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Abstract

Post-war growth in agricultural productivity outpaced the US non-farm economy,
spurred by steadily increasing crop yields. We argue that rising atmospheric CO9
is responsible for a significant share of these yield gains. We present a novel methodol-
ogy to estimate the CO4 fertilization effect using data from NASA’s Orbiting Carbon
Observatory-2 (OCO-2) satellite. Our study complements the many field experiments
by regressing county yields on local COs levels across the majority of US cropland
under actual growing conditions. For identification, we utilize year-to-year anoma-
lies from county-specific trends, an instrument for those CO2 anomalies using wind
patterns, and a spatial first-differences approach. We consistently find a large CO5
fertilization effect: a 1 ppm increase in CO5 equates to a 0.4%, 0.6%, 1% yield increase
for corn, soybeans, and wheat, respectively. In a thought exercise, we apply the CO9
fertilization effect we estimated in our sample from 2015-2021 backwards to 1940, and,
assuming no other limiting factors, find that COs was the dominant driver of yield
growth—with implications for estimates of future climate change damages.
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The Green Revolution brought about a massive increase in crop yields across the world.
In the US, for example, corn yields increased six-fold since 1940, while soybeans and wheat
increased by a factor of three. Prior to this point, yields had been relatively flat, as shown
in Figure [l By extension, the agricultural sector experienced disproportionately high pro-
ductivity growth (Jorgenson and Gollop 1992). Before 1950, US farm sector productivity
growth was half that of the non-farm sector, but afterwards the relationship reversed with
farm productivity growth exceeding the non-farm sector by 62% (Pardey and Alston 2021).
Factors such as increased input usage, mechanization, irrigation, and improved crop genetics
all contributed to yield growth (Wang, Heisey, Schimmelpfennig, and Ball 2015). However,
because aggregate US farm output increased several-fold while the aggregate quantity of
inputs (land, capital, labor, and materials) stayed flat, technology is generally understood
to have driven agricultural productivity growth.

Understanding the drivers of agricultural productivity is important for economic growth
both within the farm sector as well in as other sectors. The adoption of high-yield varieties,
for example, had significant positive economic spillovers for the larger economy in India
(Gollin, Hansen, and Wingender 2021) and other countries more generally (McArthur and
McCord 2017).

This paper argues that carbon dioxide (CO5) fertilizationﬂ may help illuminate the puz-
zling conclusion of Jorgenson and Gollop (1992): why did productivity growth explain over
80% of agriculture’s postwar growth but less than 15% in the non-farm economy? During this
time, atmospheric CO, was steadily increasing alongside steadily increasing crop yields, as
shown in Figure [II The physiological response of plants to CO, is well-known: CO, drives
photosynthesis and has long been used as a greenhouse input to boost yields. Increasing
COs has driven global greening: over the last 40 years, half of the world’s vegetated area
has undergone greeningf of which 70% is attributed to elevated CO, (Zhu et al. 2016).

Our paper investigates the extent to which elevated COy contributed to the observed
increase in crop yields during this time. Establishing a causal link between two trending vari-
ables is statistically challenging. CO, has risen smoothly in tandem with crop yields as well
as other factors such as mechanization and input use. Industrialization, both in agriculture
and other sectors, might have independently increased CO, levels as well as yields—making

it all the more difficult to disentangle CO, fertilization from other productivity drivers.

'The CO, fertilization effect is defined in the scientific literature as the increase in photosynthetic activity
in response to elevated COs. In this paper, we use the term more specifically to refer to an outcome of
increased crop yields.

2This paper defines ‘greening’ as an increase in the growing season integrated leaf area index.



To date, field experiments and process-based models are the most common approaches
to attribute yield trends to COs levels. These approaches, however, face challenges of their
own. The conditions in a well-controlled experiment might not be indicative of real-world
farming conditions. Large regional differences in crop responses to COy reflect geographic
variation in crop distribution and environmental conditions (McGrath and Lobell 2013). COq
fertilization may be negligible in the presence of limiting factors such as nutrient deficiency
(Kimball et al. 2001, Hungate, Dukes, Shaw, Luo, and Field 2003, Reich et al. 2006, Ziska
and Bunce 2007). The effect is generally stronger under water deficit conditions (Ottman
et al. 2001, Leakey, Uribelarrea, Ainsworth, Naidu, Rogers, Ort, and Long 2006, Keenan,
Hollinger, Bohrer, Dragoni, Munger, Schmid, and Richardson 2013, Morgan et al. 2011),
with the exception of soybeans (Gray et al. 2016) and possibly rice (Zheng, He, Guo, Hao,
Cheng, Li, Peng, and Xu 2020). Elevated CO, may increase high temperature stress due to
stomatal closure (Batts, Morison, Ellis, Hadley, and Wheeler 1997).

Field experiments have several limitations. There is only one major agriculture-focused
COg enrichment experiment in the breadbasket Midwest, SOYFACE, which is located at
the University of Illinois and focused mainly on soybeans. Such field experiments can suffer
from significant measurement error due to the difficulty of controlling elevated CO5 concen-
trations in turbulent air (Allen, Kimball, Bunce, Yoshimoto, Harazono, Baker, Boote, and
White 2020). Complicating matters further, a decline in the global carbon fertilization effect
over time has been documented, likely attributable to changes in nutrient and water avail-
ability (Wang et al. 2020). While CO, enrichment experiments have generated important
insights into the physiological channels of the fertilization effect and its environmental inter-
actions, they are limited in the extent to which they reflect real-world growing conditions in
commercial farms at a large geographic scale.

To this end, we employ a new approach to estimating the effect of COy on crop yields
that relies neither on process-based models nor on localized field experiments—while also
allowing us to analyze the majority of the US cropland. We use observed ambient CO, data
from NASA’s Orbiting Carbon Observatory-2 (OCO-2) satellite and county-level crop yield
data. The OCO-2 satellite detects changing ambient CO, levels that occur within and across
locations and growing seasons (Crisp 2015). While CO, mixes in the atmosphere, there are
temporal and spatial deviations that can be leveraged (see Appendix Figure . We focus
on the US, which is the biggest producer of corn and soybeans, accounting for 33% of global
production (FAOSTAT) over OCO-2’s sample timeframe from 2015-2021, and 7% of global

wheat production.



We use several empirical approaches that isolate both time-series and cross-sectional
variation in our COy measurement. The major identification concern involves CO5 anomalies
being correlated with other factors that influence crop yields. One could imagine several such
confounders related to agricultural practices, fossil fuel production, urbanization, and large-
scale weather systems. While we control for such factors when possible, we employ two other
empirical strategies to aid in identification: a wind instrument for CO4 exposure to address
endogeneity concerns and a spatial first-difference approach that isolates differences between
neighboring counties to reduce the effect of any regional confounders by differencing them
out. Our results are robust to myriad sensitivity checks, i.e., the functional form (logarithmic
versus levels), whether the temporal trend is by state or county, sample selection, and the
choice of controls for co-occurring air pollutants.

We find large fertilization effects in the US: a 1 part per million (ppm) increase in COq
equates to a 0.4%, 0.6%, 1% yield increase for corn, soybeans, and winter wheat, respectively,
in our baseline panel model. The estimates are high compared to those found in the agro-
nomic literature, a fact we discuss and attempt to rationalize in section [5| More generally,
these results shed light on a driver of yield growth that is usually taken as exogenous. The
recent literature has used panel variation to estimate climate change damages by relating
outcomes of interest to random exogenous year-to-year weather fluctuations (Dell, Jones,
and Olken 2014). This approach, which relies on annual variation in weather, does not take
into account longer-term dynamics which are correlated with climate change. Consequently,
part of the estimated damages may be offset by yield gains from rising COs.

