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Abstract

Unchecked climate change will cause precipitation volatility to increase around the

world, leading to economic damages in the face of adjustment costs. We estimate

these damages for construction, an economically important, climate exposed industry.

Empirically, employment falls in response to forecasted rainfall and more so as the

forecast horizon increases. This pattern allows us to identify labor adjustment costs.

Calibrating a multi-sector model of local labor markets to match our estimates, we find

that a typical rainfall event leads to an 11% loss in construction sector productivity,

which firms anticipate and adapt to through costly adjustment of their labor force.

Higher adjustment costs reduce this adaptation, leading to greater damage from bad

weather realizations. These results imply that firms value forecasts and would be

willing to pay 3.6 months of typical profits per year to learn about rainfall 5 months

sooner. (JEL:D83,J21,Q51)
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1 Introduction

Beyond simply warming the earth, climate change will have profound e↵ects on the

complete distribution of weather. While much of the literature has examined the economic

consequences of changes in average weather (including rising temperatures and sea levels), in

this paper we consider economic e↵ects of changes in the volatility of weather. In particular,

we focus on productivity interruptions caused by rainfall, show that firms incur serious costs

from the types of rainfall shocks that climate change makes more common, and study the

extent to which scientific advances in forecasting and attentive planning by managers can

o↵set these costs.

We focus on the construction sector, a large and economically important industry that is

highly exposed to the climate. Construction constitutes a five times larger share of GDP in

the U.S. than the more widely studied forestry, fishing, and agriculture sector (BEA, 2019).1

Beyond simply its size, construction is central in input-output networks, supplying essential

inputs to virtually all other industries and using materials produced by many other sectors.

At the same time, weather directly impacts construction. Data from the American Time

Use Survey shows that only agricultural workers spend more time outside than construction

workers. Combined with the importance of construction to the overall economy, month-to-

month disruptions due to weather can be an important source of economic costs.

Despite its economic importance and potential climate vulnerability, construction has not

been the focus of research in the climate economics literature.2 This literature has focused

either on the costs associated with equilibrium consequences of gradual changes in average

temperature and precipitation or on the acute e↵ects of realized weather shocks, both of

which have first order e↵ects on sectors like agriculture and energy.3 In contrast, we focus

on the costs regularly paid due to ex ante adjustment to weather events, and we use evidence

from the construction sector to infer the increase in these costs that will occur after climate

change has shifted weather patterns.

Specifically, climate change will increase rainfall volatility as warmer air masses hold

and then suddenly release larger volumes of water (Pendergrass et al., 2017). This e↵ect

1This multiple is not an outlier. According to UNECE (2019), the construction industry is 9 times
larger than agriculture in the U.K. and 6 times larger in Germany. Even in more heavily agriculturally
reliant countries like Spain and Italy, construction is more than twice the size of agriculture in terms of its
contribution to GDP.

2For the few studies that do look at construction, the emphasis is often on potential job growth as
other sectors comply with climate policy or adapt to a changing climate. See Fankhaeser et al. (2008), for
example. Some research studies sectoral e↵ects of weather and climate change. Gra↵ Zivin and Neidell (2014)
estimate the e↵ects of temperature on intensive-margin labor supply in construction and other climate-
exposed industries. Jain et al. (2020) investigate the e↵ects of temperature on economic production for
multiple sectors in India including construction.

3Zhang et al. (2017) points out that a wide range of climate variables—not just temperature and
precipitation—will likely have important e↵ects on agriculture.
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is often summarized by the saying that climate change will cause “wet places to get wetter

and dry places to get drier.” Climate projections also show that within locations, the time

series volatility will increase (O’Neill et al., 2016).4 Consistent with a large body of evidence

on the costs of volatility in conditions like product demand or supply chains, we show that

productivity volatility caused by rainfall shocks is an important but neglected cost of climate

change.5

We empirically identify adjustment costs in the construction industry by estimating

employment responses to more or less forecastable rainfall. Our primary focus is on how

medium-range forecasts of weather conditions in the coming six months a↵ect the dynam-

ics of employment responses to rainfall. We combine data on construction employment in

commuting zones across the United States over the last three decades with: i) information

on monthly rainfall and ii) climate variation that can be used to forecast rainfall month-to-

month. These data allow us to estimate employment responses to exogenous news shocks

about future rainfall. Our identification strategy exploits rich variation in weather patterns

across the U.S. to identify separate employment responses to forecasts available at di↵erent

horizons (ranging from one month to six months in advance). To help validate our empirical

approach, we provide extensive discussion of the ways in which rainfall is a serious and well-

recognized challenge in construction sector, construction firms actively monitor the types

of medium-range forecasts we rely on for identification, and commonly used contracts shift

weather risk onto construction firms.

We find that the elasticity of construction employment with respect to rainfall is five times

larger when that rainfall could be predicted 6 months in advance compared to when it could

only be predicted 1 month in advance. In other words, an identical rainfall “shock” generates

a significantly larger employment response when it is predictable further in advance. This

empirical reduced form finding cannot be reconciled with simple, frictionless, static models of

labor input, which is important partly because these models remain the norm for analyzing

economic e↵ects of climate change.

To interpret our reduced form e↵ects, we model a multi-sector, open-economy with both

demand-side and supply-side adjustment costs. We calibrate our model to match the em-

ployment dynamics that we estimate. Unlike the benchmark models widely used for climate

economics, our model creates a channel by which volatile productivity can harm firms (be-

cause they wish to adjust their input demands but must face costs of doing so). We use this

model to understand how productivity and output are a↵ected by rainfall shocks, how the

4Over the last 30 years, month-to-month variance in rainfall has increased by about 5% in the U.S. CMIP6
projections indicate that variance will go up another 10 to 15% by the end of the century under unmitigated
warming.

5Fishman (2016), in a rare evaluation of the e↵ects of rainfall variability, finds that climate-change-driven
increases in rainfall volatility (leading to a higher probability of dry days) will o↵set the benefit of increasing
total rainfall.
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burden of these shocks is shared between workers and firms, and the extent to which firms

are able to adjust employment to avoid the costs of the shock. Throughout the counterfac-

tuals that we present, we pay special attention to how our results would change if firm-side

adjustment costs fall (for instance, because firms write more flexible employment contracts

that allow greater responsiveness to shocks) or the forecast horizon for the rainfall fluctuation

increases (for instance, because managers increasingly use better scientific models).

In our benchmark calibration, we find that rainfall shocks reduce firm profits. However,

this e↵ect varies by forecast horizon. A firm that is able to forecast the shock six months in

advance can o↵set 80% of the profit loss that would occur if the it was only able to forecast

the shock one month in advance. Moreover, if firms face su�ciently low adjustment costs,

then they can actually benefit from the rainfall shock because the transitory productivity

decline leads to a pent-up demand boom after the rain has passed. At the same time, these

features create a real policy trade-o↵. Firms largely o↵set the e↵ects of the productivity

shock by passing the costs onto workers. Therefore, just as longer forecast horizons and

more flexible adjustment make firms better o↵, they leave workers worse o↵.

The firms do pay a cost to engage in this adaptation, however. There is a direct cost

stemming from changes to the labor force and the adjustment costs we estimate. These

costs are always weakly positive, and they occur whether the rainfall shocks help or hurt

productivity. The level of adjustment cost also determines how willing the firm is to engage

in ex ante labor adjustment in order to reduce damages when the shock arrives. In our

baseline calibration, we show that adjustment costs are high enough to lead to non-trivial

adaptation costs for firms, but low enough to make firms want to engage in substantial

adjustment—particularly if they have enough advance notice before the shock arrives. The

net benefit of forecasts is large enough that over the course of a year, firms would be willing

to pay more than three months of typical profits to replace 1-month ahead forecasts with

6-month ahead forecasts.

If rainfall gets more volatile in the future, as climate projections currently indicate,

then the adjustment costs we estimate will translate into extra damage for the economy.

Conditional on a rainfall shock occurring, higher volatility means that a shock will have a

higher probability of being larger in magnitude. In the absence of adaptation, larger shocks

will cause bigger losses in productivity and profit for firms. Our estimates, however, show

that firms can o↵set some of those losses by planning further ahead. Given the projected

10 to 15% increase in rainfall volatility by the end of the century, a firm would require up

to a half-month further ahead forecast to be left no worse o↵. This might seem like a short

increase in horizon, but due to non-linearity in weather systems, the di�culty of skillfully

forecasting at longer horizons rises exponentially.

Thus, these results might serve as a warning about future climate damages while also
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pointing to two avenues firms can explore to reduce their risks. Construction managers know

that their bottom line is a↵ected by weather and have substantial experience planning for

adverse weather (Trauner et al., 2018). If managers can further improve the quality and

accuracy of their plans, then they can reduce the losses they will take if bad weather arrives.

In-house project managers, weather risk consulting firms, and professional forecasters might

all be able to aid in this e↵ort. Improvements in forecasting at the horizons we study here,

however, are challenging (Toth and Buizza, 2019). And as the results on workers show,

forecast improvements come with the potential for increasing inequity in the incidence of

climate damages. Second, managers can potentially invest in ways that will reduce the ad-

justment costs they face. The construction industry already routinely uses seasonal contracts

to manage the workforce during the winter (Krane and Wascher, 1999, Organization, 2016).

A contract for shorter-run weather shocks that resembles these seasonal contracts could, for

instance, reduce the costs the firm needs to pay to build back up the labor force after the

shock dissipates.

Methodologically, our paper provides a unique empirical strategy to identify labor ad-

justment costs and to draw the link between those costs and climate change. There is a

nascent literature focusing on the e↵ects of climate change on labor markets, primarily in

agriculture (for instance, see Rosenzweig and Udry (2014), Colmer (2020)). The current

paper shows that climate change is important for extensive margin labor adjustment in con-

struction as well. E↵ects in construction might be particularly relevant because construction

services—like seawalls, retrofits of buildings to improve HVAC systems, accommodation of

changing patterns of urbanization—will be important components of adaptation if climate

change continues (Fried, 2019).

At the same time, our results show that adjustment costs in the construction sector

mean that an important part of the e↵ect of climate change on the industry happen before

weather realizations occur. Failing to take this forward-looking component into account

can bias estimates of the e↵ect of climate change (Shrader, 2020, Lemoine, 2018). The

methodology from this paper is directly portable to other locations around the world where

monthly or seasonal forecasts are available (organizations like NOAA and the ECMWF now

routinely provide such forecasts globally (Scher and Messori, 2019)).

Finally, our paper investigates a novel dimension of the damage from climate change. In

this paper, when we say “adjustment costs,” we are referring to costs routinely paid, day to

day, that arise because of a widening of the weather distribution. Importantly, these are not

adjustment costs paid when transitioning between equilibria. Instead, they are costs that are

already being paid in steady state, every time rain arrives. Under projected climate change,

we will simply be paying them more often. These costs are missing from existing analyses of

the damages of climate change. Related to this point, as an added empirical contribution of
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our paper, the short-run nature of these costs mean that existing data speaks more directly

to them than to costs arising from di↵erences in long-run equilibria.

