, both for cooling

and heating degree days. But the overall trend is rather unchanged. In other words, the

warming trend observed from station data is not due to the natural variability of oceanic-

atmospheric phenomena.

7Recall that the 2017-2018 winter is coded as 2018.
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Lastly, the smooth green line, which is the trend in futures market expectations, closely

follows the cyan and blue line of climate projections, and is not influenced by the red or

magenta line, suggesting that the beliefs are not myopically updated based on recently

experienced weather but rather tied to the smooth warming trend projected by climate

models. Financial markets seem to fully incorporate this scientific consensus.

3.4 Sub-seasonal Trends in Expectations

Tables 4 and 5 separate the aggregate seasonal analysis into months for cooling and heating

degree days, respectively. Not surprisingly, there is more variability in these coefficient

estimates when the data is summed over a smaller time frame given that anomalous weather

shocks at the individual city-level are not being averaged over the course of a season. One

unique feature is that futures prices for the month of February show a significant positive

trend, i.e., an increase in HDD, which would be consistent with cooling and not warming.

All other winter months either show a significant negative trend or insignificant trend with a

negative point estimate. This may be explained by recent literature suggesting that melting

ice sheets destabilize the jet stream, leading to an increased frequency of stable weather

patterns that bring cold arctic air to Europe and North America (Francis & Vavrus 2015).

Another paper concludes that “Arctic polar vortex shifted persistently towards the Eurasian

continent and away from North America in February over the past three decades. [...]

Our analysis reveals that the vortex shift induces cooling over some parts of the Eurasian

continent and North America which partly offsets the tropospheric climate warming there in

the past three decades.” (Zhang et al. 2016). Kim et al. (2014) note that “the mechanism

that links sea-ice loss to cold winters remains a subject of debate.” So while there remains an

active scientific debate, the futures market seems to anticipate cooling in February consistent

with the recent literature. This is striking because observed station level data has exhibited

a February warming trend across cities, as predicted by the climate models in the CMIP5

archive that preceded this recent debate of the shift in the polar vortex.

Since the polar vortex is expected to mainly influence the East Coast, we provide another

nonlinear regression based on the February futures prices for the six cities in the eastern half

of the US (excluding Las Vegas and Sacramento) in Figure 6. The figure shows a clear uptick

in the expected number of heating degree days around 2006, which started to plateau around

2013. The futures market seems to have shifted to an expectation of colder Februarys.

Such a shift in the polar vortex is likely to aggravate the estimated economic impacts

of climate change. A myriad of studies find that moderate temperatures are optimal for
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energy use (Auffhammer & Mansur 2014), labor productivity (Graff Zivin & Neidell 2014),

mortality (Barreca et al. 2016), migration (Feng, Krueger & Oppenheimer 2010, Missirian

& Schlenker 2017), GDP growth (Burke, Hsiang & Miguel 2015), and agriculture (Schlenker

& Roberts 2009, Auffhammer & Schlenker 2014). Warming usually results in damages from

higher summer temperatures while yielding benefits from milder winter temperatures. A shift

in the polar vortex with colder February temperatures would hence accentuate damages, as a

result of the hotter summers and colder winters. Overall, winters on average are still getting

warmer and hence yielding benefits, but a shift in the polar vortex with colder February

temperatures will offset some of those benefits.

3.5 Spatial Heterogeneity in Warming

We examine spatial heterogeneity in the warming trends in Figure 7. While climate models

correctly predicted average annual trends in degree days, the predicted spatial heterogeneity

among the eight cities in our sample does not match the observed distribution from station

data. A regression of trends in city-level warming expectations derived from futures data on

city-level warming trends from the climate models does not provide a significant estimate

for spatial patters in cooling degree days in summer. For heating degree days, the coefficient

is negative under the RCP4.5 scenario, suggesting that cities that were predicted to see

higher-than-average winter warming in the climate models actually had lower-than-average

warming in the futures data. There are two possible explanations.

First, as discussed in the previous section, it is much harder to predict spatial heterogene-

ity in warming than it is to predict average trends because of all the localized feedback loops

of the climate system. The average trend is given by a simple balance of energy calculation.

