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Abstract

Policy responses to the 2019 novel coronavirus (COVID-19) outbreak must strike
a balance between maintaining essential supply chains and limiting the spread of the
virus. Our results indicate a strong positive relationship between livestock processing
plants and local community transmission of COVID-19, suggesting that these plants
may act as transmission vectors into the surrounding population and accelerate the
spread of the virus beyond what would be predicted solely by population risk char-
acteristics. We estimate the total excess COVID-19 cases and deaths associated with
proximity to livestock plants to be 236,000–310,000 (6–8% of all US cases) and 4,300–
5,200 (3–4% of all US deaths) as of July 21, with the vast majority likely related to
community spread outside these plants. The association is found primarily among large
processing facilities and large meatpacking companies. In addition, we find evidence
that plant closures attenuated county-wide cases and that plants that received permis-
sion from the USDA to increase their production line speeds saw more county-wide
cases. Ensuring both public health and robust essential supply chains may require
an increase in meatpacking oversight and potentially a shift toward more decentral-
ized, smaller-scale meat production. Keywords: COVID-19, Supply chains, Livestock,
Agriculture, Public health
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1 Introduction

Among the many challenges posed by the COVID-19 outbreak, maintaining essential sup-

ply chains, while mitigating community spread of the virus, is vital to society. Using county-

level data as of July 21, 2020, we test the relationship between one such type of essential

activity, livestock processing, and the local incidence of COVID-19 cases. We find that the

presence of a slaughtering plant in a county is associated with 4–6 additional COVID-19

cases per thousand, or a 51–75% increase from the baseline rate. We also find an increase

in the death rate by 0.07–0.1 deaths per thousand people, or 37–50% over the baseline

rate. Our estimates imply that excess COVID-19 infections and deaths related to live-

stock plants are 236,000–310,000 (6–8% of all US cases) and 4,300–5,200 (3–4% of all US

deaths), respectively, with the vast majority occurring among people not working at live-

stock plants.

We further find the temporary closure of high-risk plants to be followed by lower rates of

COVID-19 case growth. We also find that smaller, decentralized facilities do not appear to

contribute to transmission, and that plants that received permission from the USDA to in-

crease their production line speeds saw more county-wide cases. Our associations hold af-

ter controlling for population risk factors and other potential confounders, such as testing

rates. Although lacking a natural experiment to cement causality, we employ a combina-

tion of empirical tools—including an event study, instrumental variables, and matching—

to support our findings.

The centrality of livestock processing to local economies and national food supplies implies

that mitigating disease spread may take an economic toll. Understanding the public health

risk posed by livestock processing is essential for assessing potential impacts of policy ac-

tion. However, generating case data attributable to livestock plants is challenging: contact

tracing in the US is decentralized and sporadic, and there may be incentives for companies

and government bodies to obscure case reporting (Subbian et al. 2020; Foley 2020; Leah
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Douglas 2020; Novack and Sophie 2020; Mayer 2020). Our study represents an attempt

to address this gap in knowledge.

1.1 Heterogeneity in COVID-19 patterns

The disease burden of COVID-19 is not uniformly distributed across the global popula-

tion. Certain conditions appear to influence the degree to which people spread the virus.

Some contexts and social behaviors are believed to lead to superspreading events that dis-

proportionately a�ect local populations (Hamner 2020; Bou�anais and Lim 2020). Pre-

vious studies have explored links between the incidence of COVID-19 cases and a range

of demographic and environmental factors, such as age, occupation, income, race, inter-

generational mixing, temperature, and humidity (Dowd et al. 2020; Barbieri et al. 2020;

Borjas 2020; Sajadi et al. 2020; O’Reilly et al. 2020; National Academies of Sciences

and Medicine 2020). Social, commercial, and industrial activities are also believed to af-

fect transmission, for which reason countries worldwide have implemented a range of eco-

nomic and social distancing measures (Dowd et al. 2020; Anderson et al. 2020; Ebrahim

et al. 2020; Lewnard and Lo 2020; Moghadas et al. 2020; Kraemer et al. 2020; Wells

et al. 2020; Roser et al. 2020). In the US, some industries are exempted from shelter-in-

place orders and have remained operational due to their necessity to meet basic societal

needs (US Department of Homeland Security 2020). We investigate the relationship be-

tween transmission and one such activity, livestock processing.

1.2 COVID-19 and livestock plants

The livestock and poultry processing industry is an essential component of the global food

supply chain. In the US, it is a large industry, employing 500,000 people. It is also highly

concentrated: the largest four companies in beef, pork, and poultry processing capture

55–85% of their respective markets (Dyal 2020; MacDonald and McBride 2009; Hendrick-
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son et al. 2017; Inc. 2020; Wohlgenant 2013; Ward 2002). This degree of concentration

stands in contrast to the European Union (EU), for example, where the top 15 meat com-

panies represent 28% of the region’s meat production (European of Food, Agriculture, and

Tourism Trade Unions 2011).