2 Related literature and background

2.1 Previous research

Volatility is central to business decisions. Volatility in either productivity or product de-

mand has been shown to explain di↵erences in investment behavior (Kellogg, 2014), market

size and competition (Collard-Wexler, 2013), employment contracts and outsourcing deci-

sions (Abraham and Taylor, 1996), and the “misallocation” of factors of production (Asker,

Collard-Wexler, and De Loecker, 2014).6

However, beyond its direct implications for firms’ operational decisions, the importance

of volatility is informative about the fundamental structure of the labor market. Models

with a frictionless, perfectly competitive labor market (still the foundations of many policy

analyses, including climate models) leave no room for volatility. If firms can freely adjust

their labor force, as these models assume, then employment and profits depend only on

the actual conditions firms are facing at any given moment. Changes in those conditions,

regardless of their size, frequency, or predictability, are not important because firms can

costlessly and immediately re-optimize.

It has long been understood that this is not realistic. Firms face dozens of complex costs

in changing their labor pool.7 The private sector has understood this longer than academic

economists have. In his seminal 1962 paper, Walter Oi (1962) argues that non-negligible

hiring and training costs mean that part of a firm’s labor is a fixed cost. Oi rests this

argument largely on an internal study done a decade earlier by the International Harvester

Company (IHC) called “The Costs of Labor Turnover” (1951). There, IHC economists

estimate that the average cost of training a new worker was $238, or about 11% of median

annual earnings at the time ($2,200). These costs have remained remarkably persistent.

Representative establishment surveys conducted today estimate that the costs of replacing

an employee are 9% of average annual earnings (Dube, Freeman, and Reich, 2010).

6The bulk of empirical studies of productivity, including those focused on volatility, treat it as a residual
(i.e., excess production after accounting for inputs). The estimation challenges in this approach are substan-
tial and well-understood (Ackerberg, Caves, and Frazer, 2015). A contribution of our paper, made possible
by our context, is that we study productivity shocks using a direct measure of productivity: rainfall, which
has first order e↵ects on the ability to perform construction, as discussed below.

7Our focus is on the e↵ects of increasing the volatility of productivity fluctuations, since this is directly
linked to climate change. A separate but related issue is the e↵ects of uncertainty about future productivity
fluctuations. As Bloom (2009) points out, uncertainty about future productivity also has no e↵ect in a
frictionless model, but in a model with realistically calibrated adjustment costs, can have first order e↵ects
on aggregate employment and output.
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Of course, the costs facing a firm wishing to adjust its labor pool extend beyond recruiting

and training workers. A large literature on wrongful discharge regulations shows that these

regulations impose firing costs. By making it more di�cult for firms to dismiss workers

when they need to, firing costs have been shown to reduce firms’ hiring, turnover, ability to

respond to shocks, and ultimately their financial value (see Serfling (2016) for a review).8

Independent of these regulations, all US firms’ face direct financial costs of layo↵s arising

from the financing rules of the Unemployment Insurance (UI) system (Ratner, 2013).9

More generally, a range of diverse evidence—including the costs firms incur when they

suddenly and unexpectedly lose an employee (Ginja, Karimi, and Xiao, 2020, Isen, 2013,

Jäger and Heining, 2019), the value to firms of hiring through employee referral networks

(Burks et al., 2015), and employers’ learning about employee skills over time (Kahn and

Lange, 2014)—suggests that firms cannot easily shrink or grow their workforce without

costs: a firm’s current workers and the potential alternatives “out there” are imperfect

substitutes.10 At a minimum, given incomplete markets and imperfect insurance for risk, a

firm that is likely to suddenly cut its workforce must still compensate its workers (through

higher wages) for accepting this risk, an idea which dates back to Adam Smith (1776).11

Against this backdrop, our core contributions are, first, to estimate the magnitude of

adjustment costs in the construction sector using a novel strategy that exploits variation in

whether and when rainfall-driven productivity fluctuations could have been predicted, and

second, to quantify the consequences of increasing rainfall volatility driven by climate change.

An advantage of our method for estimating adjustment costs is that it comprehensively

includes all types and sources of adjustment costs. Analyses of specific laws (like wrongful

8A paper closely related to ours is Adhvaryu, Chari, and Sharma (2013), who study how agricultural
employment responds to rainfall in India. They focus on di↵erential responses depending on wrongful
discharge laws and their implications for labor regulation. We focus on di↵erential responses depending on
whether and when that rainfall could have been predicted and the implications for rising volatility driven
by climate change.

9While much of the literature emphasizes regulations as the source of frictions and adjustment costs, 19th

century manufacturing wages show evidence of imperfect competition in the labor market and firm-specific
rents, even before labor regulations existed in the U.S. (Naidu and Yuchtman, 2018).

10It has long been understood that one challenge facing firms is screening applicants for quality. There is
growing evidence that non-cognitive skills and traits are becoming increasingly important in the labor market
(Edin et al., 2017), and this matters because it is likely even more di�cult to screen for these skills than for
cognitive or training-based skills. Many of these non-cognitive traits are directly relevant for construction
firms. For instance, construction firms need workers who are reliable and will arrive on time, who can get
along with others in an inherently interactive job, and who respect and value safety practices, all of which
are extremely di�cult to assess during the hiring process. This increases the incentive for construction firms
to keep their workers and the challenges of changing sta�ng levels in response to demand fluctuations.

11“In the greater part of manufactures, a journeyman may be pretty sure of employment almost every day
of the year that he is able to work. A mason or bricklayer, on the contrary, can work neither in hard frost nor
in foul weather, and his employment at all other times depends upon the occasional calls of his customers.
He is liable, in consequence, to be frequently without any [employment]... The high wages of those workmen,
therefore, are not so much the recompence of their skill, as the compensation for the inconstancy of their
employment.”

7



discharge laws (Serfling, 2016) or UI financing (Ratner, 2013)) only capture one specific

source of adjustment costs, and survey-based approaches (like Oi (1962) and Dube et al.

(2010)) can easily miss important types of costs. An advantage of our application to climate

change is that our estimation strategy is explicitly and directly linked to our counterfactual

of interest (month-to-month volatility of rainfall), and outlines clear implications for firms

and policy to respond (improving the ability to forecast future rainfall).

2.2 Industry attention to rainfall and long-range forecasts

The construction industry is a natural and important setting to estimate the e↵ect of

climate volatility—particularly from rain—on employment and productivity. Construction

firms face strong incentives to pay attention to and plan for rain. Rain delays the completion

of construction projects, and the costs of those delays typically fall on the construction

contractor.

Rainfall makes outdoor work more hazardous by reducing visibility and increasing the

risk of slipping or falling. Rain generates mud that can impede access to a work site and

prevent the use of heavy machinery. It also prevents certain types of welding, electrical work,

and cement pouring. Rain can even delay indoor work. For example, heavy rainfall can cause

the water table to rise, delaying basement construction. Finally, construction firms in the

United States are required by the Environmental Protection Agency to control rain-driven

pollution e✏uent from work sites, requiring the diversion of labor and capital to that task

(Environmental Protection Agency, 2009). One recent estimate by Ballesteros-Pérez et al.

(2018) shows that weather variation delays the average construction project by 22%.

Under common contracts, construction firms bear much of the risk for weather-related

delays (Trauner et al., 2018). The American Institute of Architects (AIA) Form A201—a

standard contract between a construction contractor and a site owner that is widely used

in the U.S.—stipulates that the contractor is responsible for any rain delay that could have

been “reasonably anticipated.”12 Even if a delay is caused by potentially unreasonable

weather, the contractor must still bring a claim and show, as a matter of fact,13 that the

weather was more extreme than could have been expected. This finding of fact requires

that the contractor record and pay attention to weather conditions during the construction

project.14 Even if a construction contractor successfully makes a claim for an extension to a

12In the contract, construction firms can attempt to lengthen the contract without incurring cost under
A201 §15.1.6.2, which reads: “If adverse weather conditions are the basis for a Claim for additional time, such
Claim shall be documented by data substantiating that weather conditions were abnormal for the period of
time, could not have been reasonably anticipated, and had an adverse e↵ect on the scheduled construction.”

13A matter of fact is a legal term for an actual occurrence, in contrast to a matter of law which is the
purview of the judge.

14If not otherwise stated by contract, the presumption in the courts is that weather risk falls squarely
on the contractor. Associated Engineers and Contractors v. State, 58 Haw. 322: “Moreover, the risk of
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delayed project, the contractor might simply avoid paying for the delay without gaining any

additional recompense. Moreover, beyond the within-project costs, delays in one project can

have knock-on e↵ects of other projects that make them even more costly.

Given the high cost of weather delays and the contractual need to form “reasonable”

expectations about those delays, construction firms devote substantial resources to plan-

ning for weather. Bids at the beginning of jobs routinely include a monthly breakdown of

expected weather delay days, and the construction project manager is expected to record ac-

tual delays relative to this schedule (Trauner et al., 2018).15 Specialized, proprietary project

management software helps review weather data before and during a project.16

The key implication of all this is that the construction industry pays particular attention

to long-range weather forecasts and the El Niño/Southern Oscillation (ENSO) variation that

we use in our analysis is the most important element of those. ENSO is a coupled oceanic-

atmospheric phenomenon that occurs in the equatorial Pacific Ocean and is a primary driver

of medium term global climate variation (Ropelewski and Halpert, 1987). El Niño events

lead to higher rainfall in most (but not all) of the U.S.17 ENSO events change weather

sometimes for months thereafter, allowing forecasters to make skillful predictions of weather

patterns over monthly, seasonal, and annual horizons. The European Centre for Medium-

Range Weather Forecasts (ECMWF), the premier weather forecasting group in the world,

states that “Long term predictions [extending out to seven months] rely on aspects of Earth

system variability which have long time scales (months to years) and are, to a certain extent,

predictable. The most important of these is the ENSO (El Niño Southern Oscillation) cycle.”

(emphasis ours, ECMWF (2019)). NOAA also issues seasonal weather forecasts for the U.S.,

again relying heavily on predictability coming from ENSO.18

A strong El Niño event in 1982 and 1983 caused substantial rainfall across the U.S.

and, over the next decade, led to increased public awareness of the link between ENSO and

weather conditions.19 The construction industry is well aware of the link between ENSO and

rainfall. Articles in construction trade journals routinely report on the link between ENSO

abnormal weather is commonly held to be assumed by a construction contractor, except where provision
otherwise is made in the contract or the parties are not equal in their knowledge of relevant weather data.
Hardeman-Monier-Hutcherson v. United States, 458 F.2d 1364 (Ct. Cl. 1972).”

15These project managers make up 9% of all employment in the construction industry and hold college
degrees at similar rates to the full US workforce, with engineering degrees being among the most common.

16Some contracts, such as the State of Tennessee RPA January 2002 Std 01252, specifically requires that
the contractor consult National Oceanic and Atmospheric Administration data to determine anticipatable
weather delays.

17ENSO also causes changes in U.S. temperatures, but this e↵ect is generally weaker than the precipitation
e↵ect (Ropelewski and Halpert, 1987, Halpert and Ropelewski, 1992).

18For the latest seasonal forecasts from NOAA, extending out to 12.5 months, see here: https://www.
cpc.ncep.noaa.gov/products/predictions/90day/

19See, for instance, the Washington Post’s history of ENSO reporting by various new agencies (Williams,
2015).
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and U.S. rainfall, including emphasizing the need to prepare for changes in rainfall due to

the climactic variation (Halsey, 2016). In summary, then, the ENSO fluctuations that we

use to generate variation in predictable rainfall are both the major driver of long-run rainfall

forecasts and are a major focus of construction sector project managers.