For example, if one increases the burner under a pot of water the average temperature will

increase, but it is much harder to predict where this extra energy will show up and how it

will spread across the volume of water. Similarly, changes in wind patterns might lead to

higher warming in some areas while reducing it in others (Hsiang & Kopp 2018). February

cooling due to the polar vortex over eastern North America goes hand-in-hand with higher-

than-expected warming in the Arctic. Cooling in East Coast cities does not refute that the

globe is warming, which it is in total, but rather reflects the uncertainty on where the extra

energy manifests as jet streams shift.

Second, the futures market only came into existence in the fall of 2001 which might be

too short a time frame to pick up city-level warming trends that are heavily influenced by

city-level outliers that would otherwise average out over space.
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3.6 Trends Prior to 2002 and Post 2018

Given the drawbacks of a limited time series of 17 years, we contrast the trend from 2002

to 2018 in our analysis to nonparametric trends in weather station data from 1950 to 2018

in Figure 8, which aer available before the futures data started in 2002. Residuals, i.e.,

deviations in city-level seasonal totals compared to the historic average, are again color-

coded by each city’s airport and the nonparametric lowess regression is added as a black

line. As other authors have emphasized (Burke & Emerick 2016, e.g.,), observable warming

trends become apparent in the data around 1980. We find the same for the eight cities in

our sample: from 1950 to 1980 the nonparametric black line is rather flat. Starting around

1980 there is a clear uptick in warming over the last four decades as manifested by a higher

number of cooling degree days and a lower number of heating degree days.

This warming trend is predicted to intensify in the future as shown in Figure 9, which dis-

plays the output from the climate models to the end of the century. The top row again shows

cooling degree days, while the bottom row shows heating degree days. The left column shows

nonparametric warming paths under the RCP4.5 scenario, while the right column shows it

for RCP8.5. Our sample period (2002-2018) is indicated by dashed grey lines. While the

models accurately predicted the initial trend from 2002 to 2018, which are comparable in

both RCP scenarios, there is greater uncertainty about what will happen towards the end of

the century as greenhouse gases accumulate in the atmosphere. Note the policy-driven diver-

gence in warming trends projected under the two different climate model scenarios, i.e., much

stronger warming under RCP8.5 (right column) than under RCP4.5 (left column). There is

also spatial heterogeneity in predicted warming, albeit subject to the caveat discussed in the

previous section about the uncertainty around the impact of shifting circulation patterns.

4 Conclusion

This paper contributes to the literature on belief formation and expectations about climate

change. To the best of our knowledge, we are the first to utilize a direct measure of climate

change expectations as derived from weather-based futures contracts. The evidence shows

that financial markets fully incorporate climate model projections. We find that the market

has been accurately pricing in climate change, largely in line with global climate models, and

that this began occurring at least since the early 2000s when the weather futures markets

were formed.

This has relevance for the corporate sector. Recent studies have highlighted how the val-
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uations of companies and entire industries are sensitive to weather fluctuations. Efficient and

profit-maximizing behavior requires an accurate assessment of predicted warming. Weather

markets can provide companies with pertinent information on future weather and climate

trends, as well as a hedge against potential lost profit.

There are also policy implications of our findings, especially since some politicians still

question the existence and extent of climate change. Anyone doubting the observed warming

trend can make a significant profit by betting against it in weather markets. However, the

observed annual trend in futures prices shows that the supposedly-efficient financial markets

agree that the climate is warming. At least so far, climate models have been very accurate

in predicting the average warming trend that’s been observed across the US. When money

is on the line, it is hard to find parties willing to bet against the scientific consensus.
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Figure 1: Location of Eight Airports in Sample

Notes: Figure displays the location of the eight airports for which weather derivatives were traded in 2018. They are from north to south:

Minneapolis - Saint Paul (MSP), Chicago O’Hare (ORD), New York LaGuardia (LGA), Cincinnati - Northern Kentucky (CVG), Sacramento