Our findings are relevant in several contexts. First, in providing an example of how
satellite-based measures of CO5 can complement field experiments to ensure external validity
of the effect of CO, on agriculture and ecosystem functioning at a large scale.

Second, our finding that COs fertilization has driven a large portion of the historical
increase in crop yields has implications for how we think about the drivers of agriculture
productivity growth, which has very large economic spillovers (Gollin et al. 2021).

Third, our results have relevance for estimating climate change impacts on agriculture.
There is a gap between process-based studies of climate change which incorporate COs
fertilization and statistical ones which tend to omit it (Lobell and Asseng 2017), and the
resulting estimates of climate impacts can vary greatly. For example, one study finds the
net welfare effect on agriculture to be negative in the absence of CO; fertilization but neg-
ligible with fertilization (Moore, Baldos, and Hertel 2017)[| And because the welfare ef-

3Some argue that CO, fertilization is understood well enough to be directly included in global climate



fects of climate change vis-a-vis agriculture vary across regions (Costinot, Donaldson, and
Smith 2014, Nath 2020, Hultgren et al. 2022), such inequalities may be exacerbated if the
CO,, fertilization effect varies across crop types and environmental conditions. Finally, we
emphasize that the strong fertilization effect we find occurs under current CO, levels and
current environmental conditions. Given the experimental evidence showing a tapering of
the CO, fertilization effect at higher levels, a linear extrapolation of our estimates into the
future has to be considered with caution.

The paper proceeds as follows: Section [1| provides some background on the CO, fertiliza-
tion effect and current estimates. Section [2] data section describes how we construct our COq
anomaly measure from the OCO-2 satellite data product, as well as the other datasets used
in this analysis. Section |3 describes our identification strategies and empirical approaches
before Section 4| presents our regression results along with robustness tests. Implications of
these results are discussed in Section [5| by exploring scientific and policy implications of our

study before Section [ concludes and summarizes our main findings.

1 Background on CQO, fertilization

Plants respond directly to rising CO, through photosynthesis and stomatal conductance,
which is the basis for the fertilization effect (Long, Ainsworth, Rogers, and Ort 2004,
Ainsworth and Rogers 2007). This response has been known for over 200 years. The role of
COs in plant growth was first demonstrated in 1796 by Swiss botanist Jean Senebier, and
COy gas has long been pumped into greenhouses to spur photosynthesis and increase the
yield of horticultural crops.

The fertilization process varies by crop type. For C3 crops like soybeans, wheat, and
rice, mesophyll cells containing RuBisC([Y] are in direct contact with the air. RuBisCO is
an enzyme that fixes atmospheric COy during photosynthesis and in oxygenation of the
resulting compound during photorespiration. Thus, higher ambient CO, increases photo-
synthetic CO5 uptake because RuBisCO is not COg-saturated at today’s atmospheric levels
(Long et al. 2004). For C4 crops like corn, on the other hand, RuBisCO is located in bundle
sheath cells, where CO, levels are several times higher than atmospheric levels. At this
concentration, RuBisCO is COs-saturated, and there may not be a direct photosynthetic

response to changing atmospheric CO, levels. However, C4 yields are still indirectly af-

models and impact projections (Toreti et al. 2020).
4RuBisCO is the name of an enzyme short for ribulose-1,5-bisphosphate carboxylase-oxygenase



fected through increased water use efficiency via reduction in stomatal conductance (Long,
Ainsworth, Leakey, Nosberger, and Ort 2006). All things being equal, one would expect a
larger COs fertilization effect for wheat and soybeans than for corn.

Historical estimates of yield responses to CO5 came from controlled experiments in labora-
tories and greenhouses where CO, levels can easily be controlled. An early survey concluded
that doubling ambient CO, increased yields by 24 to 43% for C3 crops in the context of full
water and nutrient availability (Kimball 1983), which aligned with USDA reporting a 33%
increase in yields for most crops under similar settings (Allen Jr., Baker, and Boote 1996).
Another study estimated that COy could have accounted for 15% US soybean yield growth
from 1972 to 1997 (Specht, Hume, and Kumudini 1999).

In recent decades, free-air concentration enrichment (FACE), a process involving a series
of pipes in fields emitting CO,, has allowed for larger-scale trials in more realistic crop
growing conditions. A survey of over 25 years of FACE experiments concludes that increasing
CO; from 353 to 550 ppm results in 19% higher C3 yields, on average, while C4 crops were
only affected under conditions of water scarcity (Kimball 2016). FACE experiments tend to
show a lower fertilization effect than either laboratory or greenhouse enclosure studies (Long
et al. 2006). However, recent work has pointed out potential measurement error, arguing
that FACE estimates should be adjusted upward by 50% to account for the effect of air
turbulence and CO, fluctuations (Allen et al. 2020). Geographic extent is also limited: there
are only two long-standing FACE experiments in the US that focus on agriculture: Arizona
FACE in Maricopa, AZ, and SOYFACE in Champaign, IL—with only the latter located
in the traditional Midwestern breadbasket. We also note recent work that utilized OCO-2
satellite data to estimate the impact of the 2019 Midwestern floods on CO, uptake and crop
productivity (Yin et al. 2020).

2 Data

Our primary measure of atmospheric COs comes from the Orbiting Carbon Observatory-2
(OCO-2). Launched in 2014, OCO-2 is NASA’s first satellite designed specifically to measure
atmospheric CO, with the goal of better understanding the geographic distribution of CO,
sources and sinks and their changes over time. We downloaded the bias-corrected OCO-
2 LITE Level 2 v10 product, specifically the ‘XCO2’ value of averaged dry air COy mole

fraction (i.e., part per million, or ppm) over the atmospheric columnﬂ The satellite has a

5Available: https://disc.gsfc.nasa.gov/datasets/
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sun-synchronous orbit with an equatorial crossing time at 13:30 hours and a repeat cycle of
16 days. There are 8 distinct soundings with spatial footprints less than 1.29 km by 2.25
km each, encompassing an overall swath less than 10 km. A typical daily output contains
over 150,000 XCO2 global readings, including the latitude-longitude point. Readings have
quality flags (about 50% of readings), which we exclude from our analysis.

We then calculate the COy anomaly that represents how much more or less CO; is
observed in a given place and time relative to what would be expected in light of naturally
occurring seasonal patterns and global time trends. To this end, we adjust CO, values
from OCO-2 to account for annual patterns in which ambient concentrations decrease in the
spring and summer when plants are actively photosynthesizing and increase in the fall and
winter when plants are respiring on net.ﬂ We identify CO45 anomalies relative to this pattern
by estimating the average seasonality over the contiguous US with a 4'"-order Chebyshev
Polynomial over the year, which we normalize to [-1,1] by transforming January 1st to equal
-1 and December 31st to equal 1 with leap years having an additional day. We restrict the
seasonality so the value on January 1 (time -1) equals the value on December 31 (time 1).
Figure displays the seasonality in COg in the OCO-2 data. We further include a time
trend to account for the annual increase in CO, at the global level. We then re-normalize
our seasonality-adjusted values to July 1% of each year, i.e., by adjusting a daily value by
the differential between the average value for that day of the year and July 1st.

Next we assign each seasonally-adjusted OCO-2 reading to the PRISM grid (1/24° grid
in latitude and longitude) in which it falls. Readings are averaged if there are more than
one for a grid during the growing season from April to September. The PRISM grids within
a county are then averaged using the amount of corn, soybean, or winter wheat area in the
PRISM grid, where we aggregate the 30m-resolution from USDA’s Cropland Data Layer to
the PRISM grid[] The resulting seasonality-adjusted CO, level is a single value in ppm for
each county-crop-year.