3 Data

To estimate the e↵ect of more or less forecastable rainfall on construction employment,

we combine three primary data sources on employment, weather, and climate variability.

3.1 Construction employment data

Wemeasure employment using the Quarterly Census of Employment andWages (QCEW),

which provides a high frequency snapshot of employment across U.S. counties based on state

Unemployment Insurance records. Although we are primarily interested in firms’ responses,

we focus on aggregate data at the labor market level because existing firm-level datasets

are not suitable for our purposes. Nearly all firm-level datasets are annual, while our ap-

proach requires high-frequency employment adjustments. Fortunately, the QCEW provides

employment at the monthly frequency.

While the Longitudinal Employer-Household Dynamics (LEHD) includes quarterly em-

ployment information (and would have other advantages), only since 2003 has it included

all states. Prior to that, it includes only some states. This is a problem for us because

part of our identifying variation comes from geographic variation in responsiveness to ENSO

(thus, we need data from all states to provide enough cross-sectional variation) and part of

our identifying variation comes from over-time variation in the ENSO index (thus, we need

more over-time variation than the post-2003 period could provide). Figure A2 shows ENSO

anomalies since 1990. Restricting to the post-2003 period would cost us the two highest

ENSO spikes and the two lowest ENSO troughs.

3.2 Weather and climate data

The second main dataset we use contains rainfall and temperature measurements from the

PRISM (Parameter-elevation Regressions on Independent Slopes) Climate Group (PRISM

Climate Group, 2004). PRISM combines weather station data with elevation data to produce

monthly, gridded measures of weather. The PRISM data provide more consistent geographic

coverage than raw weather station data.

We aggregate the gridded measures to the commuting zone level by calculating population-

weighted averages. The population weights come from the 2010 U.S. Census population grid

available from the Center for International Earth Science Information Network (CIESIN,
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2017). Figures showing the spatial variation in weather can be found in the appendix (Sec-

tion A). The final weather dataset is a monthly panel from January 1990 to December 2016

of population-weighted average values for each commuting zone in the continental U.S. for

total precipitation and average temperature.

Third, we use monthly data on El Niño/Southern Oscillation (ENSO) from the National

Oceanic and Atmospheric Administration (NOAA) as a source of long-range (monthly) pre-

dictability in rainfall. ENSO is commonly measured using sea surface temperature anomalies

in an area of the equatorial Pacific Ocean known as the Niño 3.4 region that extends from

5�S to 5�N latitude and 170�W to 120�W longitude. Warm anomalies in this region are

classified as El Niño events and cold anomalies are classified as La Niña events. We use the

Niño 3.4 index as our measure of ENSO in the paper. The history of the Niño 3.4 index over

our sample period is shown in Figure A2 (it is worth noting that ENSO is acyclical with

respect to U.S. recessions).

As discussed in Section 2.2, ENSO is a crucial component of monthly or seasonal forecasts

released by NOAA, ECMWF, and other forecasting groups. Technological advances concen-

trated during the 1980’s led NOAA to begin releasing routine forecasts of monthly weather

conditions starting in the middle of 1989 (Shrader, 2020). The timing of release of these

forecasts and the growing public attention to ENSO-driven weather in the U.S. motivates

our focus on the period after 1989.

3.3 Estimation sample and summary statistics

Combining all of the above datasets, we have an estimation sample consisting of monthly,

commuting zone-level observations of employment in the construction industry, rainfall, tem-

perature, and the Niño 3.4 index. The dataset runs from January 1990 through December

2016. After excluding commuting zones with suppressed construction employment, the final

sample includes 633 out of the 722 commuting zones in the continental U.S.

Table 1 shows summary statistics for the main variables in our analysis. Employment is

our primary outcome of interest. Rainfall, as forecasted by ENSO, is our primary right-hand

side variable. Temperature is a control in the primary analysis. With 633 disclosed CZs

observed monthly for 27 years, the final sample consists of 205,092 total observations.

Statistics on excluded commuting zones are also reported in panel (b) of the table. The

first row shows that the CZs in our sample account for 93% of all reported private sector

employment in the QCEW (which is subject to minimal suppression). The disclosed CZs

account 99% of total population. These two figures shows that the suppressed CZs are those

that have minimal population and relatively small levels of employment. The final row shows

that the disclosed sample is about 88% of all continental U.S. CZs. Figure A1 shows a map

of the non-disclosed CZs. One can see that they are generally sparsely populated locations
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Table 1: Summary Statistics

(a) Estimation Variables

Variable Mean Std. Dev. Obs.

Construction employment 8604.4 22504.6 205,092
Monthly rain (mm) 78.4 61.9 205,092
Monthly avg. temperature (�C) 12.7 9.9 205,092
Niño 3.4 index (�C) 0.045 0.89 205,092

(b) Disclosed vs. Suppressed CZs

Disclosed Suppressed Pct. disclosed

Number of commuting zones 633 90 88%
Total private employment (millions) 185.8 15.0 93%
Year 2000 Population (millions) 276.3 2.7 99%

Notes: The table shows summary statistics for the estimation sample (panel a)
and information on the disclosed CZs that are included in the estimation sample
versus the non-disclosed CZs that are excluded (panel b). The estimation sample
consists of a balanced panel of 633 CZs observed for 324 months, resulting in
205,092 total observations.

in the West.

4 Results

4.1 Predicting rainfall

Our core empirical specifications are instrumental variables (IV) regressions. The first

stage in each specification generates predictions of rainfall using variation in ENSO. The

first stage for a given forecasting horizon ` is a regression of the form

ln(Rain)c,t =�1t + ⇢1c,m(t) + �cENSOt�` + ⌘1cENSOt�`�6 (1)

+ ✓1c,1 ln(Rain)c,t�1 + ✓1c,2 ln(Rain)c,t�2 +
12X

k=3

⇡1
k ln(Rain)c,t�k

+
12X

k=1

⇣1kTempc,t�k + ⌫c,t

where c indexes commuting zones and t indexes month. The index m(t) is the month-of-year

for month t.

We estimate one version of Equation 1 for each horizon ` 2 {1, . . . , 6}. The regression tells
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us how fluctuations in ENSO at time t� ` map into time t rainfall in each commuting zone.

We refer to ` as the forecasting horizon, and we vary the forecasting horizon to determine

the employment e↵ects of rainfall forecasts with longer and shorter anticipation horizons.

The employment e↵ects are discussed and reported in the next section.

The key right-hand side variable is time t � ` ENSO interacted with CZ-specific coef-

ficients. The coe�cients capture regional variation in rainfall driven by ENSO. And these

interaction terms are our excluded instruments in the second stage.

We identify the e↵ect of ENSO on rainfall conditional on a number of controls. First,

we include CZ by month-of-year fixed e↵ects, ⇢c,m(t), which subsume CZ fixed e↵ects. These

fixed e↵ects condition out fixed features of the CZ as well as CZ-specific seasonal patterns

that might otherwise lead to spurious relationships between rainfall and employment. We

also include time fixed e↵ects, which conditions out common time series patterns across the

country. These fixed e↵ects also condition out the time series pattern of ENSO, meaning

that we are identified o↵ of CZ-specific di↵erences in the e↵ect ENSO has on rainfall. The

empirical specification can thus be viewed as a type of di↵erence-in-di↵erences estimator.

The first stage identifies locations where rainfall is a↵ected by ENSO at di↵erent forecast

horizons, `. For a given horizon, the locations where ENSO has a strong e↵ect will be the

“treatment group” while locations where ENSO does not have a strong e↵ect are the “control

group.”

Two of the further controls are of particular importance. CZ-specific coe�cients on lags

of rainfall isolate variation driven by ENSO from other types of regional weather fluctuations.

One could use past realizations of rainfall to forecast future rainfall, but this strategy could

be invalid if the past rain realizations themselves have persistent e↵ects on productivity.

We control for rainfall up until time t to prevent contamination of our results by persistent

e↵ects of rainfall that occurs prior to time t. Second, CZ-specific coe�cients interacted with

the `+6 month lag of ENSO isolate news about ENSO that has arrived in the last 6 months.

This gives us relatively precise information about the timing of the arrival of information.

Knowing when information is arriving helps us characterize the dynamics of adjustment.

Figure 1 shows the first stage estimates along with how they vary by forecast horizon.

There is one point in the figure for each CZ in the sample. The points show the relationship

between the CZ-specific ENSO coe�cients from the version of Equation 1 estimated with the

one-month lag of ENSO and the di↵erence between the six-month lag coe�cients and the

one-month lag coe�cients. In other words, the x-axis is the value of the �c coe�cients from

the ` = 1 version of Equation 1. The y-axis is the di↵erence between the ` = 6 coe�cients

and the ` = 1 coe�cients.

The main take-away from the figure is that there is appreciable variation in the rela-

tionship between ENSO and rainfall across time for the di↵erent CZs. We exploit these
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di↵erences to identify the e↵ect of di↵erent anticipation horizons.

Figure 1: Di↵erences in First-stage Coe�cients
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Notes: The x-axis of the figure shows coe�cient estimates from the 1-month ahead
(` = 1) version of Equation 1. The y-axis is the di↵erence between the 6-month
ahead coe�cients and the 1-month coe�cients. There is one point for each CZ in our
sample.

For example, focusing on rainfall responses at the 1-month horizon, there are hundreds

of commuting zones where rainfall is close to non-responsive to ENSO (0 on the x-axis), and

these are “control” CZ’s. However, there are many more where ENSO increases rainfall, and

even a handful where it decreases rainfall. At the extreme, in Pecos, TX, a one standard

deviation increase in ENSO increases rainfall by 80 log points (120%).20 This cross-sectional

variation is one source of identification that we use.

However, we are also interested in how employment responses di↵er depending on the

horizon of the forecast. This second source of identifying variation is shown by the y-axis.

Consider, for example, Yuma, AZ, and Phoenix, AZ. These commuting zones are within the

same state and are roughly equally responsive at the one-month horizon (.4, x-axis). But

Yuma is twice as responsive at six months as it is at one month, while Phoenix is half as

responsive. As a result of variation like this, two CZ’s might experience the same short-

run “ENSO treatment” but di↵erent long-run treatments, allowing us to separately identify

20Figure A2 shows ENSO over time, measured in standard deviations. It is important to note that large
and sudden shocks are not rare. For instance, in the late 1990’s it rose by 2.5 standard deviations over less
than a year, only to fall by 3.5 standard deviations a year later.
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responses to short-run and long-run forecasts.

The figure also gives an indication of the locations where rainfall tends to be more strongly

associated with ENSO. Stronger ENSO predicts rainfall increases consistently across the

South and Southwest of the U.S. from Texas to California, up the West Coast, and to

a lesser extent in areas around Georgia down to Florida. Stronger ENSO predicts lower

rainfall in the northern Rocky Mountains and upper Midwest.