(SAC), Las Vegas (LAS), Atlanta (ATL), and Dallas Fort Worth (DFW).
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Figure 2: Cooling Degree Days by Month and Weather Dataset for Eight Airports
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Notes: Figure displays boxplots of cooling degree days, i.e., the amount average daily temperatures exceed 65F, summed over all days of a

month. The box plots show the variation for the calendar month across years in 1950-2005. Blue bar graphs use station level data from the

airport, while the red bar graph uses the daily data from NASA NEX-GDDP of the grid cell in which the airport is located. Boxes indicate

the 25-75% range, with the median shown by a horizontal bar. Whiskers extend to the lower and upper adjacent value using STATA’s default

parameter from Turkey (1977).
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Figure 3: Heating Degree Days by Month and Weather Dataset for Eight Airports
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; Notes: Figure displays boxplots of cooling degree days, i.e., the amount average daily temperatures exceed 65F, summed over all days of a

month. The box plots show the variation for the calendar month across years in 1950-2005. Blue bar graphs use station level data from the

airport, while the red bar graph uses the daily data from NASA NEX-GDDP of the grid cell in which the airport is located. Boxes indicate

the 25-75% range, with the median shown by a horizontal bar. Whiskers extend to the lower and upper adjacent value using STATA’s default

parameter from Turkey (1977).
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Figure 4: Observed Cooling Degree Days versus Futures Prices
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Notes: Left graph displays a scatter plot of the 513 observed monthly cooling degree day (CDD) totals

against the average futures price the week following the end of the summer months June-September. Right

graph displays a scatter plot of the 630 observed monthly heating degree day (HDD) totals against the

average futures price the week following the end of the winter months November-March. Both graphs use

data from winter 2001/2002 through summer 2018 across the eight airports. Graphs exclude 8 CDD (12

HDD) futures contracts where prices did not move in the 14-day window spanning between 7 days before the

end of the month or seven days after the end of the month, as it is not clear that they reflect final totals.
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Figure 5: Nonparametric Futures Prices and Weather
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Notes: Figure estimates nonparametric trends using lowess regression on the average annual residual among the eight airports, i.e., the

annual residuals after taking out airport fixed effects (means) are averaged by year before running lowess on the annual observations. Red line

shows the results for the observed station data, the magenta line partials out ocean oscillation indices that affect weather. The green line uses

futures prices before the weather is realized, and the blue and cyan lines use model output from NASA NEX-GDDP. The left column shows

the results for summer (June-September) CDD and the right column for winter (November-March) HDD.
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Figure 6: Nonparametric Futures Prices for February Futures in Eastern US
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Notes: Figure estimates nonparametric trends using lowess regression on the average annual residual among

the six eastern airports, i.e., the annual residuals after taking out airport fixed effects (means) are averaged

by year before running lowess on the annual observations. Residuals are color coded by airport and the

lowess regression line is added in black.
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Figure 7: Spatial Heterogeneity of Trends in Station, Futures, and Climate Model Data
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Notes: Graphs show scatter plots of trends in station, futures, and climate model data by airport as shown

in Figure 1. Airports are sorted from north to south. Left column shows the results for summer (June-

September) CDD and the right column for winter (November-March) HDD.
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Figure 8: Nonparametric Trends in Station Weather
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Notes: Figure plots residuals from a regression on airport fixed effects are color-coded by airport. The lowess

nonparametric regression line is added in black. Top row shows the results for summer (June-September)

CDD and the bottom row for winter (November-March) HDD.
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Figure 9: Nonparametric Predicted Trends in Climate Data Weather
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Notes: Graphs show lowess nonparametric trend by airport for the 21 climate models in the NASA NEX-

GDDP data base. Top row shows the results for summer (June-September) CDD and the bottom row for

winter (November-March) HDD. Left column uses the predictions under the RCP4.5 scenario, while the right

column uses RCP8.5.
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Table 1: Market Updates: Futures Returns on Weather Shocks

(1) (2) (3) (4) (5) (6) (7)
Panel A: Cooling Degree Days June - September

Shock in week t 0.170∗∗∗ 0.185∗∗∗ 0.170∗∗∗ 0.183∗∗∗ 0.194∗∗∗ 0.212∗∗∗ 0.221∗∗∗

(0.025) (0.025) (0.024) (0.025) (0.026) (0.031) (0.032)
Shock in week t+1 0.413∗∗∗ 0.424∗∗∗ 0.416∗∗∗ 0.427∗∗∗ 0.433∗∗∗ 0.446∗∗∗ 0.470∗∗∗