Over the decades, the livestock and poultry processing industry in the US has consolidated

its operations into fewer, larger plants, in which meat production per plant has increased

threefold since 1976 (Hendrickson 2015; Skerritt et al. 2020). Today, 12 plants produce

over 50% of the country’s beef, and 12 others similarly produce over 50% of the country’s

pork (2020; National Pork Board 2019). Early in the COVID-19 pandemic, livestock pro-

cessing plants worldwide experienced spikes in infections, facing shutdowns that disrupted

meat and dairy supplies (Mano 2020; Busvine 2020; Scott and Chandler 2020; Hirtzer

and Freitas 2020). In the US, reports of COVID-19 spreading within the livestock process-

ing industry led to increased attention and updated safety guidance by the CDC (Dyal

2020). Several plants were forced to shut down until, among other factors, a federal execu-

tive order invoked the status of livestock processing as ‘critical infrastructure’ for national

security and mandated that these plants remain open (Mason and Polansek 2020; Order

2020).

Work routines in livestock processing have several characteristics that make plants suscep-

tible to local outbreaks of respiratory viruses. The CDC includes among potential risk fac-

tors: long work shifts in close proximity to coworkers, di�culty in maintaining proper face

covering due to physical demands, and shared transportation among workers (Dyal 2020).

Previous research has proposed occupational exposure to livestock animals as a driver of

viral spread, although an experimental study did not find pigs or chickens to be suscep-

tible to the SARS-CoV-2 virus associated with COVID-19 (VanderWaal and Deen 2018;

Myers et al. 2006; Schlottau et al. 2020; Yang et al. 2020).

Increases in production line speeds due to technological enhancements as well as policy
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changes have also been hypothesized to exacerbate COVID-19 transmission (Thompson

and Berkowitz 2020; Mayer 2020). Among those we investigate are USDA waivers on

poultry-production line-speed limits for plants with strong commercial production prac-

tices and microbial control (US Department of Agriculture 2018).1

The indoor climate of livestock facilities may increase transmission risk. To preserve meat

after slaughter, processing areas are maintained at 0-12 ¶C (Cano-Muñoz and Muñoz 1991),

and such low temperatures have been linked to increased COVID-19 risk (Carleton and

Meng 2020; Zuber and Brüssow 2020). Though these rooms are kept at 90-95% relative

humidity to prevent meat from drying and losing weight, the low absolute humidity at

near-freezing temperatures may encourage the transmission of airborne viruses such as in-

fluenza (Shaman and Kohn 2009; Koep et al. 2013; Deyle et al. 2016). Moreover, stud-

ies have suggested that industrial HVAC systems used to cool and ventilate meat stor-

age and processing facilities may further the spread of pathogenic bioaerosols, a proposed

COVID-19 transmission route (Beck et al. 2019; Asadi et al. 2020; Mittal et al. 2020;

Borak 2020; Zuber and Brüssow 2020).

Workers’ socioeconomic status and labor practices may also contribute to infection and

transmission. Among frontline meat processing workers in the US, 45% are categorized as

low income, 80% are people of color, and 52% are immigrants, many of whom are undoc-

umented and lack ready access to healthcare and other worker protections that could fa-

cilitate COVID-19 prevention and treatment (Fremstad et al. 2020; Compa 2004; Kandel

and Parrado 2005). In addition, employees at these facilities may face incentives to con-

tinue working even while sick through company policies on medical leave and attendance

bonuses (Dyal 2020; Mayer 2020; Grabell 2020). In addition, through consolidation over

the decades, the meatpacking industry has potentially increased its monopsonistic power
1 The CEOs of Wayne Farms and Tyson Foods—both granted waivers in April 2020—are, respectively,

Chairman of the National Chicken Council (the body that initially lobbied for the line speed waivers)
and a public advocate for the poultry industry, buying full-page newspaper ads in April stating that the
food supply chain was ‘broken.’
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over labor markets, which has been linked to greater work hazards (Constance et al. 2013;

MacDonald et al. 2000; Viscusi 1980).

2 Materials and Methods

Our analysis used a county-level dataset of COVID-19 cases and deaths from the New

York Times, based on reports from state and local health agencies (The New York Times

2020). Included in counts are both confirmed and probable deaths, as categorized by states.

The five county boroughs of New York City were grouped into one unit. We limited the

analysis to the continental US. Our baseline model specification takes the following form:

outcomei = — ú livestocki + ◊ ú controlsi + –s + ‘i (1)

where outcomei is the COVID-19 case or death rate in county i, — is the coe�cient of in-

terest, controlsi is a vector of county-level covariates, –s is a dummy for fixed e�ects in

state s, and ‘i is the error term.

Covariate data include county-level race, ethnicity and age structure data from the US

Census and mean county-level income data from the US Bureau of Economic Analysis

(SEER Program, National Cancer Institute, NIH 2020; US Bureau of Economic Analy-

sis 2020). Data on nursing home populations, incarcerated populations, uninsured popu-

lations, average household size, and work commuting methods come from the 2014-2018

American Community Survey (US Census Bureau 2019c; 2019e; 2019b; 2019d). Data on

manufacturing establishments come from the American Economic Survey (2019a). Data

on the number of frontline workers are derived from CEPR data (Fremstad et al. 2020),

transforming from the Public Use Microdata Area level to the county level assuming even

allocation. The freight index is from the FHA’s Freight Analysis Framework (US Depart-

ment of Transportation 2020) using the variable AADTT12, the annual average daily truck
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tra�c in 2012, which we sum across all listed highways in a given county. Data on state-

level social distancing policy come from a dataset synthesizing news articles tracking these

policy measures (NASHP Sta� 2020; Gershman 2020; Lee et al. 2020).