Figure displays the resulting number of observations per county and by crop that
have both CO, readings and annual yield data over the seven years from 2015 to 2021 with
0OCO-2 data. Given the 16-day revisit time, the high resolution, and the size of the median

US county (1,610 km?), a reading is not obtained for each US county in each year. Since

6Local CO5 concentrations also exhibit strong diurnal within-day variation (Idso, Idso, and Balling Jr
2002, Xueref-Remy et al. 2018), but because the OCO-2 satellite is sun-synchronous and revisits points at
the same time each day, this is not a concern for our study.

"Note that in the construction of the 4*"-order Chebyshev polynomial we include all non-flagged readings
over the US, not just those over cropland.



we include both county fixed effects and county-specific time trends, we need at least three
degrees of freedom per county, i.e., we can only include counties with at least 3 observations
in our regressions.

For weather, we use a recalculated version of the fine-scale PRISM data at 2.5 minute
resolution, or 4.5 km by 4.5 km that keeps the set of weather stations constant over time.
We follow the approach from Schlenker and Roberts (2009), which found that four weather
variables (two temperature, two precipitation) predict yields well. The two temperature
variables are degree days 10-29°C (moderate degree days) and degree days above 29°C (ex-
treme degree days) for corn. The upper bound is slightly higher for soybeans, resulting in
degree days 10-30°C and degree days above 30°C. We use the same degree day variables for
winter wheat as for soybeans. We experimented with using separate temperature measures
by trimester (Tack, Barkley, and Nalley 2015), but did not find an improved fit. In each
regression, we also include a quadratic of season-total precipitation. Precipitation and degree
days are summed across the six-month growing season from April to September and spatially
averaged using the same PRISM grid weights that are aggregates of USDA’s Cropland Data
Layer for each county.

Air pollution data come from the EPA’s national network of pollution monitors. We use
hourly data from the EPA’s Pre-Generated Data Files| for five major pollutants: Ozone
O3 (44201), sulphur dioxide SO5 (42401), carbon monoxide CO (42101), nitrogen dioxide
NO, (42602), and particulate matter PM;y Mass (81102). We use the spatial interpolation
approach of Boone, Schlenker, and Siikaméki (2019) to get the pollution variables at the
PRISM grid, and then take the area-weighted average (again using the Cropland Data Layer)
value of all grids in a county across the six-month growing season from April to September.

For the analysis of long-term trends in vegetation density, we use NOAA’s Advanced Very
High Resolution Radiometer (AVHRR) satellite measure of Normalized Difference Vegetation
Index (NDVI) at 0.05° resolution, or 5.6km at the equator (Vermote et al. 2014) . Accessed
through Google Earth Engine, the advantage of AVHRR relative to MODIS and other recent
remotely-sensed products is its three decade timespan encompassing growing seasons from
1982 to 2013.

Crop area footprints for each county are derived from the USDA’s Cropland Data Layer at
30m resolution. County-level crop yields for corn, soybeans, and winter wheat were obtained
from USDA’s National Agricultural Statistics Service.

We note that there are other potential CO, data sources: OCO-2’s GEOS Level 3 daily

8 Available https://aqgs.epa.gov/aqsweb/airdata/download_files.html
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product, which gap-fills observations in time and space using short transport simulations from
the GEOS atmospheric model (Weir and Ott 2022), and which is utilized for the monthly
visualization of COy anomalies in[A3] Another is NOAA’s CarbonTracker, which is based on
air sample measurements across 460 global sites and an inverse model of atmospheric CO,
that adjusts surface-level COy uptake and releases to align with observational constraints
(Jacobson et al. 2020). The OCO-2 Level 2 product is our preferred measure of CO5 because
it is directly measured from space, and thus avoids the endogeneity risks around the modelling
assumptions behind OCO-2 Level 3 and CarbonTracker in regards to weather and vegetation
dynamics or ground-level confounders like local pollution and economic activity. Further,
reanalysis products may suffer from promulgation of interpolation errors (Parker 2016).

Nevertheless, CarbonTracker has several advantages including its longer timespan (2000-
2018), greater spatial resolution, and the fact that it models CO5 near ground level, as
opposed to OCO-2 which measures the entire air column from the ground up to the satellite.
For the sake of robustness, we replicate our main analyses in Appendix B using Carbon-
Tracker rather than OCO-2. We use the CarbonTracker product release CT2019B (Jacobson
et al. 2020) and the level 1 estimates which correspond to 25m above the Earth’s surface. To
construct CO, anomalies, we perform a procedure analogous to the one used with the OCO-2
satellite: we take the distance-weighted average of the surrounding four CarbonTracker grids
for each PRISM grid to derive PRISM-grid level CO, exposure, which is then aggregated to
the county level using cropland weights from the Cropland Data Layer. Figure displays
the cross-plot of COy anomalies from the OCO-2 satellite and CarbonTracker during the
four years (2015-2018) in which the datasets overlap.

3 Model and empirical strategy

We estimate the CO, fertilization effect by linking OCO-2 satellite data on CO, levels with
county-level yield data in the US. There are several identification challenges to address.
While gaseous COs ultimately diffuses across space and becomes uniformly distributed in
the atmosphere[] this process occurs over the course of weeks to months and is affected by
specific emission events, local CO4 sources and sinks, as well as wind and weather dynamics
(Hakkarainen, Ialongo, and Tamminen 2016, Massen and Beck 2011). Spatial variation in

COy exposure at any given time is driven by such disturbances. Figure visualizes this

9The spatial diffusion of COs is what makes climate change a global public goods problem. It also allows
scientists to rely on singular sources of long-term COs measurements, like the Mauna Loa Observatory, to
estimate global COs levels, which are then incorporated into global process-based models.



variation across the US during each month of the growing season in an example year, 2019.
Taking Nebraska as an example, we see that in April COy exposure is low compared to
the US average, high in May, lower in June, neutral in July, high in August, then lower in
September.

Our empirical approach links the resulting local variation in CO; (i.e., anomalies) to
fluctuations in yields. To do this, we match the yield data with local CO4 readings and
weather outcomes over the area where corn, soybeans, and winter wheat are grown within
each county, respectively. All models use seasonality-adjusted COy anomalies in ppm, as
described in the Data section, and log of county-level yields as the outcome variable unless
otherwise noted. We focus on the US, a top global agricultural producer. Our primary
analysis encompasses counties east of the 100° meridian for corn and soybeans, the same set
of counties as used in Schlenker and Roberts (2009). Because winter wheat is grown further
west, we use all states east of the Rocky Mountains as the baseline for wheat. These areas
account for the vast majority of US row crop production. As a sensitivity check, we also

perform the analyses on the entire continental US and other sub-samples, as visualized in

Figure [A2]

Panel model

The set up of our panel model is similar to what is commonly used in the literature to
estimate climate change damages. We regress yields on COy after controlling for the four
weather variables that were found to best predict corn and soybean yields (Schlenker and
Roberts 2009) and criteria air pollutants (CO, NOy, Oz, PMjy, SOs). The panel model
includes county fixed effects to account for differences in average yields across counties driven
by factors such as soil quality and average climate, as well as county-specific time trends
to account for local trends in both COs and yields to rule out a spurious correlation of
trending variables. Figure illustrates the variation used in the panel model, highlighting
the correlation in Macoupin county, Illinois, which is downwind from an urban area (St.
Louis).