(0.024) (0.024) (0.024) (0.024) (0.024) (0.027) (0.028)
Shock in week t+2 0.058∗∗ 0.067∗∗ 0.061∗∗ 0.065∗∗ 0.076∗∗ 0.072∗∗ 0.087∗∗∗

(0.029) (0.028) (0.028) (0.028) (0.029) (0.032) (0.032)
Shock in week t+3 -0.039 -0.028 -0.041 -0.037 -0.027 -0.047 -0.044

(0.028) (0.029) (0.028) (0.029) (0.030) (0.034) (0.037)
Observations 3344 3344 3344 3344 3344 3344 3344
Clusters 67 67 67 67 67 67 67
Fixed Effects 4 17 67 133 513 520

Panel B: Heating Degree Days November - March

Shock in week t 0.050 0.057 0.048 0.051 0.045 0.049 0.045
(0.045) (0.045) (0.045) (0.047) (0.048) (0.060) (0.061)

Shock in week t+1 0.347∗∗∗ 0.354∗∗∗ 0.347∗∗∗ 0.348∗∗∗ 0.349∗∗∗ 0.348∗∗∗ 0.352∗∗∗

(0.038) (0.038) (0.039) (0.039) (0.040) (0.044) (0.043)
Shock in week t+2 0.244∗∗∗ 0.252∗∗∗ 0.243∗∗∗ 0.242∗∗∗ 0.242∗∗∗ 0.231∗∗∗ 0.230∗∗∗

(0.048) (0.048) (0.048) (0.048) (0.048) (0.051) (0.050)
Shock in week t+3 0.058 0.068 0.057 0.053 0.058 0.042 0.047

(0.042) (0.042) (0.042) (0.043) (0.044) (0.050) (0.052)
Observations 4199 4199 4199 4199 4199 4199 4199
Clusters 85 85 85 85 85 85 85
Fixed Effects 5 17 85 134 642 649
Fixed Effects - M Y YM AY AYM AYM,W

Notes: Table regresses weekly cooling (CDD) and heating (HDD) degree day future returns (Friday-Friday)

on deviations in degree days from seasonal averages. Both the contemporaneous week as well as three

leads are included. Errors are clustered at the delivery month (e.g., November 2010). Columns control for

different fixed effects across the 17 years in our sample (2002-2018), months (June-September for CDD and

November-March for HDD) and 8 airports for which contracts are available. Fixed effects are: monthly

(M), yearly (Y), year-month (YM), airport-year (AY), airport-year-month (AYM), as well as AYM plus

week relative to contract maturity fixed effects (AYM,W). Tables excludes observations that did not see a

price change during the entire week.
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Table 2: Trends in CDD and HDD

(1a) (1b) (1c) (1d) (2a) (2b) (2c) (2d)
Panel A: CDD June-September

Time trend (years) 10.282∗∗∗ 12.085∗∗∗ 9.134∗∗∗ 9.957∗∗∗ 8.995∗∗∗ 10.626∗∗∗ 9.374∗∗∗ 10.668∗∗∗

(0.804) (3.357) (0.593) (0.569) (1.206) (2.853) (0.513) (0.471)
Observations 117 117 117 117 90 136 136 136

Panel B: HDD November-March

Time trend (years) -8.472∗∗∗ -16.743∗∗ -8.133∗∗∗ -7.875∗∗∗ -9.429∗∗∗ -9.827 -8.971∗∗∗ -9.223∗∗∗

(1.995) (8.398) (1.340) (1.379) (2.997) (7.189) (1.173) (1.173)
Observations 115 115 115 115 87 136 136 136
Airport FE Yes Yes Yes Yes Yes Yes Yes Yes
Data Futures Station RCP4.5 RCP 8.5 Futures Station RCP4.5 RCP 8.5
Years Common Common Common Common Traded All All All