Locations and characteristics of livestock processing facilities come from the USDA’s Food

Safety and Inspection Service (FSIS) (USDA Food Safety and Inspection Service 2020a).

Beef and pork livestock plants were filtered to include plants with volume of all processed

products greater than one million pounds per month (Categories 4 and 5), which account

for the vast majority of US production. Poultry livestock were filtered to include plants

with volumes greater than 10 million pounds per month (Category 5) because that cat-

egory alone accounts for the vast majority of US production. County-level mobility data

were made accessible to COVID-19 researchers by Google (Google LLC 2020). County-

level COVID-19 testing data come from a dataset gathered from 31 state health agencies.

Data on line speed waivers come from the USDA FSIS (USDA Food Safety and Inspection

Service 2020b). Data on plant closures and opening dates come from a novel dataset as-

sembled from various local news reports, building on a dataset from the Midwest Center

for Investigative Reporting (Chadde 2020). Historical livestock production data are from

the 1959 USDA census of agriculture, accessed via the Inter-University Consortium for Po-

litical and Social Research (Haines et al. 2018).

3 Results

We find a strong relationship between proximity to livestock plants and the incidence of

COVID-19 over time. Fig. 1 plots average COVID-19 case and death rates over time by

whether there is a large livestock facility in a given county relative to rates in counties at

varying distances from a plant. In both cases, we see an increasing divergence in outcomes

beginning in early April based on livestock-plant proximity.

Fig. 1 does not account for county-level di�erences in terms of density and demograph-

7



ics. In Table 1, we estimate the relationship between livestock plants and COVID-19 in-

cidence as of July 21, 2020 using regression models that control for potential confounding

variables, including county-level measures of income; population density and its square;

the timing of the first case; the proportions of elderly people; uninsured people, frontline

workers, and people using public transportation; racial and ethnic characteristics; average

household size; local freight tra�c; and populations of nursing homes and prisons. We find

that livestock plants are associated with an increase in COVID-19 cases by approximately

4 per thousand people, representing a 51% increase over the July 21 baseline rate of 8 per

thousand. Likewise, death rates increase by 0.07 per thousand, or 37% over the county

baseline of 0.2 deaths per thousand. The results are robust both nationally and when only

considering variation within states after including state fixed e�ects. We also use an al-

ternate specification with a binary measure of whether a county has one or more livestock

plants. Such counties are associated with 6 additional cases per thousand, or a 75% in-

crease over the baseline, as well as 0.1 additional deaths per thousand, or 50% over the

baseline county death rate.2. In addition, COVID-19 appears to arrive earlier in counties

with livestock plants (Table 3).

3.1 Heterogeneity by facility type, size, operations, and com-
pany

We now present potential characteristics of livestock facilities that might contribute to

these observed relationships with the COVID-19 case and death rate.
2 In line with the literature, we find COVID-19 incidence to be strongly associated with population den-

sity, average household size, the timing of the first confirmed case, and the proportion of a county’s pop-
ulation who are public transit commuters, elderly, Black, Hispanic, in a nursing home, uninsured, or in-
stitutionalized (Fig. 3
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3.1.1 Facility type

We first looked at the relationship between reported cases and the type of animal slaugh-

tered or processed. We found that beef, pork, and poultry plants each show a significant

relationship with COVID-19 cases and deaths, with pork plants showing the greatest mea-

sured magnitude of the three in cases and beef plants showing the greatest magnitude in

deaths (Table 4). As seen in the map in Fig. 2, pork and beef plants are well distributed

throughout the US, and although poultry plants are relatively concentrated in the South-

east US, they are found across 10 states. Overall, the wide geographic distribution of facil-

ities by type mitigates concerns of this being a regional phenomenon.

3.1.2 Facility size

We next investigated whether there are di�erential relationships with COVID-19 trans-

mission based on the size of processing facilities. Livestock facility data are gathered from

the USDA FSIS. Table 5 categorizes beef, pork, and poultry plants by order of magnitude

based on the pounds per month processed: large (Category 5; over 10 million), medium

(Category 4; over 1 million), and small (Category 3; over 100,000 and under 1 million).

Each size category was su�ciently represented, with 349 small plants, 126 medium plants,

and 225 large plants. Very small plants (Categories 1 and 2), which are often niche providers,

were excluded.3

We found the relationship between livestock plants and COVID-19 transmission to be

most pronounced among the largest plants, whose presence in a county is associated with

a 35% higher COVID-19 case rate relative to the average coe�cient for livestock plants

shown in Table 1. Small and medium-sized plants were generally not found to have signif-

icant relationships with local COVID-19 transmission, suggesting that the scale of produc-
3 In our main analyses, we include Category 4 and 5 pork and beef facilities and Category 5 poultry fa-

cilities (which comprise 57% of total poultry plants); see the Materials and Methods section for a full
discussion.
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tion is an important variable for industry leaders and policymakers to consider.