Figure 1 shows the variation in forecast coe�cients and gives a measure of magnitude.21

One can get a further sense for the strength of the rainfall predictions of ENSO by examining

the F -statistic from the first stage regression. Because of the large number of variables we

estimate (one for each CZ), we calculate a conservative, lower bound on the conventional

F -statistic using a version of Equation 1 where we interact ENSO with a state fixed e↵ect

rather than a CZ fixed e↵ect (holding everything else about the data and estimation fixed).

This is a lower bound because it throws away all within-state variation from Figure 1. The

resulting Montiel Olea and Pflueger (2013) e↵ective F -statistic is 50.3 at a 1-month horizon

and 40.0 at a 6-month horizon, compared to a critical value for worst case bias of 5% of 26.7.

At all forecast horizons, the ENSO-based predictions are strong and jointly significant.

4.2 E↵ect of predictable rainfall on employment

Our core interest is in employment adjustments in response to rainfall, depending on how

far in advance that rainfall could be predicted. As discussed above, we rely on two sets of

facts: first, that rainfall has important e↵ects on construction sector productivity. Second,

that ENSO fluctuations predict medium-term rainfall changes in the United States and that

there is rich heterogeneity across place in how much and when these fluctuations translate

into rainfall. This heterogeneity allows us to build an instrumental variables (IV) regression

where we instrument for local rainfall using the CZ-specific ENSO response but are still able

to control for CZ fixed e↵ects (time-invariant geographic heterogeneity) and month fixed

e↵ects (arbitrary nationwide trends).

The second stage of the IV strategy is given by

�` ln(Emp)c,t =�2t + ⇢2c,m(t) + �`
\ln(Rain)

`

c,t + ⌘2cENSOt�`�6 (2)

+ ✓2c,1 ln(Rain)c,t�1 + ✓2c,2 ln(Rain)c,t�2 +
12X

k=3

⇡2
k ln(Rain)c,t�k

+
12X

k=1

⇣2kTempc,t�k + "c,t

21For the magnitude of the 6-month ahead forecast undi↵erenced, see Figure A4.
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where �` ln(Emp)c,t is ln(Emp)c,t � ln(Emp)c,t�`�1. Estimating the e↵ect on the change

in employment reduces unit root concerns and helps eliminate confounding variables up to

time t � ` � 1.22 Estimating with lags of employment on the right-hand side yields similar

estimates but requires the addition of employment lags in the first stage regression, so we

prefer the specification here.

The primary right-hand side variable of interest is \ln(Rain)
`

c,t. The variable is generated

by the first stage regression, Equation 1, and is the expected rainfall in commuting zone c

at time t which could be forecast from information available ` months beforehand.23

The second stage includes every variable from the first stage except the excluded instru-

ments: ENSOt�` interacted with CZ-specific indicators. In particular, it includes controls

for lags of temperature (which improve precision), lags of realized rainfall, lags of ENSO in-

teracted with CZ indicators, and fixed e↵ects for the month and CZ by month-of-year. These

controls remove confounding variation that is fixed within a location, that varies seasonally

within a location, that varies over time nationwide (including the month-to-month variation

in ENSO itself), and that might be caused by weather arriving before time t.

Table 2 displays estimated coe�cients for the one through six-month ahead forecasts

(` 2 {1, ..., 6}) on employment at time t. There is a clear and monotonic pattern. Recall that

rainfall substantially reduces construction productivity. Despite that, employment barely

responds to rainfall increases that could only be predicted one month in advance. In contrast,

employment is nearly five times as responsive to rainfall that could be predicted six months in

advance, and the di↵erence in response at the two di↵erent horizons is statistically significant

at the 5% level.24 The further ahead the increased rainfall could be predicted, the larger the

employment response.

Why might employment respond more to forecasts available further in advance? One

explanation is that labor market frictions and adjustment costs make instantaneous responses

costly. Above, we discussed several of these costs, such as implicit layo↵ taxes generated by

the financing rules of the unemployment insurance system.25 We also discussed a series of

costs in terms of recruiting, screening, and hiring. It is important to keep in mind that these

hiring costs are relevant for firms even if our empirical results reflect employment decreases

22Formal panel unit root tests using the Im et al. (2003) procedure reject the null that the series contains
a unit root, but the high degree of autocorrelation in employment still leads us to prefer a specification in
di↵erences.

23The estimation is done through instrumental variables, so the hat on top of the rain variable is purely
a notational reminder that the second stage regression involves unbiased rainfall forecasts.

24While few of the other coe�cients are statistically significantly di↵erent from one another, the monotonic
pattern and di↵erence in magnitudes is clear. The calibration described in Section 5 reflects the uncertainty
in these parameter estimates.

25Again, even in the absence of rules like these, if sudden firing raises workers’ perceptions of the riskiness
of the job, then it can still be costly to firms who have to renegotiate higher wages to compensate workers
for risk (as argued by Smith (1776)).
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Table 2: Employment responses to predictable rainfall by length of forecast

DV: �` ln(Empt) (1) (2) (3) (4) (5) (6)

Forecast length (`): 1 2 3 4 5 6

\ln(Rain)
`

t -.005* -.010** -.015** -.017** -.019** -.026***
(.003) (.004) (.006) (.007) (.008) (.010)

R2 .655 .707 .728 .730 .717 .689
N 194,947 194,947 194,947 194,947 194,947 194,947

* p < .10, ** p < .05, *** p < .01. Table displays estimated elasticities of the response
of employment at time t to rainfall estimated at time t� ` to occur at time t. Standard
errors clustered at the commuting zone (CZ) level are in parentheses. All estimates
come from instrumental variables regressions that include time fixed e↵ects, CZ fixed
e↵ects, and CZ-by-month-of-year fixed e↵ects, as well as lagged rainfall, employment,
and temperature controls shown in the estimating equations 1 (first stage) and 2 (second
stage). Rainfall predictions are the primary explanatory variable and are based on CZ-
specific responses to changes in the El Niño/Southern Oscillation. See text for details.

in response to increased rain. This is because rainfall is only a temporary productivity shock.

Firms will soon need to re-sta↵ after excess rain subsides, and hiring new workers will require

paying those costs.

Recognizing this, a firm which suddenly discovers that it will face a negative productivity

shock during the next month (estimates for ` = 1) might simply prefer to continue to pay

the unproductive workers for a short time, rather than laying them o↵ and having to replace

them through a costly screening process soon after. After all, the costs of replacing a worker

are roughly equal to one month salary (Dube et al., 2010), and it is unlikely that workers’

productivity falls all the way to zero during the period of excess rain. A firm which discovers

that it has six months until that productivity decline, on the other hand, can take advantage

of the regular turnover process and simply delay hiring replacements for those who leave.

Whether or not this is realistic depends on the rate of natural turnover in construction,

as well as the magnitude of the rain-induced employment responses that we document. The

turnover rate can be measured using linked Current Population Survey (CPS) data, which

shows that in a given month, 9% of construction workers leave their current employer for

another. To understand the magnitudes of the responses that we identify, consider a very

ENSO-responsive CZ that sees rainfall rise by 40 log points in response to a one standard

deviation ENSO shock (the heterogeneity in ENSO-responsiveness is given in Figure 1). Even

at the 6-month horizon, when employment shows the greatest responses, the second stage
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estimates in Table 2 suggest that this translates into a roughly 1% decline in employment.26

It is not di�cult to imagine a firm with one-month departure rates of 9% managing a 6-month

decline of 1% exclusively using hiring delays. While one interpretation would suggest this

means our empirical estimates are too small to be important, we disagree; for many firms,

the opportunity to save or waste 1% of labor costs is a critical business decision, particularly

in a competitive industry like construction.

These back-of-the-envelope calculations are useful for interpreting our reduced form es-

timates and the plausibility of the firm responses that we identify. By themselves, however,

they do not allow us to understand the implications of rainfall shocks for worker and firm

outcomes (aside from employment changes), and they do not allow us to derive quantitative

implications of rising rainfall volatility driven by climate change. In the next section, we

develop a model of employment dynamics that links them to adjustment costs for workers

and firms. We use our reduced form estimates of the employment responses to calibrate the

adjustment costs that firms face, and use this to quantify the consequences of rising rainfall

volatility and the value of improving the quality of forecasts.

5 Model and counterfactuals

5.1 Model of labor market with adjustment costs

The elasticity estimates in Table 2 capture the response of the construction sector within

a local labor market to news about rain. These responses reflect both the adjustment of

the supply of labor in the construction industry as well as demand for labor by construction

firms. In turn, adjustments on both sides of the market reflect conditions in other sectors

of the economy. For example, construction services are intensively used for investment, so

demand for construction services reflects investment decisions throughout the local labor

market. To account for these cross-sector linkages, we model the entire local labor market’s

response to rain, incorporating spillover e↵ects through the input-output structure of the

economy. In the presentation of results, we focus on the construction industry for clarity,

but the underlying model includes all sectors.

Accordingly, we model the local labor market as a small, open, multi-sector economy,

populated by firms in each sector and a representative household. Firms use the output

of all sectors as intermediate inputs, as well as to invest in capital formation. Households

use the output of sectors for both consumption as well as to invest in housing. This setup

allows us to directly calibrate the model to match make and use input-output tables from

the Bureau of Economic Analysis (BEA).

26exp{.4⇥�.026} = .9896
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In our counterfactuals, we focus on the importance of di↵erent levels of adjustment costs

for firms. We introduce these costs as employees diverted from production when a firm

changes their hiring rate over time.

Specifically, the output of each firm in industry i at time t is Cobb-Douglas in capital,

Kit; labor used in production, Lit; and an index for commodities used as materials, Mit.27

Yit = Ait

�
K↵i

it L
1�↵i
it

�1��i M�i
it . (3)

The variable Ait denotes total factor productivity. We assume that construction sector

productivity depends negatively on realized rainfall with a constant elasticity, which we

denote by ✏.

Hiring is costly for the firm because it requires the use of employees devoted to the task.

The productive labor input of the firm consists of those employees which it does not need

to devote to hiring new workers. Given its current number of workers, Nit, the fraction of

its labor force that must be devoted to hiring is

1� Lit

Nit
=



2

✓
Hit �Hi,t�1

Hi,t�1

◆2

(4)

If a firm in steady state (Hit = Hi,t�1) wants to increase or decrease its hiring rate, then

it must divert some of its workforce away from production. These costs are convex so that

larger deviations of Hit from Hi,t�1 incur greater costs, and  is the key parameter that pins

down the magnitude of these hiring costs.

The importance of hiring adjustment costs can be seen through the first order condition

for new hires, which states that the marginal benefit of a new worker must equal the marginal

cost of a new hire. The marginal benefit is forward looking because workers may stay with

the firm for many periods. In particular, the firm’s employment evolves as

Nit = (1� s)⇧Stay
i,t Ni,t�1 +Hit (5)

where ⇧Stay
i,t is the fraction of the firm’s past employees who stay in the industry, and s is

the fraction of these workers who separate from the firm and must find a new job in the

industry. The first term captures the total number of workers who stay with the firm over

time.

Given the law of motion in (5), the shadow value of another worker to the firm, Vit,

27The firm accumulates capital using a Cobb-Douglas technology in commodities, and, similarly, the
materials index is Cobb-Douglas in commodities. See Appendix B.1 for details.
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satisfies the following forward looking condition.