Notes: Panel A regresses cooling degree days (CDD) for the summer months June-September on a linear time trend, while panel B looks at

heating degree days for November-March in the years 2002-2018. Column (a) uses the average futures price 30 to 10 days before the start of

each contract month, e.g., the average price between June 1 and June 20 for a July contract. Column (b) uses observed station level data

for the month, while columns (c) and (d) use climate change forecasts in the NASA NEX-GDDP database under the RCP4.5 and RCP8.5

scenarios. Columns (1a)-(1b) estimate the trends for a consistent set of observations where futures data are available. Columns (2a)-(2b)

conduct sensitivity checks to the included years. Columns (2a) exclude years where the price did not change over that time frame as the

contract might not have been traded and hence not reflect changes in market expectations. Columns (2b)-(2d) include all years even if futures

data is not available.
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Table 3: LASSO Regression of Monthly Weather on Oceanic Oscillation

Panel A: Cooling Degree Days

ENSO NAO PNA AO AAO

Month 6 7 8 9 6 7 8 9 6 7 8 9 6 7 8 9 6 7 8 9

ATL X X X X X X X X
CVG X X X X X
DFW X X X
LAS
LGA X
MSP X X X
ORD X
SAC X

Panel B: Heating Degree Days

ENSO NAO PNA AO AAO

Month 11 12 1 2 3 11 12 1 2 3 11 12 1 2 3 11 12 1 2 3 11 12 1 2 3

ATL X X
CVG X X X
DFW X
LAS X X X X X
LGA X
MSP X X X X X X
ORD X X
SAC X X

Notes: Table summarizes LASSO regression (STATA package lassopack) of monthly cooling and heating degree days on six Oceanic Oscillation

indices: ENSO (El Niño - Southern Oscillation), NAO (North Atlantic Oscillation), PNA (Pacific/ North American Teleconnection Pattern),

AO (Arctic Oscillation), AAO (Antarctic Oscillation). regressions are done separately for each month while linking it to the values of the six

oscillations for the same month as well as a linear time trend. Variables that are selected based on the Extended Bayesian Information Criteria

(EBIC) are marked with an X.
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Table 4: Trends in CDD by Month

(1a) (1b) (1c) (1d) (2a) (2b) (2c) (2d)
Panel A: CDD June

Time trend (years) 3.377∗∗∗ 5.022∗∗∗ 1.587∗∗∗ 1.989∗∗∗ 3.612∗∗∗ 4.425∗∗∗ 1.574∗∗∗ 1.834∗∗∗

(0.361) (1.089) (0.225) (0.257) (0.434) (0.965) (0.193) (0.228)
Observations 119 119 119 119 105 136 136 136

Panel B: CDD July

Time trend (years) 2.351∗∗∗ 1.920 2.635∗∗∗ 3.086∗∗∗ 2.194∗∗∗ 1.681 2.765∗∗∗ 3.199∗∗∗

(0.311) (1.333) (0.208) (0.219) (0.375) (1.260) (0.198) (0.207)
Observations 131 131 131 131 110 136 136 136

Panel C: CDD August

Time trend (years) 2.550∗∗∗ 1.413 2.532∗∗∗ 3.118∗∗∗ 2.227∗∗∗ 1.192 2.667∗∗∗ 3.147∗∗∗

(0.292) (1.239) (0.221) (0.217) (0.340) (1.171) (0.211) (0.205)
Observations 131 131 131 131 114 136 136 136

Panel D: CDD September

Time trend (years) 2.602∗∗∗ 3.912∗∗∗ 2.353∗∗∗ 2.491∗∗∗ 2.579∗∗∗ 3.327∗∗∗ 2.368∗∗∗ 2.487∗∗∗

(0.291) (1.017) (0.225) (0.218) (0.339) (0.981) (0.214) (0.208)
Observations 132 132 132 132 114 136 136 136
Airport FE Yes Yes Yes Yes Yes Yes Yes Yes
Data Futures Station RCP4.5 RCP 8.5 Futures Station RCP4.5 RCP 8.5
Years Common Common Common Common Traded All All All