3.1.3 Production-line speeds

We next examined whether there is a relationship between local COVID-19 transmission

and plant operating procedures. We collected data on whether a poultry plant had been

granted a waiver from the USDA permitting production line processing speeds of 175 birds

per minute, up from the statutory limit of 140. Waivers were first issued to 20 poultry

plants in 2012 as part of a pilot study to test self-monitoring of safety. It was then ex-

panded in September 2018 to allow all poultry plants the opportunity to apply for these

waivers. A faster production line can result in both workers spending their days in closer

quarters and facing greater di�culty in maintaining PPE compliance. These factors may

increase the likelihood of viral transmission.

Out of the 120 poultry plants in our sample, 48 plants currently have waivers, 16 of which

were issued in 2020.4 An analysis of the relationship between line speed waivers and local

COVID-19 incidence suggests, though with less precise estimates, that waivers predict in-

creases in county-level case rates double those in counties with non-waiver poultry plants

(Table 6). Among plants issued a waiver in 2020, the relationship is even greater in mag-

nitude. This finding suggests a potential pathway between a livestock plant’s operating

procedures and COVID-19 transmission.

3.1.4 Facility operator

We next looked at di�erential relationships with COVID-19 by company. The relation-

ship between local COVID-19 incidence and medium and large plants (FSIS Categories 4

or 5) owned or operated by some of the largest US processors (National Beef, JBS, Tyson

Foods, Cargill, Smithfield) and their subsidiaries is presented in Table 7. These magni-
4 Among counties with poultry plants, those with and without waivers appear similar in their average

characteristics, reducing waiver selection concerns. The exception is that waivers counties have lower
proportions of Black residents and prison populations, factors associated with increased COVID-19 risk.
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tudes are shown in Fig. 4: the strongest relationship is found with National Beef, whose

indicated relationship with COVID-19 case rates is approximately five times greater in

magnitude than that of other livestock facilities. However, all of the large companies ap-

pear to have larger coe�cients than the baseline. Aside from Smithfield, the relationship

with deaths is positive, albeit less significant, which may be due to small sample size.5

3.2 Behavioral change

If livestock facilities are driving higher COVID-19 incidence, and if livestock processing

is an essential industry, we would expect people in livestock plant counties to work more

compared to those in non-livestock counties in response to lockdowns related to COVID-

19. To this end, we employed county-level mobility data made available by Google for

COVID-19 researchers. We constructed a baseline measure of average time-use change be-

fore and after March 13, 2020, the date the US declared a national disaster in relation to

COVID-19 and two days after the WHO declared COVID-19 a pandemic.

We then examined how the presence of livestock plants varied with time spent working

and engaging in shopping and recreation. We controlled for the same demographic and

location-based covariates as in other models. We found that the presence of livestock plants

is strongly associated with more time spent at work (Table 8). This association is relative

to the baseline behavior change across all other counties, indicating that people in live-

stock plant counties are working more (or cutting back on work less) than people in other

counties. Meanwhile, there is a lesser and imprecise relationship for retail and recreation

activities, which may contribute to viral spread. This finding supports the notion that

livestock plants, rather than unrelated changes in behavior in these same counties, are the

more likely vehicle of COVID-19 transmission.6

5 In our collected sample, the number of facilities per company varies: National Beef has only seven plants
in seven counties, whereas Tyson Foods has 80 plants across 69 counties. The other companies fall some-
where in between.

6 It is possible that additional time spent working, and thus out of the house, may explain some of the
additional time spent on retail activities (e.g., gas stations or workday meals).
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3.3 Plant shutdowns

Many livestock plants were temporarily shut down to halt the spread of COVID-19. In

such cases, we would expect the dynamics of caseloads and deaths over time to vary neg-

atively with the timing of shutdown, after a lag. Were confounders instead driving our

results, they would have to follow the timing of the plant shutdowns as well. This helps

argue against purely static confounders, such as highway connectedness or fraction of the

population that is Hispanic.

Using a dataset tracking whether and when livestock plants closed, Fig. 5 presents an

event study comparing the change in weekly COVID-19 case rates before and after clo-

sure, averaged across counties with plants that closed and counties with plants with no

evidence of closure. Among livestock plants in our sample, we have the dates of closures

that occurred in 26 counties, or 10% of counties with plants. The mean closure time was

nine days. Some closed for a day or two for cleaning and disinfection, while others closed

for longer periods while revising their operating procedures and monitoring sta�. On the

other hand, many plants remained open due to a perceived lack of risk, and others re-

mained open despite significant local outbreaks.

In this event study, we examined case growth (weekly log di�erence), following the struc-

ture of previous analysis (Hsiang et al. 2020), as well as change in case rates. In addition,

we performed pre-policy matching across the two groups based on percent case growth in

the two weeks prior to shutdown. In doing so, we selected the top quartile of growth rates

among the 233 counties with livestock plants that did not have a plant shutdown. We took

this step to maximize comparability between the two groups, as we observed that preclo-

sure growth in cases was, on the whole, greater in plants that closed (Fig. 6).