The panel model specification is:
Yit = qio + aat + B cip + YWip + 0Py + € (1)
where y;; is log crop yield in county 7 in year t; ;g is a county fixed effect; «;; is a county-

specific time trend; [ measures the observed CO, fertilization effect from the seasonally-

adjusted COq reading (c;;) in the county ¢ in year t; v is a control vector for weather (two

10



temperature degree day variables, precipitation and precipitation-squared, all summed over
the six-month growing season), while § is a control for five criteria air pollutants Py (CO,
NOj, O3z, PMjg, SO3). We use the daily mean for CO, NOy, PMj,, and SO, and Og
averaged over the growing season, which we fix to April-September for all crops. Finally, €;
are the errors, which are clustered at the state level to account for spatial correlation and
state-level policy. The panel specification has been used to link random year-to-year weather
fluctuations to annual yield outcomes (Schlenker and Roberts 2009). The effects are clearly
visible in Figure [If where we see a significant reduction in national corn yields in 2012 when
the Corn Belt experienced drought and extreme heat events.

Identification remains challenged by several factors: 1) the possibility that local drivers of
COg could also affect yields, 2) possible reverse causality where yield anomalies impact COq
levels, although this should downward bias our estimates as higher yields imply less COs,
and 3) the spatial correlation in ambient CO, concentration and possible spatially-correlated
confounders that may include agricultural practices, fossil fuel production, urbanization, and
large-scale weather systems. While we control for confounders when possible, we exploit
differing sources of variation to identify the CO, fertilization effect: first, an instrumental
variables approach using upwind counties to ensure that local COs levels are not driven by
local conditions, and second, a spatial first differences approach to isolate differences between

neighboring counties to reduce the effect of any regional confounders that get differenced out.

Wind instrument

Wind direction is often employed in health economics to obtain exogenous variation in
pollution exposure (Schlenker and Walker 2016, Deryugina, Heutel, Miller, Molitor, and
Reif 2019). In the context of our study, mean CO, concentrations and peak fluxes have
been shown to correspond with the wind direction of localized CO5 emission sources (Coutts,
Beringer, and Tapper 2007, Massen and Beck 2011, Garcia, Sdnchez, and Pérez 2012, Xueref-
Remy et al. 2018). And while there are non-wind drivers of COy anomalies, like power plants
and vegetation, these features vary far less over time and space than relatively random atmo-
spheric phenomena that drive wind patterns. Such within-year variation can be visualized
in Figure [A3]

One limitation of this instrument is that wind-driven CO, exposure could also be corre-
lated with other co-occurring pollutants. We try to address this be explicitly controlling for
the five criteria air pollutants. In any case, given the negative affect of pollutants like ozone
on crop yield (Boone et al. 2019), this would likely bias our estimates downward.

Figure [2| shows our approach to deriving a wind instrument that follows Braun and

11



Schlenker (2022). First we calculate the centroid of each county as the cropland-weighted
average of all grids in a county, weighting by the combined corn, soybeans and winter wheat
acreage from the Cropland Data Layer. We then pair each county’s centroid with the cen-
troids of all its neighbors, which are not cropland-area weighted as we are looking for all
CO, readings as instrument, not just over the agricultural area.

We next determine the upwind county based on the direction in which neighbor centroids
are located, which is time invariant, and the county’s hourly wind direction over the growing
season constructed from hourly North American Land Data Assimilation System (NLDAS)
data, again using the cropland-area weighted average of all NLDAS grid cells in a county.
We derive the cosine between the direction of neighboring counties and the wind direction
and choose the county whose cosine is closest to -1 as the “upwind” that hour.

For each neighboring county, we then sum the number of hours it is “upwind” from our
target county over the 4392 hours comprising the April to September growing season in a
given year. The neighboring county that is the most hours upwind is thus categorized as
the “Upwind” county, which can change year-to-year. We then instrument each county’s
COs anomaly on that of its most upwind neighbor in that given year. We purposefully pick
the COy anomaly in the upwind county that is over the entire county area, not just the
agricultural area, as we are interested in all upwind sources.

The strength of the upwind relationship is an important consideration. Figure [3|displays
the number of hours that the “Upwind” county is actually upwind in a given year for each
crop. A low number of hours implies a weak relationship in which the wind is variable
over the growing season, i.e., a value of 1000 hours means that the county most frequently
upwind is in fact only upwind 23% of the time (1000 divided by the 4392 hours in the growing
season). In our IV regression, we vary the minimum hour cutoff and see that the CO4 effect
persists. Summary statistics related to the IV set up are included in Table [1}

The wind instrument is modelled as:

Yie = 40+ aut+ B ey + YWy + 0Py + €, (2)
Cit = Qo+ ant + bCijupwinar + YWir + 0Py + ey (3)

where items are defined as in equation for the panel model, except that § measures
the observed CO, fertilization effect from the instrumented CO, value (c;t), and ¢;pupwindge 1
the instrument using the CO, value from the county that is most frequently upwind based

on the hourly wind data.

12



Spatial first differences

We use a spatial first difference (SFD) model that is a generalization of Druckenmiller and
Hsiang (2019) in order to leverage another source of variation. It compares the change in the
COs and yield anomalies across all county neighbor pairs after removing county fixed effects
and county-specific annual time trends, while again controlling for spatial differences in the
other control variables (weather and air pollutants). To do this, we first derive anomalies by

factoring out county fixed effects and county-specific time trends for all variables:
Vit = Qo + it + €5 (4)

where vy € {yit, cit, Wit, Pis} to obtain the anomalies egf ) for each variable. By the Frisch-
Waugh-Lovell theorem, regressing €.’ on ¢\ while controlling for ") and €} would give
the same estimate for 8 as in equation . Instead, we look at the spatial first difference by
pairing each county 7 with all of its neighbors j, defined as having a common coordinate in
the county shape file. We take the difference in anomalies in a given year between neighbors:
Agt) =W 657;), so any common shock would be differenced out. In a second step we then
link these differences in annual anomalies (one observation for each county-pair per year):
AY) = BASY + 4 AT + AT + ey (5)
In the appendix we use an alternate SFD approach using a cross-sectional model to
examine persistent average gradients in CO, and yields in space while again controlling for
weather and co-pollutants. Ignoring annual anomalies (i.e., shocks), for each variable we
derive the average outcome over all years v; = % Zle vit, and again pair county ¢ to all its
neighbors j, defined as having a common coordinate in the county shape file. We take the
difference in average outcomes between neighbors: Ag) = 7; — v; and link these differences

in space in a cross-sectional regression (one observation for each county-pair):
() _ gA(CO2) (W) (P)

The SFD methods address concerns about regional variation in confounders that might
be correlated with regional variation in COj levels as shown in Figure [A3] On the other
hand, given the small remaining variation in CO, levels between neighboring counties, the
SFD approach might amplify measurement error by differencing out the common shock

in a year and lead to attenuation bias. Panel models and SFD models require different
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assumptions, i.e., for panels, that annual CO5 anomalies are uncorrelated with other omitted
explanatory variables, and for the SFD that the average gradient in COs is uncorrelated with
omitted variables. The fact that we obtain robust and consistently-positive CO, fertilization
estimates makes it less likely that results are driven by the particular assumptions of each

individual approach.

4 Results

The panel model results showing the aggregate effect of CO5 on county-level crop yields in
the US are included in Table 2] The point estimates for CO, are positive in all cases. Using
the full models in columns (1c), (2c), and (3c) that control for weather and pollution, we
find that a 1 ppm increase in COy equates to yield increases for corn, soybeans, and winter
wheat of 0.4%, 0.6%, 1%, respectively. The fertilization effect is less for corn (C4 crop) and
greater for soybeans and winter wheat (C3 crops), as observed in controlled experiments.