Notes: Table replicates Panel A of Table 2 but estimates a separate trend for each month. It regresses cooling degree days (CDD) for the

summer months June-September on a linear time trend in the years 2002-2018. Column (a) uses the average futures price 30 to 10 days

before the start of each contract month, e.g., the average price between June 1 and June 20 for a July contract. Column (b) uses observed

station level data for the month, while columns (c) and (d) use climate change forecasts in the NASA NEX-GDDP database under the RCP4.5

and RCP8.5 scenarios. Columns (1a)-(1b) estimate the trends for a consistent set of observations where futures data are available. Columns

(2a)-(2b) conduct sensitivity checks to the included years. Columns (2a) exclude years where the price did not change over that time frame as

the contract might not have been traded and hence not reflect changes in market expectations . Columns (2b)-(2d) include all years even if

futures data is not available.
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Table 5: Trends in HDD by Month

(1a) (1b) (1c) (1d) (2a) (2b) (2c) (2d)
Panel A: HDD November

Time trend (years) -4.229∗∗∗ -0.287 -1.018∗∗ -1.053∗∗∗ -4.663∗∗∗ 0.708 -1.169∗∗∗ -1.104∗∗∗

(0.535) (1.746) (0.452) (0.362) (0.644) (1.704) (0.430) (0.347)
Observations 131 131 131 131 113 136 136 136

Panel B: HDD December

Time trend (years) -1.033∗ -4.985∗ -1.135∗∗ -0.900∗∗ -1.085 -1.932 -1.222∗∗∗ -1.650∗∗∗

(0.613) (2.621) (0.498) (0.453) (0.674) (2.193) (0.454) (0.446)
Observations 115 115 115 115 108 136 136 136

Panel C: HDD January

Time trend (years) -0.242 -0.583 -1.838∗∗∗ -2.784∗∗∗ -0.391 0.008 -1.851∗∗∗ -2.844∗∗∗

(0.661) (2.414) (0.405) (0.438) (0.793) (2.381) (0.394) (0.427)
Observations 134 134 134 134 114 136 136 136

Panel D: HDD February

Time trend (years) 1.927∗∗∗ -6.275∗∗ -1.945∗∗∗ -1.575∗∗∗ 1.974∗∗∗ -5.388∗∗ -1.980∗∗∗ -1.757∗∗∗

(0.612) (2.437) (0.421) (0.456) (0.652) (2.322) (0.394) (0.428)
Observations 131 131 131 131 122 136 136 136

Panel E: HDD March

Time trend (years) -5.290∗∗∗ -1.551 -2.483∗∗∗ -1.615∗∗∗ -5.531∗∗∗ -3.222 -2.749∗∗∗ -1.868∗∗∗

(0.679) (2.247) (0.427) (0.420) (0.737) (2.148) (0.410) (0.403)
Observations 131 131 131 131 123 136 136 136
Airport FE Yes Yes Yes Yes Yes Yes Yes Yes
Data Futures Station RCP4.5 RCP 8.5 Futures Station RCP4.5 RCP 8.5
Years Common Common Common Common Traded All All All

Notes: Table replicates Panel B of Table 2 but estimates a separate trend for each month. It regresses heating degree days (HDD) for the winter

months November-March in the years 2002-2018. Column (a) uses the average futures price 30 to 10 days before the start of each contract

month, e.g., the average price between June 1 and June 20 for a July contract. Column (b) uses observed station level data for the month,

while columns (c) and (d) use climate change forecasts in the NASA NEX-GDDP database under the RCP4.5 and RCP8.5 scenarios. Columns

(1a)-(1b) estimate the trends for a consistent set of observations where futures data are available. Columns (2a)-(2b) conduct sensitivity checks

to the included years. Column (2a) excludes years where the price did not change over that time frame as the contract might not have been

traded and hence not reflect changes in market expectations. Columns (2b)-(2d) include all years even if futures data is not available.
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A1 Data Appendix

Some data cleaning was necessary for the futures data because of “sticky fingers,” e.g.,

sudden price jumps by a factor of 10. For example, a price series was 91, 91, 910. We

contacted Bloomberg about whether these were data entry errors, but they assured us that

the data had been cleaned. Specifically, we rescaled

1. The January 2011 contract in DFW by 1
10

if its price exceeded 6000.

2. The July 2011 contract for CVG by 1
10

if its price exceeded 4000.

3. The September 2011 contract for ATL, LAS, LGA and SAC by 1
10

if its price exceeded

1000.