Coe�cients are plotted from a panel regression, where counties (categorized as either hav-

ing or not having a plant closure) are interacted with the weekly event index, both in terms

of percent growth in cases (Fig. 5 A and C) and the change in case rates per 1000 (Fig.
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5 B and D). This model controls for state-level social distancing and stay-at-home pol-

icy and includes a fixed e�ect for each county, thereby isolating within-county variation in

timing (among counties with plant closures).

Fig. 5 shows that plant closures occurred in counties experiencing high growth in COVID-

19 cases, as might be expected. Within one week of closure, however, the growth rate in

shutdown counties reverted to the pre-policy growth rate from a higher peak compared to

non-shutdown counties in the same time. By week 2, growth rates between the two cate-

gories, highly divergent in week 1, were roughly equal. By weeks 3–4, average growth rates

in shutdown counties were in fact lower than even counties without plants. This lag struc-

ture for cases aligns with the fact that COVID-19 incubation periods may last for up to 14

days (Baud Baud et al. 2020).

The lower sustained COVID-19 growth rate postclosure suggests that plant closures have

some relationship with COVID-19 transmission, which in turn suggests some relationship

between plant-level activity and community disease spread within the county. Given that

the average closing period was only nine days, it is unclear whether the plant closures

themselves reduced COVID-19 transmission rates or whether closures resulted in plants

taking more COVID-19 precautions (e.g., implementing enhanced safety protocols). It

is also true that locales initially experiencing growth spikes will likely revert to average

growth rates over time. However, the speed with which growth rates rose and fell in shut-

down counties suggests that some closure-related mechanism is likely at play. And while

shutdown counties have higher cumulative COVID-19 caseloads on average, this is likely

because closures occur too late to suppress community spread outside of these plants.
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4 Robustness

4.1 COVID-19 testing

Next we address concerns that these results primarily reflect di�erences in testing. Places

with more testing tend to have more confirmed COVID-19 cases than places with less test-

ing (mechanically). There does not appear to be a national database on county-level test-

ing, so we compiled data from 31 states that have livestock facilities and testing data at

the county level. Table 9 shows that while testing is positively associated with COVID-19

incidence, the relationship to livestock facilities remains large and significant. In a second

specification, we add the positivity rate (total cases divided by total tests) as a further

control. The magnitude of the livestock coe�cients are of a similar magnitude to those in

the baseline model in Table 1. However, these estimates are not directly comparable be-

cause of the smaller sample size of counties with testing data (1,773 counties across the 31

states).

4.2 Manufacturing activity

It is possible that a certain type of work similar to livestock processing—but not livestock

processing itself—is driving the spread of COVID-19. To test this, we controlled for the

county-level number of manufacturing establishments and share of income from manufac-

turing. We found that the relationship between livestock plants and COVID-19 incidence

remained largely stable, meaning that it is not explained by a correlation with manufac-

turing (Table 10). While there is no obvious relationship with the number of manufactur-

ing establishments, the coe�cient for manufacturing share of income is positive and statis-

tically significant, implying that manufacturing may be associated with higher COVID-19

incidence. Such a relationship is plausible given that, like livestock processing, employees

in the manufacturing sector may work in close proximity and that many manufacturing

activities are considered essential to supply chains.
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4.3 Dropping counties distant from livestock plants

Another potential concern is that counties very far from livestock plants have lower pop-

ulation densities and di�erent demographic make-ups than counties nearer these plants.

Correspondingly, there is a risk that incorporating these counties into our analysis may in-

troduce bias into our livestock plant estimates. An analysis omitting counties more than

100km from a county with a livestock plant shows a relationship with livestock facilities

greater in magnitude than the base specification, indicating that our findings are robust to

this risk and, perhaps, somewhat conservative (Table 11).

4.4 Dependent variable transformations

To address concerns about a skewed outcome variable, we used the natural log and inverse

hyperbolic sine of the dependent variable and found a consistently positive but smaller

magnitude relationship between livestock plants and increased COVID-19 case and death

rates (Table 12).

4.5 Alternative statistical approaches to confounding

Above, we have shown the robustness of multivariate regression results to various confounders—

demographic, geographic, and behavioral—and sample selection criteria. Additionally, we

have shown that the dynamics over time of COVID-19 cases and deaths vary with the tim-

ing of livestock plant shutdowns.

Here, we present results of additional statistical methods used to explore the relation-

ship between livestock plants and COVID-19 cases and deaths in the cross-section. The

methods we use to help address potential bias and endogeneity concerns are: IV analysis,

propensity score matching, and nearest neighbor matching. We note that the 259 counties

in our sample with livestock plants di�er in important ways from those without plants. We

construct a balance table comparing counties with and without livestock plants (Table 13).
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Counties with plants have higher population density, a lower proportion of elderly people,

higher proportions of Black and Hispanic people, and larger household sizes. Income lev-

els, by contrast, are similar. Each particular statistical method adjusts for these baseline

di�erences in di�erent ways. To preview, we find the observed relationship with COVID-19

incidence to be robust to all three approaches.

4.5.1 IVs

First, we employed an IV approach using historical livestock agricultural production data.