These results do not appear to be driven by outliers: Figure plots the anomalies for
OCO-2 in the preferred panel model after the covariates are factored out with the regression
line and a 90% confidence band. Many factors influence yields beyond CO,, and to that
end we see that much variation remains after accounting for CO, as well as our controls for
weather and other environmental factors. However, as long as COy fluctuations are uncor-
related with the other remaining unaccounted factors, our approach provides an unbiased
estimate of the CO fertilization effect. For example, Table [2| starts in columns (a) by not
controlling for either weather or pollution in a county, while columns (b) account for the four
weather variables that have been shown to be good predictors of corn and soybean yields,
yet the CO, coefficient is relatively stable across specifications. Finally, columns (c¢) account
for other pollutants that might co-vary with CO,, e.g., because they are co-generated when
fossil fuels are burned, but again we do not find statistically different results. The inclusion
and exclusion of these controls known to influence crop yields do not significantly alter our
findings, so any omitted variable would have to be correlated with both CO5 and yields, but
not the other controls.

Table [3 includes the results from the IV model. While our baseline model included all
counties with at least three COy and yield observation, the wind IV furthermore requires
that the upwind county has at least three CO, and yield observations, which further limits
our dataset. The table therefore first replicates the panel results for the same set of counties

in the top row — columns (b) and (c) — before the IV results are shown in the bottom
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row to ensure that any possible differences are driven by the IV setup and not sample
composition. As described in the modeling section, any possible feedback would downward
bias our estimates, i.e., higher yields through increased photosynthesis removes CO, from
the atmosphere and thereby implies a negative correlation. We would therefore expect the
coefficient to increase when we instrument by upwind COs levels, which is indeed the case.
Compared to the OLS panel estimates, the coefficients are larger for corn, soybeans, and
winter wheat by 36%, 65%, 19%, respectively when averaging across columns (b) and (c).
The effect is robust to dropping observations with a less strong upwind relationship (under
1000 hours upwind per growing season).

Table [4] shows the results of the spatial first differences model, which directly isolates
variation between neighboring counties. We see consistently positive coefficients—both for
annual shocks as well as cross-sectional average levels, the latter being shown in Table [AT]
The magnitudes are smaller than the panel and IV estimates, but in each case the fertilization
effect is largest with winter wheat. The spatial first difference approach clearly shows that the
results are not driven by regional anomalies in a year, which would difference out and cause
the results to vanish. At the same time, we have infrequent satellite readings over random
points in a county in each year, and the spatial first difference approach will therefore amplify
measurement error as it differences out the common signal for two neighboring counties and
hence suffers from attenuation bias.

We perform a number of sensitivity checks that produce largely similar results. First, we
vary the model specification: our baseline model links log yields to CO, levels, assuming that
a 1 ppm change in CO, has the same relative (percent) effect on yields. Figure[5|compares the
effect of the main specification (Log-Linear) to other functional form combinations: Linear-
Linear (constant absolute effect), Log-Log (constant elasticity), and Linear-Log. To make
the results comparable, we do not show the coefficients, but instead show the effect of a
Ippm increase on corn yields in each case, as well as the 90% confidence interval. Results
are very similar, which is not surprising, as we only have seven years of data and they all
provide local linear approximations for this limited duration. It should be noted, though,
that in our thought exercise where we extend the coefficient backward to 1940 to simulate
what the COs effect was, the functional form makes a very large difference, which would also
be the case if we were to project the effect several decades into the future.

Second, we vary the time trends to allow for the possibility that temporal patterns in
COy, levels and crop yields may be occurring at a geographic level different than the county

level—e.g., state-level policies may drive energy or agricultural production. Figure [0] plots
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the CO, coefficient for all models (Panel, IV, and SFD) alternately using no time trend, a
common trend, state-level trends, and county-level trends. All point estimates are positive.
The chosen time trend has no effect in the spatial first difference approach as neighboring
counties tend to trend in a similar fashion, and hence exclusively focusing on comparisons
between neighboring counties absorbs a common time trend. While there is some variation
in the panel or IV setup when using a common national time trend or omitting trends
altogether, the granularity of the time trend (state-specific versus county-specific) does not
matter much.

Third, we run our analyses comprising different US geographies as visualized by the
colored regions in Figure [A2l Our primary analysis encompasses counties east of the 100°
meridian (excluding Florida) for corn and soybeans, an area accounting for the vast majority
of US corn and soybean production, as well as counties east of the Rocky Mountains for
wheat. Figure [7] includes results for the sample comprising the entire contiguous US, east
of the Rockies, or east of the 100° meridian of primarily-rainfed agricultural counties. The
results are again fairly stable, mitigating concerns that this relationship is driven by regional
dynamics like irrigation. Note that the color coding of subsets in this Figure matches the
map in Figure

Finally, one concern about the OCO-2 satellite data we use in our analysis is that it
measures CO, across the entire atmospheric column, i.e., the area between the satellite
and the ground. What matters for plants is CO, at ground level, not higher altitudes.
While CO, concentrations across the air column are related through diffusion processes, if
COg disturbances at ground level phase out in altitude, then the variation we observe in
the satellite data would be smaller than the ground-level variation, thereby leading to an
upward-biased CO, fertilization coefficient.

We therefore replicate our entire analysis using a modelled CO, product from NOAA’s
CarbonTracker in Appendix Section [Bl CarbonTracker provides CO; levels at various alti-
tudes and we choose the one closest to the ground. This data is for 2000-2018, and hence
has four overlapping years (2015-2018) with our satellite data (2015-2021). The cross-plot
of CO,y anomalies in Figure shows that the variation in OCO-2 and CarbonTracker are
comparable. Moreover, we consistently find significant CO fertilization effects in the Car-
bonTracker data, that in case of corn are even larger than our baseline estimates, alleviating
concerns that our coefficients are artificially inflated. Since interpolated re-analysis data
products like CarbonTracker can be a ‘black box’ to users, we prefer the raw OCO-2 satellite

measurements—especially in relation to our instrumental variable approach where spatially-

16



interpolated data may mechanically produce a significant first stage.

5 Discussion

Global ambient COs levels have increased by 2 to 2.5 ppm per year on average since 2000.
Our panel models estimate a yield responses between 0.4% to 1% per 1 ppm CO,. These
estimates, which are at the very top of the range found in the literature, imply that CO,
fertilization was a major contributor to recent crop productivity in the US. Put another way,
yields may have increased 1% to 2.5% per year due to CO, in recent years, fully accounting
for observed yield increases.

Looking further back in time, Figure [1| shows that since 1940 corn yields have increased
by 500% and soybeans and winter wheat yields by 200%, while ambient CO, levels have
increased by about 100 ppm. We can conduct a back-of-the-envelope counterfactual in
which we hold CO, constant at 1940 levels and assume the CO, fertilization effect that we
estimated using 2015-2021 data can be applied throughout 1940-2021. Admittedly, this is
a strong assumption, as previous studies mentioned in Section [l have shown that the CO,
fertilization effect might diminish under stressors, e.g., nutrient or water deficiencies. If
crops suffered from those other limiting factors, the COs fertilization effect might have been
weaker. And the climate in recent decades would not be the same if CO, had remained at
1940 levels. Nevertheless, we find it useful to run this thought experiment to highlight the
possible magnitude of the CO, fertilization effect. Figure |4 shows the results of this thought
experiment, implying that CO, fertilization may be responsible for the vast majority of past
productivity growth, and that in the absence of CO, fertilization, yields may have otherwise
started to plateau or even decline in recent decades.

How could this have occurred? One place to draw insights is the period before 1940, when
crop yields were largely stagnant during a backdrop of rapid industrialization and economic
growth. Olmstead and Rhode (2002) argue that from 1800 to 1940, “wheat production
witnessed wholesale changes in varieties and cultural practices...without these changes, vast
expanses of the wheat belt could not have sustained commercial production and yields ev-
erywhere would have plummeted due to the increasing severity of insects, diseases, and
weeds.” What if this same dynamic persisted after 1940 in which agricultural innovation
served largely to protect crops against loss rather than increase yields? One third of all crop
seed patents are related to crop pests or pathogens (Moscona and Sastry 2022), and many

agricultural technologies are focused on crop resilience to extreme weather (e.g., flood and
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drought tolerance). In addition, only a small share of yield gains since 2005 can be attributed
to genetic improvements (Rizzo, Monzon, Tenorio, Howard, Cassman, and Grassini 2022).
Taken together, if CO, had stayed static, yields could have conceivably stayed flat or only
grown modestly over time—especially given that extreme weather and pest pressures have
increased with globalization and climate change (Bebber, Holmes, and Gurr 2014, Deutsch,
Tewksbury, Tigchelaar, Battisti, Merrill, Huey, and Naylor 2018).