Vit = P Y
it MPLit

Lit

Nit
�Wit +

1� s

1 + r
Et⇧

Stay
i,t+1Vi,t+1 (6)

where P Y
it denotes the competitive price of industry i output, MPLit ⌘ (1�↵i)(1� �i)

Yit
Lit

is

the marginal product of labor, Wit denotes the competitive wage in industry i, and r denotes

the interest rate at which the firm is externally financed. The firm values a worker based on

the expected discounted value of the gap between the marginal revenue product of labor and

the wage, accounting for the chance that the worker stays with the firm over time. When

the firm anticipates that future marginal revenue products will be high relative to wages, it

will value building up its current labor force.

It will do so trading o↵ these benefits against current hiring costs. That is, the value of

an additional worker must equal the marginal cost of hiring an additional worker.

Vit = P Y
it MPLit

✓
Hit �Hi,t�1

Hi,t�1

◆
Nit

Hi,t�1
� Et

P Y
i,t+1MPLi,t+1

1 + r


✓
Hi,t+1 �Hit

Hit

◆
Hi,t+1

Hit

Ni,t+1

Hit

(7)

The expression for the marginal cost has two terms. The first represents the cost to the

firm from reduced output in the present due to diverting labor toward hiring, while the

second represents the gain to the firm from avoiding future lost output. When the value

of additional workers is high in the present, the firm will be more willing to forego present

output to build up its labor force through hiring.

Notice that in the absence of hiring costs (when  = 0), the firm will hire additional

workers until the marginal benefit of hiring is zero. In this case, because Vit = 0, the

valuation condition in (6) reduces to stating that the wage must equal the marginal revenue

product of labor. Hiring adjustment costs lead to departures from the equalization of wages

to the marginal revenue product of labor, and link hiring decisions to the anticipated future

gaps between the marginal revenue product and wages. When the present value of these gaps

is positive, the firm will tend to increase its hiring. News of reduced future productivity in

the construction sector—such as increases in forecasts of rain—will reduce the value of hiring

workers today, leading to current reductions in employment.

Of course, the total impact of reductions in future productivity depend also on the

response of labor supply. Workers will also anticipate that they will face low future wages,

and, if they also face adjustment costs, they will want to exit the industry preemptively to

avoid being stuck with low income in the future.

To capture this possibility and maintain tractability, we close the model by introducing a

representative household who provides all its members with perfect consumption and housing

insurance, and allocates individuals to work across sectors. In addition to working, each
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individual can also be non-employed. Let i = 0 index this non-employment state, and

denote individual n’s employment status at time t as it(n) 2 {0, 1, . . . ,M} where M is the

number of industries. Average utility of household members is

Ut =
1X

h=0

�h


lnCt+h + µS lnSt+h +

Z 1

0

⌫it+h�1(n),it+h(n),t+h(n)dn

�
(8)

where � 2 [0, 1), Ct denotes a Cobb-Douglas consumption index, St denotes services from

housing, µS captures the importance of housing services, and ⌫i,i0,t(n) is an individual prefer-

ence shock for transitioning from i at t� 1 to i0 at time t. These preference shocks generate

heterogeneity in how workers decide to switch sectors throughout their career. Changes

in relative wages across sectors (driven by productivity shocks to the construction sector,

for example) can drive these decisions, but these preference shocks allow workers to have

disutility from leaving their job, or from switching sectors even in the absence of pecuniary

benefits to doing so.

We assume that these preference shocks are Gumbel distributed independently across

i0 with shape 1/✓ and independently and identically distributed over time and individuals.

The parameter ✓ captures heterogeneity across workers in their preferences to switch sec-

tors. When ✓ is low, there is low dispersion across individuals so individuals are more willing

to shift across sectors as the value of employment in each sector changes. In other words,

when other factors like family needs, geographic mobility, injury, or aging or educational

attainment (all of which we model in a reduced form way as a preference shock) are unim-

portant, then ✓ will be low implying little dispersion in preferences, and workers will be very

responsive to changes in relative pay across sectors. We interpret this as suggesting very

low adjustment costs (on the household side), because workers are very willing to respond

to monetary incentives. If, on the other hand, ✓ is high, then dispersion in non-monetary

preferences is large, and mobility responses to shocks to the relative wage will be muted.

For each moment in time, the representative household chooses consumption, housing

investment, and an allocation of individuals across industries to maximize the expected

discounted average utility of its members subject to its budget constraint and a housing law

of motion. Here, we focus on the allocation of workers across industries. See Appendix B.1

for details on the household’s consumption and investment decisions.

Under our Gumbel assumption on idiosyncratic preference shocks, the utility value of

allocating another worker to employment status i during period t is

Uit =
Wit/PC

t

Ct
+ �Et

"
✓ ln

MX

i0=0

!i,i0e
Ui0,t+1/✓

#
(9)
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where PC
t is the price of consumption, Wit denotes income from employment status of i

at time t—either the wage in a sector or income when non-employed—and !i,i0 � 0 with
PM

i0=0 !i,i0 = 1 captures average preferences for transitioning from i to i0. The value of an

additional worker in industry i depends on the marginal utility value of the real wage in

that industry as well as anticipated future real wages across all industries, accounting for the

chance of reallocating the worker in the future. In this way, labor supply is forward looking,

with future wages impacting the current allocation of workers across industries.

Specifically, the share of workers shifting from i at time t� 1 to i0 at time t is

⇧i,i0,t =
!i,i0 exp(Ui0,t/✓)PM
ĩ=0 !i,̃i exp(Uĩ,t/✓)

(10)

leading to the following employment law of motion

Ni0t =
MX

i=0

⇧i,i0,tNi,t�1. (11)

This result provides an interpretation for !i,i0 as the share of workers transitioning when all

employment statuses have equal value (when Ui0t = Uit for all i0, i). It also shows that 1/✓ is

the semi-elasticity of employment flows to changes in the value of employment. When labor

supply adjustment costs are high, it takes a larger change in the value of employment to

generate a shift of workers across sectors.

Finally, local production of commodities arises from combining the output of each in-

dustry to match make input-output tables from BEA. We assume a Cobb-Douglas structure

so that the price of each commodity is a Cobb-Douglas price index of local output prices.

In turn, consumption, capital investment, and housing investment price indices are Cobb-

Douglas in commodity prices with weights matching shares in the use input-output tables

from the BEA. Further, we classify some commodities as non-tradeable (forcing local pro-

duction to match local demand) based on observed imports and exports as a share of value

added. See Appendix B.1 for details.

5.2 Calibration

We calibrate the model to match input-output tables from BEA, monthly employment

transition rates across sectors from the Current Population Survey, and a 2% annual per-

centage rate for household discounting and the firm’s interest rate. See Appendix B.2 for

summary statistics of the calibration. This pins down all parameters except those control-

ling adjustment costs, the e↵ect of rainfall on construction productivity, and the impulse

response of rainfall to news about rain.
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For the response of rainfall to news about rain, we fit an AR(5) process to empirical

estimates of the change in rainfall with respect to news about rainfall shocks (pooling across

forecast horizons). In other words, we estimate the empirical impulse response of rainfall

after time t to our forecasts of rainfall at time t � ` for ` = 1, . . . , 6. We then fit an AR(5)

model to the set of these impulse response estimates and use the coe�cients to account for

the empirical persistence of rainfall e↵ects. See Figure A7 in the appendix for the fitted

response.

To pin down the scaling e↵ect of the impact of rain on productivity, we choose the elas-

ticity of construction productivity to rain, ✏, to normalize the model’s average prediction

(across forecast horizon) for news about rain to match the average of our estimates in Fig-

ure 2. To estimate the labor supply and demand adjustment cost parameters, ✓ and , we

minimize the distance between the model’s normalized prediction for adjustment of construc-

tion employment to news about rain and our estimates in Table 2. Note that this e↵ectively

provides five target moments (six coe�cients minus one absorbed degree of freedom) for the

two labor adjustment cost parameters.

The model calibration and fit to the empirical employment elasticities allow us to estimate

the two adjustment cost parameters in the model: ✓ and . Recall that ✓ measures the degree

of heterogeneity in worker preferences for moving across sectors. A low value of ✓ would mean

that workers are relatively homogeneous, and for a given change in the value of being in a

sector, a large fraction of the workers would want to change their sector. High values imply

that it would take a large shift in value to induce substantial movement of workers across

sectors. Thus, we view ✓ as capturing labor supply adjustment costs.

Table 3: Inferred Parameters and Model Fit

Estimates Fit By Horizon

Value h 0 -1 -2 -3 -4 -5 -6

✓ 21.2 Uncentered R2 99.6% 98.2% 98.1% 96.4% 94.4% 94.5% 95.8%
 43.7 Centered R2 97.3% 93.8% 93.6% 89.3% 85.3% 83.9% -
✏ 0.11 ` 1 to 6 1 to 6 2 to 6 3 to 6 4 to 6 5 and 6 6

Target Moments X
Notes: Parameter values minimize the mean squared error in the target moments between
the estimates and the model with ✏ chosen to scale the average of model predictions to match
the average of estimates across `. We omit the centered R2 at horizon 6 because there is only
one comparison value so it is mechanically 100%.

The  parameter measures demand side adjustment costs. It is the cost to the firm of

adjusting its hiring rate, as shown in Equation 4. For a higher value of , firms must devote
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more of their production toward hiring e↵orts (for instance by using more time for interviews,

advertising positions, reviewing applications, or training).

The values for ✓ and  that best fit the set of empirical rainfall forecast and employment

elasticities are shown in Table 3. We can interpret the estimate of ✓ using Equation 9 and

10. An increase in the real wage di↵erence between two sectors in a single month by 100% of

steady state consumption (holding fixed expectations of the future value of both sectors) will

increase the odds that a worker changes sectors by 5% during that month.28 Using Equation

4, the estimate of  implies that devoting 1% of a firm’s labor force to hiring rather than

production during a month will generate a 2.1% increase in the firm’s hiring rate, while

devoting 10% of the labor force generates a 6.8% increase in the hiring rate during that

month.

The table also shows measures of model fit, both for the target moments—the elasticities

of employment with respect to rainfall forecasts at the time when rainfall arrives—and for

non-target moments of that same elasticity for months after news has arrived but before

the rainfall shock has occurred. The empirical estimates for these moments can be found in

Figure A6. The table reports R2 values that are the amount of variation in the empirical

point estimates that is explained by the model-derived employment elasticities. One can see

that even for these non-targeted moments, the model fit is good, with a minimum R2 of

84%.

5.3 Counterfactuals

One advantage of our model is that it allows us to interpret the rainfall shocks that we

observe in more meaningful units. Using our benchmark calibration, we find that a one

standard deviation above-mean rainfall shock is equivalent to an 11% loss of productivity.

An 11% productivity decline is clearly meaningful, and in this section, we focus on how firms

respond, how the costs of this shock are shared between workers and firms, and how the size

of adjustment costs determines these responses.

Because our primary interest is in how firms might improve their ability to adapt (e.g., by

negotiating more flexible labor contracts with workers or by diversifying their mix of projects

to allow project-specific labor levels to be more responsive), we keep worker-side adjustment

costs (✓) constant at the level of our baseline calibration. Instead, our counterfactuals focus

on how changes in firms’ ability to respond to shocks () a↵ects their employment dynamics

and profits, and how this interacts with the quality of weather forecasts.