The selection of this instrument is motivated by meat processors’ need to minimize costs

of transporting livestock supply when selecting the location of plants. In the first stage, we

regressed the current number of livestock plants in each county on the county’s livestock

production value in 1959 in terms of animals sold, as derived from the USDA census. Note

this includes only agricultural operations and not livestock processing. We believe this is

a strong instrument given the facts that most of the interstate highway system was con-

structed during the 1960s, most currently operating livestock processing plants were built

in the 1970s or later, and livestock agricultural operations in 1959 appear unlikely to a�ect

current public health outcomes.

In the second stage, we regressed COVID-19 incidence on this predicted value of livestock

plants, as well as the other covariates in the primary specification. The first stage in the

IV analysis, presented in Table 14, shows that the instrument is highly relevant with an

the F -statistic far above Stock and Yogo’s 10% maximal bias threshold (Stock and Yogo

2002. The overall IV results in Table 15 show the relationship between livestock facili-

ties and COVID-19 case and death rates to be even stronger for each outcome except the

within-state death rate, which is of comparable magnitude but less precisely estimated.

We note that the IV approach restricts identifying variation to that attributable to live-

stock agriculture proximity, thereby reducing statistical power.
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4.5.2 Propensity score and nearest neighbor matching

For both propensity score matching and nearest neighbor matching, we constructed com-

parable subsamples of our dataset with and without livestock facilities to estimate an ef-

fect of having these livestock facilities among otherwise similar counties on COVID-19

cases and deaths.

For propensity score matching, we first predicted the probability that a county has at least

one livestock facility (binary value) using a binomial regression that includes all the covari-

ates from our primary model specification in Table 1, as well as their quadratic terms to

increase model flexibility. We then confirmed that observations were relatively balanced

across covariates within each propensity score quartile (Table 16. This suggests that the

propensity score is indeed balancing the multidimensional covariates. In a second step, we

used this predicted probability (i.e., the propensity score) as a control in a regression of

COVID-19 incidence on livestock plants. The idea here is that the propensity score helps

account for bias in the location of livestock plants.

For nearest neighbor matching, we use the MatchIt package in R to restrict the sample to

similar treated and control groups. The matching occured using a nearest neighbor algo-

rithm based on predicting the livestock binary variable with the covariates in our primary

specification. To ensure an adequate sample size, we allowed the algorithm to match two

non-plant counties to every one county with a livestock plant. We found the resulting 774

county subsample to be well balanced (Table 17).7 Table 18 consolidates the results and

includes outputs from Table 1 for reference. In this analysis, coe�cients for both case and

death rates remain of a similar magnitude and level of significance.
7 A balance table for the entire sample is shown in Table 13.
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4.6 Community spread beyond livestock plants

COVID-19 transmission likely extends beyond the county containing the livestock plant.

Fig. 7 expands our main analysis to include neighboring counties grouped by distance

band, as charted in Fig. 1 and visualized in the map in Fig. 3. We found evidence of a

relationship between livestock plants and increased COVID-19 case rates up to to 150km

away from a plant, further supporting the notion of community spread beyond the imme-

diate work context.8

To validate and contextualize our findings, we first estimated the total excess cases and

deaths related to livestock plants implied by our results. For one set of estimates, we mul-

tiplied the plant-level coe�cient for excess cases and deaths related to livestock plants by

the total number of plants and the average population per plant to arrive at a national to-

tal. Taking a second approach, we used a binary measure for whether a county has one or

more livestock plants and multiplied this coe�cient by the county-level mean population

and number of counties with livestock plants. The estimates resulting from this exercise

are, respectively, 236,000–310,000 cases and 4,300–5,200 deaths. A summary of this calcu-

lation is shown in Table S19.

Next, we estimated the share of cases among livestock employees relative to total excess

cases in an attempt to determine the share of excess cases that may be occurring outside

the livestock plants. We used the CDC’s state-level aggregate count of livestock workers

testing positive for COVID-19 as of May 31 across 26 states (Waltenburg et al. 2020).

Comparing this to state-level case data as of May 31, we found that livestock workers rep-

resented 2.7% of cases in these states. Using this ratio to estimate the total number of in-

fected livestock workers among all of the cases observed in these states on July 21, we ar-

rived at an estimate of 35,635 infected workers, approximately 7% of the industry’s entire
8 We present summary statistics by distance band in Tables 19 – 21. The average number of counties

in each band increases with distance. There is a clear positive relationship between COVID-19 cases
and deaths in relation to livestock facilities, and the county-level mean case rate varies directly with a
county’s proximity to a neighboring county with a livestock facility.
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employee base. Using our calculation of 236,000–310,000 cases nationwide due to livestock

plants, we estimated that livestock workers represented 12–15% of these excess total cases.

In other words, for every worker infected at a livestock plant, between 7 and 8 local non-

workers were ultimately infected by the end of the sample period, underscoring the high

potential for community spread.

5 Discussion

Angrist and Krueger (Angrist and Krueger 1999) noted that “one should always be wary

of drawing causal inferences from observational data." We know of no random assignment

design that could address our research question and thereby yield the most reliable path

to causal inference. The best we can do here is provide an unusually broad array of obser-

vational evidence. This includes (but is not limited to) ruling out the most obvious con-

founders, a cross-sectional IV, and the event study analysis leveraging shutdown timing.