Notwithstanding these explanatory factors, how do these results square with existing
COg fertilization estimates? Most FACE experiments raise CO, levels by 190 to 200 ppm
over a 350 ppm baseline, on average, to which yield responses averaged 18-19% (Kimball
2016, Ainsworth and Long 2021), or 0.1% per ppm. Our estimates of 0.4 to 1% per ppm
are thus 4 to 10 times larger. However, the average effect conceals significant variation
across crops, location, and growing conditions. A FACE study of dryland wheat in Australia
showed that a 180 ppm increase in CO, was associated with yield increases of 24% and 53%
in two sites, with some yield responses reaching 79% (Fitzgerald et al. 2016). The latter
estimate, equivalent to 0.44% per ppm, is closer to what we find. Similarly, under varying
environmental conditions yield responses above 35% have been observed for corn, rice, cotton,
as well as various leguminous and root crops (Kimball 2016, Ainsworth and Long 2021).
Given the range in FACE results and the complexities of environmental interactions, it is
difficult to benchmark our results.

It is also likely that FACE experiments underestimate COs responses due to measurement
error related to the difficulty of maintaining an elevated gas concentration in an open space.
FACE experiments regulate CO5 through a series of pipes in the field that inject the gas at
high velocity based on sensor feedback. CO;y concentrations in FACE experiments fluctuate
widely due to air turbulence, varying 10 times more than what plants experience under
natural conditions (Kimball 2016, Allen et al. 2020). When elevated COs is supplied in cycles
or pulses, crop responses are lower than if the CO, is supplied more steadily (Bunce 2012)F_U]
Just as CO, levels can be better controlled in chamber studies than FACE experiments, our
study’s smaller absolute variation in ambient COy would imply less fluctuation as well. A
recent review of FACE experiments by USDA researchers found that they underestimate
yield responses by a factor of 1.5 (Allen et al. 2020) due to COy fluctuations. With this
adjustment, our estimates become more even more reasonable.

It is also worth noting that there are only two long-standing FACE experiments in the US

10Short-term fluctuations in CO; can affect photosynthetic activity in part because leaves have little
storage capacity for gaseous COg and the half-life of CO2 in the gas space is short, e.g., 0.20 seconds for
wheat (Hendrey, Long, McKee, and Baker 1997).
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that focus on agriculture: Arizona FACE in Maricopa, AZ, and SOYFACE at the University
of Mlinois in Champaign, IL (Ainsworth and Long 2021). Other FACE experiments study
non-cropland ecosystems like forests, grasslands, and tundra, as well as crops in other coun-
tries. Only SOYFACE in Illinois has the potential to approximate agricultural conditions in
the Midwest, where most crop production occurs in the US—though SOYFACE’s primary
focus on soybeans limits what can be said about other crops. Moreover, SOYFACE consists
of 16 octagonal experimental sites that are each 20m wide (283m?), covering about 4,500m?
in total, or slightly more than one acre. For comparison, the average farm in the US is 445
acres (USDA ERS), which raises questions about how generalizable the results are for the
Midwest—especially considering the large variation in crop yields across counties and even
within fields (Lobell and Azzari 2017).

Therefore, it is possible that FACE experiments do not reflect the growing conditions
and farming practices of the major growing regions. Given the well-documented interactions
between CO, and environmental conditionsE-], CO,, fertilization effects could vary between
FACE experiments and commercial agricultural operations in response to differing fertiliza-
tion and input regimes, soil and water management practices, and local air pollution and
climate anomalies across regions—as well as conditions that vary over time. Our experimen-
tal design utilizing OCO-2 satellite measures of ambient CO, allows us to account for this
variation at a larger scale and across multiple years of observations.

Nevertheless, we offer another potential explanation for why our CO, fertilization esti-
mates are higher than what’s generally found in the literature. First, our study looks only at
small increases in CO,, and it may be inappropriate to extrapolate out fertilization effects
which may diminish at higher CO, levels. As noted, most studies (including FACE, open
top chamber, and greenhouse experiments) involve a large increase in COs levels by 200 ppm
or more over ambient levels. In contrast, our paper relies on variation in the range of 15
ppm during the OCO-2 timeline from 2015 to 2021. Such marginal increases could produce
relatively higher fertilization effects given the diminishing photosynthetic response curve of
plants to elevated CO,. The rate of COs assimilation in C4 plants, for example, is nearing
saturation at current global COy concentrations (Lambers and Oliveira 2019). Our results
may reflect higher yield responses around current ambient COs levels that occur at a steeper

part of the photosynthetic response curve. This same dynamic could explain part of the

UTncluding nutrient availability (Kimball et al. 2001, Hungate et al. 2003, Reich et al. 2006, Ziska and
Bunce 2007), water availability (Ottman et al. 2001, Leakey et al. 2006, Keenan et al. 2013, Morgan et al.
2011, Zheng et al. 2020, Gray et al. 2016), and combined nutrient-water-COs interactions (Markelz, Strellner,
and Leakey 2011)
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observed decline in the global carbon fertilization effect (Wang et al. 2020).

But more generally, a strong positive relationship between CO5 and yields should not be
inherently surprising. COs is a purchased input in many agricultural settings. As mentioned
earlier, the gas has long been pumped into greenhouses to spur photosynthesis and increase
the yield of horticultural crops. Optimal CO5 concentrations of 900 ppm have been suggested,
which is over twice current ambient levels (Mortensen 1987).

An alternative way of contextualizing our results involves looking at trends in non-
cropland vegetation near to the US breadbasket where our analysis is focused. As mentioned
earlier, studies have documented a global greening trend associated with CO, fertilization
(Zhu et al. 2016). In a similar vein, Figure analyzes trends in NDVI, a measure of veg-
etative density, over 32 years from 1982 to 2013 using AVHRR satellite data. We find that
NVDI increases 0.48% per year across the entire US, on average. Focusing just on forested
land, which is still subject to CO, fertilization but far less actively managed than cropland,
NVDI growth is 0.64% per year.H. We can look to isolated and/or protected forests like the
Adirondacks or the Ozarks to further limit ourselves to locations untouched by agricultural
innovationﬁ. The bottom panel shows that several of these locations experienced an even
higher greening trend, closer to 1% per year. While vegetation indices like NDVI are not
directly comparable to crop yields, this analysis implies that CO, fertilization likely played
a material role in greening the forestland that is proximate to US croplands—in such a way
that cannot be attributed technology-driven productivity drivers—by an order of magnitude

similar to what we find in managed croplands.

6 Conclusion

We find a significant and robust CO, fertilization effect by linking OCO-2 satellite-measured
COs fluctuations to yield fluctuations of corn, soybeans, and winter wheat from 2015 to 2021.
Our study spans more than half of the commercially-farmed area of these crops in the US
and offers a test of whether the fertilization effects found in controlled experiments can be
verified under real-world growing conditions. While panel models linking weather and yield
anomalies have shown the possible detrimental effect of extreme heat on yield, the same setup

can be used to show that localized CO5 anomalies drive significant yield changes—outcomes

12The higher forestland average aligns with FACE experiments which find that trees are more responsive
than herbaceous species like row crops to elevated COg (Ainsworth and Long 2005)

13The selected forests span a range of biomes and age classes to address concerns that forest growth and
succession dynamics are driving these trends
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also reflected when utilizing alternate empirical approaches including a wind instrument and
spatial first differences across neighboring counties. Our results suggest that a significant
proportion of observed yield gains for corn, soybeans, and winter wheat since 1940 may be
attributable to increases in COs, an important driver of agricultural productivity growth.