28That is, ln
⇧i,i0,t
⇧i,i,t

changes by .05 when (Wit �Wi0t)/PC
t increases by 100% of steady state consumption.
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5.3.1 How firm-side adjustment costs drive employment dynamics

Above, we summarized a number of reasons why firms cannot freely or flexibly adjust

their labor pool. An advantage of our method is that it captures these costs without imposing

assumptions on the types of activities that are costly. Rather, it simply infers them from the

dynamic pattern of employment responses. How would employment responses di↵er if the

magnitude of adjustment costs was di↵erent? What features of the dynamic adjustments

help us to infer those costs? How important are the magnitudes of responses, rather than

their dynamic pattern, for quantifying these costs? Figure 2 helps answer these questions.

Specifically, in Figure 2, we compare the empirical, reduced form estimates (from Table

2) with those derived from the calibrated model. Comparing the filled circles (our reduced

form estimates from above) with the hollow squares (derived from our baseline calibrations

of  and ✓), our model very closely replicates the dynamic responses that we observe in the

data.

Figure 2: Empirical and Model-Based Elasticity Estimates
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Notes: The figure shows coe�cient estimates of the e↵ect of rainfall forecasts
on employment from Table 2 compared to the model-derived estimates for the
baseline adjustment cost parameters (see Table 3) and the estimates under
counterfactual adjustment costs.

More interesting, however, Figure 2 also presents simulated dynamics of alternative cal-

ibrations in which we assume that the firm-side adjustment costs () are ten times larger

(hollow diamonds) or one-tenth as large (hollow triangles). Our primary result that responses

are monotonically increasing in forecast horizon is generally true across all three calibrations.
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However, the magnitudes of these di↵erences matter.

As one would expect, the higher the adjustment costs, the lower the overall level of

adjustment that occurs. However the ratio of responses to 6-month forecasts compared to

1-month forecasts becomes much larger. With adjustment costs 10 times larger than those

we estimate in the data, responses to 6-month-ahead forecasts are eight times larger than the

1-month responses. Compare this to a five-fold di↵erence under our baseline adjustment cost

estimates. When adjustment costs are much smaller than our baseline estimates, 6-month

responses are less than three times larger than 1-month responses. Thus, the larger are the

costs of adjusting, the less overall adjustment there is, but also the greater is the wedge

between responses to short-run and medium-run forecasts. This is because as adjustment

costs become larger, it becomes more important to spread them out over time. This e↵ect

arises from the convex adjustment costs that make large adjustments much more costly than

small ones, and it is important for understanding how the burden of adjustment is split

between workers and firms in our counterfactuals below.

5.3.2 How the burden is shared between workers and firms

To understand how workers and firms split the costs of productivity shocks, we calculate

the firm’s present value of profits and the worker’s present value of income. We focus on

how this present value (PV) changes at time t � ` when a new forecast of a rainfall shock

occurring at time t becomes available. We focus on the PV at the time of the information

(t � `) to capture the full e↵ect of the rainfall shock as well as any adjustments that occur

before the rain actually arrives. Our reduced form estimates show substantial adjustment

does occur prior to the arrival of rain (between t� ` and t).

Figure 3 shows how the PV of profits and labor earnings change when news of a rainfall

shock becomes available. For both, we present di↵erent estimates depending on the firm-side

adjustment costs () and the forecast horizon (`).

Panel (a) shows the profit e↵ects. Focusing on our baseline calibration (solid blue circles),

a rainfall shock forecast only one-month ahead leads to a substantial 0.6% decline in the PV

of profits because firms will see a large productivity decline but have limited ability to

adjust employment with such short notice. Remarkably, having this information six months

in advance instead, they are able to o↵set almost the entire profit loss via adjustments during

those six months.

The hollow red circles and hollow gray squares show analogous results for larger and

smaller adjustment costs, respectively. When adjustment costs are very large, the profit

losses are much more substantial, but interestingly, are less steeply related to the forecast

horizon. This is because even at six months, firms ability to adapt to the productivity shock

is relatively constrained, and it makes little di↵erence whether the forecast is available six
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months or one month in advance. Even more surprising, when the adjustment costs are low,

the firm’s profits actually increase in response to the shock. This is because the firm can

easily adjust its labor to o↵set the costs of the productivity decline, but given the structure

of the multi-sector economy, the firm will benefit from a boost of pent-up demand after the

shock has passed. This means that the fully flexible firm can avoid the costs of productivity

shocks while enjoying all of the benefits.

Figure 3: Change in Present Value of Profit and Labor Value When News About Rain
Arrives
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(b) Labor Value

Notes: The figure shows the present value of profit for firms (Panel 3a) and the present value of earnings for
workers (Panel 3b) as a function of the forecast horizon and three di↵erent values of the firm-side adjustment
cost parameter, : high (red with hollow circles), baseline (blue with filled circles), and low (gray with hollow
squares) adjustment costs. All values are calculated at the time when news about the rain shock arrives
(time t � ` in Equations (1) and (2)). For example, the 6-month-ahead forecast e↵ect is the present value
from 6 months prior to the arrival of rain.

Panel (a) showed that firms monotonically benefit from longer forecast horizons that

a↵ord them more time to adjust, and that more costly adjustment substantially reduces

the present value of profits. Of course, the primary mechanism of adjustment is through

management of their workforce and hiring. For this reason, Panel (b) shows that workers’

experience the exact opposite patterns of firms. The longer the forecast horizon, the larger

the decrease in the PV of earnings. This is because long anticipation horizons allow the firm

to adjust more e↵ectively and pass the costs of the rainfall shock onto workers.29 In the

baseline calibration that matches the data, the lost PV of a 6-month forecast are roughly

twice the losses of a 1-month forecast.
29Interestingly, when adjustment costs are extremely high, workers are actually slightly better o↵ due to

a negative productivity shock because the firm is essentially unable to adjust to the shock, but the workers
still benefit from the post-shock boost of pent-up demand.
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This result illustrates that the adjustment cost parameters we estimate to match the

data imply that firm-side adjustment costs are larger than the worker-side ones. To see this,

note that any agent facing convex adjustment costs values earlier information because it

allows her more time to smooth the adjustment and minimize the incurred costs. Indeed,

if we dramatically increase the worker-side costs, we see that workers, too, begin to benefit

from earlier information relative to later information (results available upon request). In our

context, though, firms’ mechanism of adjustment is through layo↵s and reduced hiring, both

of which shift the costs of the shock onto workers. Despite the fact that workers also face

costs of switching sectors, they prefer less advanced information because avoiding the costs

that firms shift onto them more than outweighs the inconvenience that they themselves face

from short notice. In summary then, the fact that the estimates in Panel (b) are upward

sloping (less negative at short horizons) is not an inherent feature of our model, but a result

that illustrates that demand-side adjustment costs are the key drivers of our results.

5.3.3 Quantifying the costs and benefits of adjustment for the firm

In this setting, firms are adapting by adjusting their inputs, including labor, in response

to news about upcoming shocks. Works adapt by changing sectors. Adaptation is costly

due to rigidity in adjustment, but it also brings benefits in the form of reduced damage from

rain shocks. The present value of profit and earnings at the time when news arrives shown

in Figure 3 capture the net e↵ect of both of these channels. In this section, we break down

the di↵erent sides of adaptation, focusing on costs and benefits for firms.

The pure adjustment costs—the level of  times the change in hiring in Equation 4—

are straightforward. Changing hiring always comes with a cost, and the size of the change

determines the scale of the cost. If a manager wants to adapt to an upcoming shock by

making large changes in employment, they either need to pay a high cost for a quick change

or spread their employment changes out over time so that they does not climb so high

up their convex cost curve. The empirical estimates and model results in Figure 2 show

that the magnitude of the employment change grows monotonically with increasing forecast

horizon. When assessing the trade-o↵ between higher costs and faster employment changes,

the empirical results indicate that managers and firms are deciding that it is worth it to

engage in more adjustment if they can spread the costs out over time.

Figure 4 shows impulse responses of the hiring wedge over time. The figure translates the

employment changes we see empirically into costs—in units of productivity lost by devoting

it to hiring—that the firm pays to adjust its hiring. The figure shows these costs each month

leading up to, during, and after a rainfall event. The lines show costs for di↵erent forecast

horizons, and the panels (a, b, and c) show the value for high, baseline, and low values of 

respectively.
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Figure 4: Isolating the Adjustment Cost Wedge for Firms
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Notes: The figure shows impulse responses of the share of the firm’s labor force devoted to hiring as in Eq.
4 (in units of percent of their labor force). The panels show costs each month from 6 months prior to the
arrival of rain until 6 months after. The lines are at di↵erent forecast horizons, with the lightest colored
lines at the 6 month horizon and the darkest colored lines at the 1 months horizon. The three subpanels
show how these costs di↵er by firm-side adjustment cost parameter, .

One can see that in the baseline (panel b), firms find it worthwhile to pay substantial

adjustment costs at all forecast horizons, a result that is reflected in the employment changes

in Figure 2. For larger adjustment costs, firms want to adjust their labor force, but high costs

prevent them for making as substantial of changes, particularly at short forecast horizons.

Within the horizons we investigate, labor adjustment and cost rise monotonically every

month. In a world with high , relatively surprising rainfall events would see very little

labor force adjustment and a low cost paid for adaptation. This is precisely because it is

would not be worthwhile to engage in such costly behavior. In panel (c), one can see that

there is also little cost paid for adjustment when  is low, but now it is despite a large change

in the labor force. Firms would get a high “bang for their buck” when adapting to a shock

if adjustment was cheap.

Together, these figures tell an important story for climate adaptation and estimation of

climate damages. If the world is one with high costs of adaptation, like the high  case here,

then people will not engage in much adaptation, and researchers will not find substantial

evidence for adaptation in the empirical record. Firm would want to engage in adaptation in

this case, if better information was available. The low  case will be one with a high quantity

of adaptation and a low cost of adaptation. In between these two extremes, ex ante behavior

is important to take into account both in terms of the quantity and cost of adjustment.
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The direct adjustment costs are only part of the adaptation cost story. Prior to the

arrival of rainfall, firms are also a↵ected by changes in labor supply as well as spillovers

from sectoral linkages and trade. The complex interaction of these di↵erent factors can be

summarized by comparing the present value of profit for the firm at the time when rainfall

arrives (time t) versus at the time when news about rainfall arrives (t� `). The di↵erence in

these values captures the e↵ect on firms of the myriad ex ante adaptation actions engaged

in both by construction firms and by all other market participants. Figure 5 Panel 5a shows

this di↵erence for the baseline calibration. The top line is the present value of profit when

rain arrives, and the bottom line is the present value of profit when news arrives. The vertical

di↵erence between these two lines captures the total “cost” of actions taken before the rain

shock realizes.

Figure 5: Benefit and Cost of Adapting Given 1-month Change in Forecast Horizon
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Comparing two points along the blue line, one can also estimate the benefit of improving

the forecast horizon. As we discussed in the previous section, firms benefit more from

information available further in advance by spreading the adjustment over a longer period,

allowing them to engage in more adaptation at a lower cost. We refer to the di↵erence

between two points along the top curve as the “marginal” benefit of forecasts because it is

the reduction in damage provided by a 1-month increase in the forecast horizon.