A still more compelling natural experiment would leverage explicit and exogenous varia-

tion that drives livestock plant shutdowns, i.e., an IV for the shutdowns or their timing.

Unfortunately, we know of no such identifying variation.

Readers may disagree on whether our array of analyses has isolated a causal e�ect. Given

this, and in order to be conservative, we avoid causal language throughout our text so as

not to overstate the “hardness" of our method (Akerlof 2020). This avoidance and caution

stands in contrast to other recent, impactful work on COVID-19.

Still, we believe our array of analyses constitutes the best feasible approach to shed light

on the role of livestock processing plants in the US COVID-19 pandemic. For a question

of this importance, we believe there is no “harder" method available (2020). As policy-

makers and industry leaders seek to preserve vital food supply chains while mitigating the

pandemic’s spread, evidence on the potential scope of the issue is particularly valuable, as

well as assessment of the relationship between temporary plant shutdowns and subsequent

19



COVID-19 growth dynamics.

Although our estimate that 6–8% of US COVID-19 cases are associated with livestock

plants may appear high, it is important to recall that high levels of geographic heterogene-

ity in COVID-19 incidence can be explained by some combination of individual behavior,

government policy, social distancing compliance, and economic activity: the US, for exam-

ple, has 4% of the world’s population but approximately a quarter of all cases and deaths.

When narrowing the geographic focus, we can imagine the distribution of COVID-19 inci-

dence to be similarly clustered, if not even lumpier.

Kansas provides a telling example of the outsized role of livestock facilities: as of July 20,

3,200 out of 23,300 state cases (14%) were directly linked to meatpacking (Kansas Depart-

ment of Health and Environment 2020). For context, there are 17,200 employees in the

animal slaughtering industry in Kansas (aes), or 0.6% of the state’s population, suggesting

that livestock plants had a relationship of a magnitude closer in scale to our own estimates

(Kansas’ estimate is 23x of the industry’s labor footprint). Although the figure we are es-

timating in our study (6–8% of all US cases out of a national livestock workforce of 0.15%,

or a multiplier of 40–53x) is larger, we believe that this finding is plausible considering

follow-on community spread; Kansas’ o�cial tally, though evidently aided to some degree

of contract tracing, is reportedly hampered by lags in hiring sta� and legislative actions

that have inhibited tracing e�orts (Mitchell 2020). That is, the figure we have calculated

could in fact be more complete than the Kansas figure in capturing the spread resulting

from livestock plants.

Our analysis of individual meatpacking companies may present an opportunity to explore

how di�erences in corporate structure and operating practices may account for their dif-

ferential public health outcomes. In particular, the evidence that shutting down plants

temporarily may be related to decreases in COVID-19 case growth presents a potentially

powerful transmission mitigant. In addition, the positive relationship between COVID-19
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transmission and production line speed waivers issued to poultry plants, particularly those

during the 2020 pandemic, is notable given that these waivers are intended for plants with

safe commercial production practices and microbial control.9 This finding suggests a need

for additional examination of this program.

An implication of this study is some aspects of large meat processing plants render them

especially susceptible to spreading respiratory viruses. One potential explanation is that

large plants simply entail more activity and employ more people. Because these plants

provide a central location for moving products, it is plausible that a linear increase in

the potential infected within the plant would entail a nonlinear response, owing to the

complex and exponential nature of disease transmission dynamics (Grassly and Fraser

2008). Another driver may be the large physical spaces where processing occurs. Larger

rooms tend to be louder and thus require more shouting (Borak 2020, and they may re-

quire stronger climate control, which, as we note in our introduction, may aggravate COVID-

19 spread. A larger space that employees must navigate in reaching their workstations

may also increase the number of workplace interactions.

More broadly, the finding that meatpacking plants may contribute to high levels of com-

munity spread underscores the potential negative public health externalities generated by

the industry, which may be attributable to industrial concentration, operating practices,

and labor conditions. Complicating this matter from an economic standpoint is the supply

chain choke point created by large plants disrupted by COVID-19, causing food shortages,

driving up prices, and incurring substantial upstream and downstream economic losses.

Cataloguing and addressing the underlying factors that produced this systemic risk in the

first place could not only strengthen the US food system in the face of COVID-19 and fu-

ture disruptions but also help illuminate analogous weak points in other industries and

supply chains.
9 In contrast, some plants receiving waivers recent Occupational Safety and Health violations (Thompson

and Berkowitz 2020).
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6 Figures