Our paper shows how satellite-based measures of CO5 can be useful in complementing
FACE field experiments, especially in the context of ensuring the external validity of esti-
mates of the effect of COy on agriculture and ecosystem functioning at a large scale. The
approach can be extended to study real-world crop responses globally. Our results also merit
consideration in the context of climate models used to estimate climate change impacts, but
we caution against extrapolating the fertilization effect far into the future, which requires
further assumptions about the functional form and the extent there are decreasing returns
to further COy increases, as well as uncertainty about future environmental interactions.

Relatedly, our analysis is focused on the US, and it is possible that fertilization effects
will differ greatly across countries based on the prevailing crops and environmental condi-
tions (McGrath and Lobell 2013), especially given that climate change alters the coupling of
temperature, soil moisture and precipitation which determine crop yields (Proctor, Rigden,
Chan, and Huybers 2022). Under future climate change, such heterogeneity could exacer-
bate spatial inequalities (Cruz Alvarez and Rossi-Hansberg 2021) and alter the comparative
advantage of different regions (Costinot et al. 2014, Nath 2020) with large potential welfare
effects that are worth investigating. While recent research has shown that mechanization
significantly increased productivity and welfare (Caunedo and Kala 2022), as do property
rights (Wiipper, Schlenker, Jain, Wang, and Finger 2022), we argue that environmental
factors like CO5 also play a crucial role.

We reiterate that climate change will likely have a negative impact on agriculture in aggre-
gate, especially in regions exposed to extreme heat, and that COs-driven yield increases may
be offset by effects on food nutrition and quality (Loladze 2002, Taub and Allen 2008, Myers
et al. 2014). Nevertheless, this paper demonstrates that marginal increases in CO5 can also
have a strong countervailing fertilization effect—and that such effects may account for a
material proportion of historical productivity improvements in US agriculture with impli-
cations for climate modelling and the literature on agricultural productivity and structural

transformation.
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Figure 1: Annual Yields and CO,
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Notes: Figure displays the evolution of yearly aggregate US yields (left axis) and annual CO5 averages (right
axis). Each time series is normalized relative to 1940 (value = 100). Aggregate US corn yields are shown
in dark green from 1866-2021, aggregate US soybeans yields in green from 1924-2021, and aggregate US
winter wheat yields in light green from 1909-2021, the years for which the data is reported by the National
Agricultural Statistics Service (NASS) by USDA. The annual average CO4 level is added in blue from NOAA.
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Figure 3: Histogram of Hours a County is Upwind
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Notes: Figure displays histograms of the number of hours the county used in the IV is upwind (out of the
possible 4392 hours in April-September of a year). Data are shown for counties east of the 100° meridian
for corn and soybeans (shown in green in Figure , and east of the Rocky Mountains for winter wheat
(shown in green and blue in Figure .
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Figure 5: Sensitivity to Functional Form
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Notes: Figure presents sensitivity check to what functional form is chosen. Graphs shows the effect of a one
ppm increase in COy on aggregate yields in percent as well as the 90% confidence bands. Black lines show
the baseline results from columuns (c) in Table[2|for the panel regression, Table|3|for the wind IV, and Table
for the spatial first difference that regress log yields on CO4 levels (Log-Lin model). Blue lines regress yields
on CO2 (Lin-Lin model), red lines regress log yields on log COy (Log-Log model), while green lines regress
yields on log COs (Lin-Log model). All regressions include county fixed effects as well as county-specific
time trends and control for four weather and five criteria air pollution variables. Errors are clustered at the

state level.
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Figure 6: Sensitivity to Included Time Trend
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Notes: Figure presents sensitivity check to what time controls are included. Graphs shows the effect of a
one ppm increase in CO2 on aggregate yields in percent as well as the 90% confidence bands. Black lines
show the baseline results from columns (c) in Table 2| for the panel regression, Table |3|for the wind IV, and
Table [ for the spatial first difference that all included county-specific time trends. Blue lines instead include
state-specific time trends, red lines include a common time-trend, and green lines include no time trend at
all. All regressions include county fixed effects and control for four weather and five criteria air pollution

variables. Errors are clustered at the state level.
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Figure 7: Sensitivity to Geographic Subset
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Notes: Figure presents sensitivity check to what what geographic subset is included in the analysis. Graphs
shows the effect of a one ppm increase in CO2 on aggregate yields in percent as well as the 90% confidence
bands. Green lines show the results when counties east of the 100 meridian are used in the analysis, while
blue lines show the results when counties east of the Rocky Mountains are used, and red lines show the
results when all counties of the contiguous US are used. The subsets are shown in Figure [A2) and exclude
Florida. All regressions include county fixed effects as well as county-specific time trends and control for

four weather and five criteria air pollution variables. Errors are clustered at the state level.
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Table 1: Summary Statistics of IV Setup

Corn Soybeans ~ Winter wheat
Panel A: All counties

Hours Upwind

Mean 1482 1461 1604

Range [722,3511]  [722,2970]  [722,3511]

Standard deviation (1482) (1461) (1604)
County Upwind

Always the same 738 694 397

One of two counties 202 209 78

One of three or more counties 21 17 6

Panel B: At least 1000 hours
Hours Upwind

Mean 1527 1503 1658

Range [1000,3511]  [1000,2970] [1001,3511]

Standard deviation (1527) (1503) (1658)
County Upwind

Always the same 721 683 379

One of two counties 169 172 67

One of three or more counties 6 5 1

Notes: Tables provides summary statistics for the IV setup that is outlined in Figure[2] The first three rows
of each panel give the number of hours a county is upwind in the IV setup (The corresponding histogram
is given in Figure . The last three rows in each panel display how much variation there is year-to-year in
which county is upwind. For the majority of counties, the upwind county is the same in every year. Panel A
includes all counties using the most frequent upwind neighbor irrespective of how many hours it is upwind,

while panel B forces the upwind county to be at least 1000 hours upwind in April-September.
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A Additional Analysis Using OCQO-2 Data

Figure Al: Seasonality in CO,

2
1

1
1

Seasonality in CO2 (ppm)
-1 0
1 1

-2
|

+—
0
—
E
<Ctl:
T

|
1 32 60 91 121 152 182 213 244 274 305 335 365
Day of Year

Notes: Chart displays the seasonality in COs. To make readings comparable, they are seasonality-adjusted
to July 1st (red dashed line) of that year, i.e., a reading on a particular day is corrected by the difference
between the July 1st value of the above seasonality curve and the value of the seasonality curve on the day
of the measurement. The seasonality curve are estimated using all OCO2 readings without quality flags over
the contiguous US using a 4*"-order Chebyschev polynomial in the day of year as well as a linear time trend.
Since years have different numbers of days, we normalize January 1st to -1 and December 31st to 1. The
seasonality regression is constrained so the value at the end of the year (December 31st) equals the value at
the beginning of the year (January 1st). The main growing season for corn and soybeans (April-September)

is added as grey dashed lines.
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Figure A2: Number of Observations per County in 2015-2021
Panel A: Corn
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Notes: Figure displays the number of observations per county in the date set, i.e., where yield, weather,
criteria air pollution, as well as CO5 data from OCO-2 are available over our sample period 2015-2021.
We split the analysis into three geographic subsets: east of the 100° meridian excluding Florida (Schlenker
and Roberts 2009) shown in shades of green, inter-mountain states (Montana, Wyoming, Colorado, and
New Mexico) shown in blue, and western states (California, Arizona, Utah, Nevada, Oregon, Idaho, and
Washington) shown in red. Since our specification includes county fixed effects and county-specific time