Finally, Panel 5b shows the marginal benefit of forecast horizon changes in the top curve
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(red with hollow circles) and the marginal cost of adjustment in the bottom curve (blue with

filled circles). The marginal cost is the di↵erence in costs between two forecast horizons, as

indicated on the x-axis. One can see that for all forecast horizons, the benefit of a 1-month

increase in forecast horizon is greater than the cost. In fact, due to spillovers across sectors

and changes in labor supply, marginal costs are actually negative for firms at the shortest

forecast horizons. Marginal benefit and cost converge for longer horizons. If firms were able

to choose their forecast horizon (and if forecasts were costless for them to produce), they

would choose a longer horizon than the longest we consider here. Concretely, based on the

net benefits illustrated in Figure 5b and given the 2% APR financing cost that we calibrate

to, a firm would be willing to pay 3.6 months of typical profits to learn about rainfall 5

months sooner every month during the year.

5.4 Future climate projections

Unless greenhouse gas emissions are brought down substantially, future changes in the

climate are projected to increase the volatility of rainfall around the world. The most recent,

comprehensive climate projections under the high climate forcing scenario (CMIP6 SSP5-8.5)

indicate that the standard deviation of rainfall will rise 12%, on average, in the continental

U.S. between now and the end of the century (O’Neill et al., 2016). The rainfall distribution

is bounded below by zero, so this increase in volatility will lead to a higher probability of

heavier rainfall. Figure 6 shows rainfall volatility projections for every year between now

and 2100.30

Greater rainfall volatility will have two e↵ects in our model. First, any shock—whether

positive or negative—will require costly adjustment to either avoid damages or to take ad-

vantage of benefits. For firms, these costs are the hiring wedge in Equation 4 and shown

in Figure 4. Second, there will be a higher probability of larger rainfall shocks conditional

on one occurring, and as discussed above, this is particularly salient for rainfall which is

bounded above 0.

The results in previous sections give the e↵ects of a one standard deviation increase

in rainfall on employment, productivity, profit, and earnings. If the standard deviation of

rainfall increases from about 62 mm per month today to about 70 mm per month by 2100,

how will that a↵ect the construction industry and labor market? Simply extrapolating from

our current estimates, holding everything else fixed, this will result in an additional loss in

value added for the construction sector from a typical rainstorm of 0.02 percentage points.

This magnitude might appear small, but we emphasize that is the loss, over-and-above losses

already incurred in the current climate, from routine month-to-month rainfall. Given an total

30Figure A9 shows the projected standard deviation increase after residualizing on location and month-of-
year fixed e↵ects. The growth in volatility is the same.

31



Figure 6: Projected monthly rainfall standard deviation for the continental U.S.
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value added for the construction industry in the U.S. of roughly $1 trillion per year (BEA,

2019), an increase in losses of this magnitude could translate into tens of billions of dollars

of damage to the economy.

Our estimates are that profit for construction firms will change by a similar magnitude,

with firms losing around 0.01 percentage points more in present-value profit from a typical

rain storm. By comparing profit losses in the baseline scenario (shown in Figure 3) and

profit losses under projected climate change, we can estimate the change in forecast horizon

necessary for a firm to o↵set this impact.

Profit losses get smaller as firms can plan further ahead. To gain enough flexibility to

avoid the projected extra profit loss, firms would forecasts to arrive just over half-a-month

further in advance. In other words, a firm that faced a 12% larger rainfall event would be

left no worse o↵ it it was also given a half-month-further-ahead forecast. So one way to

think about the climate damages that we estimate is that firms would need to find a way to

increase their planning horizon by 50%, if they are currently planning one month ahead, in

order to o↵set the damage from a 1 standard deviation increase in rain.31

For longer baseline forecast horizons, the size of the increase falls. Figure 3 shows that

31In practice, our results indicate that firms are planning all the way out to a 6-month horizon, so this
comparison is just illustrative.
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at longer horizons, firms are able to largely avoid profit losses, so smaller forecast horizon

increases are su�cient to avoid extra damages under projected climate change. Planning at

such long horizons is inherent challenging, however, so a small increase in forecast horizon

might still be hard to achieve. Figure A11 shows the forecast horizon improvement needed

to o↵set projected profit losses for each of the forecast horizons considered in the paper.

Long-range weather forecasting has been an area of focus for climatologists and mete-

orologists, particularly since the early 1990s. Some success has been achieved in forecasts

at a monthly or seasonal horizon. The use of ENSO signals to forecast seasonal rainfall

and temperature, which we exploit in this paper, is one of the clearest success stories. But

such forecasts are inherently di�cult, and barring improvements to existing forecasts, more

careful attention by construction project managers, or other adaptations to reduce rigidity

in the labor market, the increased volatility projected by climate models will translated into

economic costs.32

Losses stemming from the interaction of labor adjustment costs and weather volatility

constitute damages from climate change that are, as far as we are aware, novel in the climate

economics literature. The damages do have an important antecedent in earlier work that

emphasized the role of capital and agricultural input adjustment costs in overall climate

damage (Quiggin and Horowitz, 2003, Kelly et al., 2005). The focus of that work, however,

di↵ers from ours in an important way: they focus on the costs paid along the transition path

between equilibria while we focus on adjustment costs paid due routine weather shocks.

Thus, one could distinguish between the “transition costs” pointed out by the previous

literature and the “adjustment costs” that we investigate. Adjustment costs and attendant

damages are important because they are paid routinely. Indeed, every time a weather shock

realizes the economy either pays adjustment costs or su↵ers damage from the change (even

if counterfactually from not adjusting to capture a gain from beneficial shocks).

6 Conclusion

Climate change is expected to cause substantial damage to the global economy. Our

understanding of that damage comes primarily from integrated assessment models (IAMs)

that estimate the equilibrium response to a change in the climate or from microeconometric

estimates of the acute e↵ects of weather. Both of these sources overlook important dynamics.

In this paper, we studied two understudied aspects of the economics of climate change

where dynamics play an important role: labor market adjustment and the e↵ects of rainfall

volatility. We focused on these issues in construction, an economically important, climate

32Toth and Buizza (2019) summarize the history and possible future e↵orts to achieve gains in monthly,
seasonal, or even longer-horizon forecasts. More pessimistically, Scher and Messori (2019) have recently
argued that climate change might make rainfall forecasting even harder in the future.
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exposed industry that has itself been largely overlooked by previous research.

We found evidence that construction labor markets respond sluggishly to forecasts of

rainfall shocks—an indication that market participants face adjustment costs. Empirically,

unexpected rainfall is associated with little change in construction employment. Rainfall that

can be anticipated well in advance, in contrast, leads to large changes in employment. Cali-

brating a multi-sector model labor market model we found that the labor market responses

to forecastable rainfall imply large labor adjustment costs.

Adjustment costs are a source of climate damage, a reason for ex ante adaptation by

market participants, and a limit to the adaptation process. Given the adjustment costs we

estimate, weather shocks cause not only acute damage, but also involve substantial payment

for adaptation. Existing methods that estimate the e↵ects of weather on economic outcomes

will miss this source of damage. Increases in weather volatility—which is already apparent in

the recent historical rainfall record and is projected to continue under unmitigated climate

change—will also imply higher climate damage due to more frequent or larger need for

adjustment. This source of damage is overlooked by IAMs. In our context, both of these

e↵ects strengthen the case for public policy to reduce the emissions of climate pollutants.

For an individual firm facing a world of increasing climate volatility and costly adjust-

ment, we showed that if firms can implement improvements to their hiring that bring down

the cost of employment adjustment, then they can substantially o↵set the negative e↵ects

of weather variation. Firms can also take action to better incorporate longer-horizon in-

formation into their decision-making. For construction firms that must make multi-month

contracts based on weather expectations, investing in innovations and process improvements

that will allow this type of planning will be of high value to improve the flexible and resilience

in the face of a changing climate.
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A Supplementary figures and tables

Figure A1: Commuting Zones Where Construction Employment is Disclosed

Notes: The map shows commuting zones in the continental U.S. where construc-
tion employment is disclosed (white) versus suppressed (black) for all months in our
sample.

40



Figure A2: ENSO Temperature Anomalies
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Notes: The figure shows monthly average temperature anomalies in the equatorial
Pacific Ocean as measured by the Niño 3.4 index. Gray bars are NBER recession
dates.

Figure A3: CZ-average rainfall and temperature over 1990 to 2016 period

(a) Pop. weighted precipitation (b) Pop. weighted avg. temperature

Panel (a) shows the time series average across the full sample (1990 to 2016) of population weighted monthly
total precipitation (in mm) in each commuting zone. Panel (b) shows the population-weighted average
temperature (in �C) for each commuting zone over the same period.
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Figure A4: Comparison of First-stage Coe�cients: ` = 1 and ` = 6
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Notes: The figure shows coe�cient estimates from Equation 1 for 1 and 6-month
ahead predictions of the rainfall using El Niño/Southern Oscillation. Example loca-
tions where the predictions at the two horizons di↵er substantially are labelled. The
dashed line is a 45� line.
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Figure A5: Main Results Using Rainy Days

1

2

3

4

5

6

F
o

re
ca

st
 le

n
g

th
 (

m
o

n
th

s)

−.015 −.01 −.005 0

Elasticity of employment to forecast of rainy days

Point estimate

95% CI

Notes: The figure shows coe�cient estimates from Equation 2 for rainfall pre-
dicted 1 to 6 months ahead. Predictions are based on CZ-specific responses
to changes in the El Niño/Southern Oscillation. In our primary specification
(see Table 2), the core independent variable is the log number of millimeters of
precipitation in the month. In this specification, the core independent variable
is instead the number of days in the month with positive precipitation.

43



Figure A6: E↵ect of Rainfall Forecasts on Employment Prior to the Arrival of the Rain
Shock
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(c) h = 3
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(d) h = 4
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(e) h = 5
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(f) h = 6

Notes: The figure shows coe�cient estimates from Equation 2 for rainfall predicted 1 to 6 months ahead.
Predictions are based on CZ-specific responses to changes in the El Niño/Southern Oscillation. The depen-
dent variable is log employment measured h months before the rain was forecast to arrive. The bars are 95%
confidence intervals.
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B Model and Calibration

B.1 Model of labor market with adjustment costs

Average utility of household members:

Ut =
1X

h=0

�h


lnCt+h + µS lnSt+h +

Z 1

0

⌫it+h�1(n),it+h(n),t+h(n)dn

�
where Ct ⌘

JY

j=1

✓
Cjt

µC
j

◆µC
j

(12)

and ⌫i,i0,t+1(n) is Gumbel distributed independently across i0 with shape 1/✓ and indepen-

dently and identically distributed over time and individuals.

The representative household does not have access to external financing, but can use in-

vestment in housing to smooth consumption over time. We view this assumption as capturing

how housing is a primary savings instrument for households in the U.S. economy.33 It allows

us to capture general equilibrium e↵ects within a local labor market that impact residential

investment decisions, while maintaining the convenience of a representative household.34

Housing investment technology:

St = (1� �S)St�1 + ISt where ISt ⌘
JY

j=1

 
ISjt
µS
j

!µS
j

. (13)

Household budget constraint

JX

j=1

Pjt(Cjt + ISjt) 
MX

i=0

WitNit + Tt (14)

where Tt denotes net taxes and transfers from the government.