4. The September 2011 contract in MSP by 1
10

if its price exceeded 300.

5. The January, February, and March contracts in 2002 and 2003 for SAC by 10 if their

price was below 60.

6. The November and December contracts in 2002 for SAC by 10 if their price was below

100.

7. The December 2016 contracts for SAC by 10 if their price was below 100.

Furthermore, we excluded observations

1. Where the price was zero

2. Where prices were missing for 30 days before the start date of a month. This occurred

for some December contracts in 2003 and 2005.

3. Where prices never changed between two weeks (14 days) before the start of the month

and the end of the month, i.e., there was no price change over the 45-day period.
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Figure A1: Observed Cooling and Heating Degree Days versus Futures Prices
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Notes: Figure replicates Figure 4, but includes the additional 8 CDD (12 HDD) futures contracts where

prices did not move in the 14-day window spanning between 7 days before the end of the month or seven

days after the end of the month. Left graph again displays a scatter plot of the 513 observed monthly cooling

degree day (CDD) totals against the average futures price the week following the end of the summer months

June-September. Right graph displays a scatter plot of the 642 observed monthly heating degree day (HDD)

totals against the average futures price the week following the end of the winter months November-March.

Both graphs use data for the 18 years (2001-2018) across the eight airports. Some months have missing

data.
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Figure A2: Nonparametric Futures Prices and Weather for July-September
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Notes: Figure replicates the left column of Figure 5 for CDD in the months July-September as data for June

was not available in 2018. It estimates nonparametric trends using lowess regression on the average annual

residual among the eight airports, i.e., the annual residuals after taking out airport fixed effects (means)

are averaged by year before running lowess on the annual observations. Red line shows the results for the

observed station data, the magenta line partials out ocean oscillation indices that affect weather. The green

line uses futures prices before the weather is realized, and the blue lines use model output from NASA

NEX-GDDP.
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Table A1: Futures Returns on Weather Shocks - Including Weeks with no Price Change

(1) (2) (3) (4) (5) (6) (7)
Panel A: Cooling Degree Days June - September

Shock in week t 0.156∗∗∗ 0.168∗∗∗ 0.158∗∗∗ 0.170∗∗∗ 0.178∗∗∗ 0.193∗∗∗ 0.203∗∗∗

(0.021) (0.022) (0.021) (0.022) (0.022) (0.026) (0.027)
Shock in week t+1 0.372∗∗∗ 0.381∗∗∗ 0.373∗∗∗ 0.381∗∗∗ 0.386∗∗∗ 0.392∗∗∗ 0.418∗∗∗

(0.024) (0.024) (0.023) (0.024) (0.024) (0.026) (0.028)
Shock in week t+2 0.048∗ 0.057∗∗ 0.048∗ 0.051∗ 0.059∗∗ 0.051∗ 0.065∗∗

(0.026) (0.026) (0.026) (0.026) (0.027) (0.030) (0.029)
Shock in week t+3 -0.046∗ -0.037 -0.045∗ -0.047∗ -0.033 -0.062∗∗ -0.060∗

(0.024) (0.024) (0.024) (0.025) (0.026) (0.030) (0.032)
Observations 3778 3778 3778 3778 3778 3778 3778
Clusters 67 67 67 67 67 67 67
Fixed Effects 4 17 67 133 513 520

Panel B: Heating Degree Days November - March

Shock in week t 0.053 0.060 0.052 0.055 0.051 0.054 0.049
(0.041) (0.041) (0.041) (0.043) (0.044) (0.053) (0.054)

Shock in week t+1 0.325∗∗∗ 0.330∗∗∗ 0.324∗∗∗ 0.323∗∗∗ 0.324∗∗∗ 0.320∗∗∗ 0.328∗∗∗

(0.035) (0.035) (0.035) (0.036) (0.036) (0.039) (0.038)
Shock in week t+2 0.232∗∗∗ 0.239∗∗∗ 0.231∗∗∗ 0.228∗∗∗ 0.230∗∗∗ 0.219∗∗∗ 0.220∗∗∗