trends, we require at least 3 observation to be included in the dataset.
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Figure A3: Spatial Variation in CO, Anomalies within a Growing Season, 2019
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Notes: Figure displays CO5 anomalies relative to the mean value on the first day of each month during the
growing season in 2019 using OCO-2’s GEOS Level 3 daily modelled product (Weir and Ott 2022). Our
analysis uses the raw satellite measurements, but we are showing here the spatial extend of the anomalies

in an interpolated product.
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Figure A4: Identifying Variation Used in Analysis - Residuals From Trend
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Notes: Figure displays the variation used in the statistical analysis. We include county-fixed effects and
county-specific time trends. This is equivalent to fitting a time trend (shown as dashed lines) to both
yields and CO5 readings for each county and then looking at the residuals. The above figure shows this
for Macoupin county in Illinois (FIPS code 17117), which has Madison County, IL as most frequent upwind
county (eastern-edge of Saint Louis metropolitan area, where COy anomalies should mainly be driven by
non-agricultural factors). Corn anomalies are shown as solid red lines, while CO2 anomalies are shown as
blue lines. When COs positively (negatively) deviates from the trend, so do yields. The correlation of the
residuals is 0.57. Figure shows the cross-plot for all observations (counties and years) after additionally

removing the effect of weather and criteria air pollutants.
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B Replication using CarbonTracker Data on CO,

Our main paper relies on direct satellite readings from OCO-2 Level 2 product, which are
available for the years 2015-2021. In this section, we replicate our analyses using modelled
data from NOAA’s CarbonTracker, which provides spatially-resolved estimates of CO5 from
2000 to 2018 derived from measurements of air samples collected at 460 sites around the
world by 55 laboratories. Unconnected to OCO-2, CarbonTracker involves an inverse model
of atmospheric CO, that adjusts surface-level CO5 uptake and releases to align with obser-
vational constraints. We use use product release CT2019B (Jacobson et al. 2020) and the
level 1 estimates which correspond to 25m above the Earth’s surface.

CarbonTracker has an advantage of explicitly modelling surface-level CO,, while OCO-2
readings are air column-averaged. Figure provides a comparison of COy anomalies for
the counties and years (2015-2018) where the two dataset overlap where we find that they
have comparable standard deviations. If the satellite-based product of the entire column had
a lower variance, it would inflate our estimate of the CO, fertilization effect as ground-level
varies by more than what is measured in the column. However, this is not the case.

OCO-2 are raw measurements from a satellite, while CarbonTracker is a reanalysis prod-
uct that might suffer from promulgation of interpolation errors and whose modelling as-
sumptions may cause endogeneity concerns, especially for our IV regression as the under-
lying spatial interpolation in CarbonTracker is including neighboring counties, invalidating
the concept of using upwind neighbors (which are themselves a smoothed estimates of sur-
rounding stations. For that reason we prefer the raw satellite measurements.

Like with OCO-2, we seasonally adjust CO, levels from CarbonTracker to account for
annual patterns in which ambient concentrations decrease in the spring and summer when
plants are actively photosynthesizing and increase in the fall and winter when plants are
respiring on net. To identify CO, anomalies relative to this seasonality pattern, we estimate
the average seasonality over the contiguous US with a 4*"-order Chebychev Polynomial over
the year which we normalize to [-1,1] by transforming January 1st to equal -1 and December
31st to equal 1 with leap years having an additional day as well. We restrict the seasonality
so the value on January 1 (time -1) equals the value on December 31 (time 1).

The seasonally-adjusted CO4 values are averaged during the growing season from April to
September. We take the distance-weighted average of the surrounding four CarbonTracker
grids for each PRISM grid to derive the PRISM-grid level CO, exposure, which is then
aggregated to the county level using cropland weights from the Cropland Data Layer, where
we aggregate the 30m-resolution from USDA’s Cropland Data Layer to the PRISM grid.
This gives county-level CO, estimates.
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Figure B1: CarbonTracker: Number of Observations per County in 2000-2018
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Notes: Figure displays the number of observations per county in the date set, i.e., where yield, weather,
criteria air pollution, as well as CO5 data from CarbonTracker are available over our sample period 2000-
2018. We split the analysis into three geographic subsets: east of the 100° meridian excluding Florida
(Schlenker and Roberts 2009) shown in shades of green, Western United States (California, Arizona, Utah,
Nevada, Oregon, Idaho, and Washington) shown in red, and the remaining in-between counties shown in
blue. Since our specification includes county fixed effects and county-specific time trends, we require at least
3 observation to be included in the dataset. X



Figure B2: Crossplots of COs Anomalies in CarbonTracker and OCO-2 (2015-2018)
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Notes: Figure displays the cross-plot of CO5 anomalies in CarbonTracker and OCO-2 satellite readings. The
two data sources only overlap for four years (2015-2018). We include county-year observations east of the
100° meridian for corn and soybeans and east of the Rocky Mountains for wheat that have at least three
observations for both CO5 measures so we can fit county fixed effects and county-specific time trends. The
dashed line is the 45-degree line. The standard deviation of the anomalies is given in each panel.
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Figure B4: CarbonTracker: Sensitivity to Functional Form
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Notes: Figure presents sensitivity check to what functional form is chosen. Graphs shows the effect of a one
ppm increase in COy on aggregate yields in percent as well as the 90% confidence bands. Black lines show
the baseline results from columns (c) in Table for the panel regression, Table for the wind IV, and
Table for the spatial first difference that regress log yields on COg levels (Log-Lin model). Blue lines
instead regress yields on CO4 (Lin-Lin model), red lines regress log yields on log CO2 (Log-Log model), while
green lines regress yields on log COy (Lin-Log model). All regressions include county fixed effects as well as
county-specific time trends and control for four weather and five criteria air pollution variables. Errors are

clustered at the state level.
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Figure B5: CarbonTracker: Sensitivity to Included Time Trend

Time Trend: — County — State — Common — None
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Notes: Figure presents sensitivity check to what time controls are included. Graphs shows the effect of a
one ppm increase in CO2 on aggregate yields in percent as well as the 90% confidence bands. Black lines
show the baseline results from columns (c) in Table for the panel regression, Table for the wind IV,
and Table [B3] for the spatial first difference that all included county-specific time trends. Blue lines instead
include state-specific time trends, red lines include a common time-trend, and green lines include no trend
at all. All regressions include county fixed effects and control for four weather and five criteria air pollution

variables. Errors are clustered at the state level.

Xiv



Figure B6: CarbonTracker: Sensitivity to Geographic Subset

Subset: — Eastof 100 — East of Rockies — Contiguous US
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Notes: Figure presents sensitivity check to what what geographic subset is included in the analysis. Graphs
shows the effect of a one ppm increase in CO2 on aggregate yields in percent as well as the 90% confidence
bands. Green lines show the results when counties east of the 100 meridian are used in the analysis, while
blue lines show the results when counties east of the Rocky Mountains are used, and red lines show the results
when counties when all counties of the contiguous US are used. The subsets are shown in Figure All
regressions include county fixed effects and control for four weather and five criteria air pollution variables.

Errors are clustered at the state level.
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C Robustness Check using NDVI data on Plant Growth

Figure C1: Annual Trends in NDVI Vegetation from the AVHRR Satellite, 1982-2013
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Notes: Figure displays 30m pixel-level linear trends of log NDVI values by year for the six months of the
growing season from April to September over the 31 years from 1982 to 2013 from the AVHRR satellite
(Vermote et al. 2014). Map visualization and calculations produced using Google Earth Engine.
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