The solution to the consumption and investment portion of the representative household’s

problem can be characterized as follows. The costs to the household of consumption and

housing at time t are, respectively,

PC
t =

JY

j=1

P
µC
j

jt and P S
t =

JY

j=1

P
µS
j

jt (15)

33For instance, we get this assumption as a result if the representative household has access to external
financing at an interest rate less than 1/� � 1 but faces a no-borrowing constraint. In this case, they would
like to borrow an infinite amount in steady state.

34Note also that this setup lets us avoid the indeterminacy of steady state savings in a small open economy
with a representative agent that can save at an exogenous interest rate equal to 1/� � 1.
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and consumption and investment in commodities satisfy, respectively,

PjtCjt = µC
j P

C
t Ct and PjtI

S
jt = µS

j P
S
t I

S
t . (16)

That is, the household has constant expenditure shares across commodities for the purposes

of consumption and residential investment. This result allows us to calibrate household con-

sumption preferences and the housing investment technology using data on each commodity’s

share of total consumption and residential investment expenditure.

Investment in housing is characterized in terms of these price indices by

µSCt

St
=

P S
t

PC
t

� �(1� �S)Et
Ct

Ct+1

P S
t+1

PC
t+1

. (17)

This condition states that the marginal rate of substitution between consumption and hous-

ing services has to equal the user cost of an additional unit of housing in units of consumption.

The later can be interpreted as the implicit rental price of the housing stock in units of con-

sumption. As a consequence, we can calibrate µS to the ratio of implicit rent on housing

services to total consumption expenditure.

From our Gumbel assumption, the solution to the allocation of workers is as follows. The

utility value of allocating another worker to employment status i:

Uit =
Wit/PC

t

Ct
+ �Et

"
✓ ln

MX

i0=0

!i,i0e
Ui0,t+1/✓

#
(18)

Employment law of motion:

Ni0t =
MX

i=0

⇧i,i0,tNi,t�1. (19)

where the share of workers shifting from i at time t� 1 to i0 at time t is

⇧i,i0,t =
!i,i0 exp(Ui0,t/✓)PM
ĩ=0 !i,̃i exp(Uĩ,t/✓)

. (20)

Turning to firms, the labor force in sector i, Nit, evolves as

Nit = (1� s)⇧Stay
i,t Ni,t�1 +Hit

where ⇧Stay
i,t ⌘ ⇧i,i,t.
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The production function is

Yit = Ait

�
K↵i

it L
1�↵i
it

�1��i
JY

j=1

✓
Xijt

�ij

◆�ij

(21)

where �i ⌘
PJ

j=1 �ij and

Lit =

"
1� 

2

✓
Hit

Hi,t�1
� 1

◆2
#
Nit.

Capital investment technology:

Ki,t+1 = (1� �K)Kit + IKit , and IKit ⌘
JY

j=1

(IKijt)
µK
j . (22)

Here, �K denotes the depreciation rate of capital.

The firm’s intermediate input expenditure and value added:

PjtXijt = �ijP
Y
it Yit and V Ait = (1� �s)P

Y
it Yit.

Letting Rit denote profit per unit of capital, the firm’s profit and the wage bill are:

RitKit = ↵iV Ait and WitNit = (1� ↵i)V Ait.

The firm’s capital investment price index and investment expenditure:

PK
t =

JY

j=1

P
µK
j

jt and PjtI
K
ijt = µM

j PK
t IKit .

Firm investment no-arbitrage condition:

1

1 + r
EtRi,t+1 = PK

t � 1� �K

1 + r
EtP

K
t+1

The shadow value of another worker to the firm is

Vit = P Y
it MPLit

Lit

Nit
�Wit +

1� s

1 + r
Et⇧

Stay
i,t+1Vi,t+1 (23)

where

MPLit ⌘ (1� ↵i)(1� �i)
Yit

Lit
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Optimal hiring:

Vit = P Y
it MPLit

✓
Hit �Hi,t�1

Hi,t�1

◆
Nit

Hi,t�1
� Et

P Y
i,t+1MPLi,t+1

1 + r


✓
Hi,t+1 �Hit

Hit

◆
Hi,t+1

Hit

Ni,t+1

Hit

(24)

Local sector output gets combined according to a Cobb-Douglas technology in order to

produce local commodity output. This links the local prices of sector output and commodities

as

Pjt =
MY

i=1

(P Y
it )

�ij

Expenditure on local production in sector i equal to

P Y
it Yit =

JX

j=1

�ij

"
Pjt

 
MX

i=1

Xijt + Cjt + ISjt +
MX

i=1

IKijt

!
+Gj +NXjt

#
.

The market clearing condition for the local labor market is

Pjt = Zjt if if j is traded and NXjt = 0 if j is not traded,

where Zjt is the world price for a traded commodity.

B.2 Calibration

Table A1: Calibration of Non-Sector-Specific Parameters

Parameter Value Source/Target
r 1.021/12 � 1 2% APR
� 1.02�1/12 2% APR
µS .171 Housing to consumption expenditure (BEA use IO table)
�S 0.00154 Housing investment to housing expenditure (BEA use IO table)
�K 0.00145 Capital investment to payments to capital (BEA use IO table)
s 0.066 Share of workers in same sector with a new employer (CPS)

Notes: Payments to capital are inferred as value added net of labor compensation.

We use input-output tables from BEA and employment transition probabilities from the

CPS to calibrate the model at the 2-digit NAICS level. Rather than reporting the full tables,

we report aggregated values below to highlight the overall structure of the economy.
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Figure A7: Fit of AR(5) Rain Process

Notes: The figure shows coe�cient estimates and point-wise standard error
bands for estimates of the impact of news about rain on realized rain by forecast
horizon (blue lines with grey bands), as well as the fit of an AR(5) process to
these estimates (dashed black line). We minimize the distance between the
estimates (pooling across forecast horizons) and the prediction from an AR(5)
process, using standard errors as weights.

Table A2: Commodity/Sector Specific Calibrated Parameters/Targets

Commodity/ µC
j µS

j µK
j Gj Capital Comp./worker

Sector share (↵i) share (As)
Construction 0.0039 0.7709 0.1788 0.1066 0.1887 6,441,050
Real Estate 0.0207 0.1255 0.0032 0.0 0.3425 5,697,540
Services 0.487 0.0143 0.0284 0.0 0.2008 4,845,990
Traded 0.4418 0.0893 0.7753 0.1168 0.1893 10,013,900
Traded (Residual) 0.035 0.0 0.0142 0.0 0.3265 4,057,720
Government/Misc 0.0117 0.0 0.0 0.7766 0.1415 5,216,890
Non-Employment 4,777,750

Notes: Data is from BEA use IO table. Compensation per worker share is in millions
of dollars. Non-employment compensation is inferred as the benefit necessary to cover
consumption expenditure and housing investment given labor compensation in other
sectors.
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Table A3: Calibration target for !ii0 , sector-to-sector labor flows

Commodity/Sector Const. R.E. Serv. Traded T.R N.E.
Construction 0.904 0.0014 0.011 0.0201 0.0038 0.0597
Real Estate 0.0052 0.9148 0.0163 0.0178 0.0011 0.0448
Services 0.0017 0.0006 0.9329 0.014 0.0012 0.0496
Traded 0.0035 0.0008 0.0159 0.945 0.0018 0.0331
Traded (Residual) 0.0064 0.0006 0.0125 0.0169 0.8982 0.0653
Non-Employment 0.0252 0.0046 0.1483 0.0777 0.0166 0.7277

Notes: The entries of each row are the share of workers moving from that
sector to each other sector per month in the current population survey (CPS).

Table A4: Calibration of �ij from BEA use IO table

Commodity/Sector Const. R.E. Serv. Traded T.R Govt./Misc.
Construction 0.0002 0.0338 0.0018 0.0028 0.0073 0.0181
Real Estate 0.0237 0.0929 0.0523 0.0272 0.0474 0.0179
Services 0.0702 0.1605 0.0674 0.0439 0.0275 0.0425
Traded 0.3695 0.2111 0.2207 0.3925 0.2525 0.2201
Traded (Residual) 0.0148 0.057 0.0174 0.0467 0.1916 0.0149
Government/Misc. 0.0046 0.0056 0.0078 0.0116 0.0078 0.009

Notes: Each column shows shares of that sector’s revenue spent across commodi-
ties.

Table A5: Calibration of �ij from BEA make IO table

Commodity/Sector Const. R.E. Serv. Traded T.R Govt./Misc.
Construction 0.9588 0.0012 0.009 0.0126 0.0076 0.0109
Real Estate 0.0 0.872 0.0178 0.0978 0.0 0.0125
Services 0.0 0.0011 0.931 0.0138 0.0003 0.0538
Traded 0.0002 0.0001 0.0054 0.9822 0.0024 0.0098
Traded (Residual) 0.0 0.0 0.0004 0.0036 0.9152 0.0808
Government/Misc. 0.0 0.0 0.0007 0.0019 0.0005 0.9969

Notes: Each row shows shares of that commodity’s expenditure across sectors.
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Figure A8: Present Value of Profit and Labor Value When Rain Arrives
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(a) Present Value of Profit
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(b) Present Value of Earnings

Notes: The figure shows the present value of profit for firms (Panel A8a) and present value of earnings
for workers (Panel A8b) as a function of the forecast horizon and three di↵erent values of the firm-side
adjustment cost parameter, : high (red with hollow circles), baseline (blue with filled circles), and low
(gray with hollow squares) adjustment costs. All values are calculated at the time when the rain shock
arrives (time t in Equation (2)).

Figure A9: Projected monthly rainfall standard deviation for the continental U.S.
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(a) Raw std. dev.
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(b) Residual std. dev.

Panel (a) shows the projected standard deviation of monthly rainfall (in mm) each year from the present
until 2100 in CMIP6 SSP5-8.5 (O’Neill et al., 2016). Each point is calculated by taking the month-to-month
standard deviation of rainfall for each grid point in the CMIP6 projections then averaging those values
across the continental U.S. The raw standard deviation is debaised to match the sample average from our
estimation sample (by adding 2.04 to the projection values). Panel (b) shows the same standard deviations
but where the monthly rainfall in each grid point is first residualized on month, year, grid point, and climate
model fixed e↵ects then the standard deviation is calculated.
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Figure A10: Projected change in monthly rainfall standard deviation for the continental U.S.

The figure shows the projected growth in the standard deviation of monthly rainfall (in mm) each year from
the present until 2100 in CMIP6 SSP5-8.5 (O’Neill et al., 2016). Each line is indexed to 1 in 2015. The gray
lines are from di↵erent climate models in the CMIP database. The black line is the monthly average across
models.

Figure A11: Forecast horizon improvement needed to o↵set projected losses
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The figure shows the gain in forecasts needed to o↵set losses from the projected change in the standard
deviation of monthly rainfall caused by climate change (shown in Figure 6) in our baseline calibration. The
line is the horizontal distance between the baseline profit loss and the profit loss under the projected increase
in rainfall volatility as a function of forecast horizon.
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