(0.046) (0.046) (0.046) (0.046) (0.046) (0.048) (0.047)
Shock in week t+3 0.056 0.065∗ 0.055 0.048 0.054 0.033 0.039

(0.038) (0.038) (0.038) (0.039) (0.040) (0.044) (0.046)
Observations 4694 4694 4694 4694 4694 4694 4694
Clusters 85 85 85 85 85 85 85
Fixed Effects 5 17 85 134 642 649
Fixed Effects - M Y YM AY AYM AYM,W

Notes: Tables replicates Table 1, but also includes weeks that did not see any price change. It regresses

weekly cooling (CDD) and heating (HDD) degree day future returns (Friday-Friday) on deviations in degree

days from seasonal averages. Both the contemporaneous week as well as three leads are included. Errors are

clustered at the delivery month (e.g., November 2010). Columns control for different fixed effects across the

17 years in our sample (2002-2018), months (June-September for CDD and November-March for HDD) and

8 airports for which contracts are available. Fixed effects are: monthly (M), yearly (Y), year-month (YM),

airport-year (AY), airport-year-month (AYM), as well as AYM plus week relative to contract maturity fixed

effects (AYM,W).
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Table A2: Futures Returns on Weather Shocks - Excluding Weeks Were Leads Fall Beyond
the End of the Contract Month

(1) (2) (3) (4) (5) (6) (7)
Panel A: Cooling Degree Days June - September

Shock in week t 0.163∗∗∗ 0.178∗∗∗ 0.161∗∗∗ 0.170∗∗∗ 0.186∗∗∗ 0.219∗∗∗ 0.220∗∗∗

(0.027) (0.028) (0.027) (0.028) (0.030) (0.036) (0.037)
Shock in week t+1 0.418∗∗∗ 0.434∗∗∗ 0.420∗∗∗ 0.438∗∗∗ 0.444∗∗∗ 0.469∗∗∗ 0.472∗∗∗

(0.024) (0.024) (0.024) (0.025) (0.025) (0.030) (0.030)
Shock in week t+2 0.025 0.043∗ 0.024 0.030 0.053∗∗ 0.049 0.047

(0.024) (0.024) (0.024) (0.025) (0.026) (0.031) (0.031)
Observations 2743 2743 2743 2743 2743 2743 2743
Clusters 67 67 67 67 67 67 67
Fixed Effects 4 17 67 133 513 518

Panel B: Heating Degree Days November - March

Shock in week t 0.016 0.031 0.011 0.023 0.002 -0.004 -0.008
(0.046) (0.047) (0.047) (0.050) (0.050) (0.067) (0.067)

Shock in week t+1 0.345∗∗∗ 0.356∗∗∗ 0.341∗∗∗ 0.338∗∗∗ 0.340∗∗∗ 0.314∗∗∗ 0.316∗∗∗

(0.040) (0.040) (0.040) (0.041) (0.041) (0.046) (0.045)
Shock in week t+2 0.207∗∗∗ 0.215∗∗∗ 0.200∗∗∗ 0.189∗∗∗ 0.192∗∗∗ 0.145∗∗∗ 0.139∗∗∗

(0.035) (0.035) (0.035) (0.037) (0.035) (0.045) (0.045)
Observations 3493 3493 3493 3493 3493 3493 3493
Clusters 85 85 85 85 85 85 85
Fixed Effects 5 17 85 134 642 647
Fixed Effects - M Y YM AY AYM AYM,W

Notes: Tables replicates Table 1, but does not include weeks were the leads fall beyond the end of the

contract months (they were previously set to zero). It regresses weekly cooling (CDD) and heating

(HDD) degree day future returns (Friday-Friday) on deviations in degree days from seasonal averages.

Both the contemporaneous week as well as two leads are included. Errors are clustered at the delivery

month (e.g., November 2010). Columns control for different fixed effects across the 17 years in our sample

(2002-2018), months (June-September for CDD and November-March for HDD) and 8 airports for which

contracts are available. Fixed effects are: monthly (M), yearly (Y), year-month (YM), airport-year (AY),

airport-year-month (AYM), as well as AYM plus week relative to contract maturity fixed effects (AYM,W).

Tables excludes observations that did not see a price change during the entire week.
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