Figure 1: Mean county-level COVID-19 cases per thousand (top) and deaths per thou-
sand (bottom) over time based on proximity to a livestock facility. The band ‘0–50km’
excludes the county itself. Counties are categorized into non-overlapping, single categories
based on the nearest facility (e.g., if a county contains a livestock facility and is within 50
km of another facility outside the county, the county is coded ‘In county’ and not ‘0–50
km’. A visualization map is included in Fig. 3
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Figure 2: Shaded counties contain at least one beef or pork facility categorized by USDA
FSIS as processing more than one million pounds per month (Categories 4 and 5) or at
least one poultry facility categorized as processing more than ten million pounds per
month (Category 5).
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Figure 3: Map of counties in terms of proximity to livestock facilities based on county
geographic centroids. The band ‘0–50km’ excludes the county itself. Counties are catego-
rized into non-overlapping, single categories based on the nearest facility (e.g., if a county
contains a livestock facility and is within 50km of another facility outside the county, the
county is coded ‘In county’ and not ‘0–50km’.
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Figure 4: Relationship between COVID-19 cases and livestock plants owned or operated
by large meatpacking companies. Coe�cients are firm fixed e�ect coe�cients plotted from
Table 7. Error bars represent 95% confidence intervals.
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Figure 5: Graphs match COVID-19 pre-trends of control group (green lines) to counties
with plant shutdowns (red lines) based on percent growth in cases (weekly log di�erence)
in the two weeks prior to shutdown. Selected counties are in the top quartile of growth
rates among the 233 counties with livestock plants that did not have a plant shutdown.
For non-shutdown counties, week 0 is assigned to the mean shutdown date, April 22, 2020.
Panels A and B plot coe�cients from a panel regression where counties are interacted with
the weekly event index in terms of percent growth in cases (A) and change in case rates
per 1000 (B). Estimates are relative to the baseline trend across all counties. One week
prior (week -1) is omitted as the reference level. Models control for stay-at-home orders
at the state level and include a fixed e�ect for each county. Error bars reflect a 95% con-
fidence interval. Panels C and D are daily line charts of the mean values of each group in
terms of percent case growth and change in case rate, respectively. Grey shaded bars re-
flect the estimated period when the e�ect of closing a plant would have been reflected in
cases (1-3 weeks after) given that incubation periods may last up to 14 days) (Baud 2020).
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Figure 6: Comparisons of change in weekly county-level COVID-19 case and death rates
across counties with livestock plants that temporarily shut down due to COVID-19 con-
cerns, counties with plants that did not shut down, and counties without plants. For non-
shutdown counties, week 0 is assigned to be the median shutdown date, April 22, 2020.
Grey shaded bars reflect the estimated period when the e�ect of closing a plant would
have been reflected in cases (1-3 weeks after) given that incubation periods may last up to
14 days, and the time between symptom onset and death (4-8 weeks after) (Baud 2020).
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Figure 7: Relationship between COVID-19 incidence and livestock plants by distance
band on cases per thousand. Coe�cients plotted are based on a model that groups coun-
ties by distance from the geographical centroid of counties with a livestock facility, in addi-
tion to standard controls, state fixed e�ects, and standard errors are clustered at the state
level. ‘Single categorization’ means that bands are non-overlapping: if a county contains
a livestock facility and there is also a facility outside the county within 50km, the county
is coded ‘In county’ and not ‘0-50km’. ‘Multiple categorizations’ means that counties can
have facilities at multiple distance bands and thus be counted in several groups. For exam-
ple, a county located 25km away from one county with a livestock facility and 75km from
another will be included in both Categories 2 and 3. Error bars reflect a 95% confidence
interval.
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7 Tables
Table 1: Livestock facilities and county-level COVID-19 incidence

COVID-19 incidence per 1000 as of 2020-07-21

...... Case rate ...... ...... Death rate ......

(1) (2) (3) (4) (5) (6)

Livestock facility 4.49úúú 4.07úúú 5.98úúú 0.07úúú 0.07úúú 0.10úúú

(0.88) (0.80) (1.14) (0.02) (0.02) (0.02)

Plant count Level Level Binary Level Level Binary
Controls X X X X X X
State FE X X X X
Observations 3,032 3,032 3,032 3,032 3,032 3,032
R2 0.36 0.45 0.46 0.27 0.42 0.42

úp<0.1; úúp<0.05; úúúp<0.01
Regression model with cross-sectional county data. Dependent variable is COVID-19 cases (models 1 to 3)

and deaths (models 4 to 6) per thousand. Livestock facility level is the sum of beef, pork, and poultry
plants in the county. Livestock facility binary denotes a binary variable representing whether a county has

at least one livestock plant. Controls include income per capita (log), density (population per built-up
land area) and density squared, the number of freight miles traveled, timing of first case (index of Julian

day of first confirmed case), as well as proportions of the county population over the age of 70, Black,
Hispanic, public transit commuters, uninsured, frontline workers, or in nursing homes or prisons.

State-level fixed e�ects are included in models 2, 3, 5, and 6. Standard errors are clustered at the state
level.
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Table 2: Livestock facilities and county-level COVID-19 incidence, all covariates

COVID-19 incidence per 1000 as of 2020-07-21

...... Case rate ...... ...... Death rate ......

(1) (2) (3) (4)

Livestock facility 4.49úúú (0.88) 4.07úúú (0.80) 0.07úúú (0.02) 0.07úúú (0.02)
Income per capita (log) ≠0.11 (1.06) 1.04 (0.71) 0.06 (0.06) 0.04 (0.03)
Density ≠0.15 (0.67) 0.70 (0.57) 0.005 (0.04) ≠0.01 (0.02)
Density-squared 0.02 (0.07) ≠0.06 (0.05) 0.0003 (0.01) 0.01úú (0.002)
Timing first case ≠7.58úúú (1.58) ≠5.73úúú (1.29) ≠0.25úúú (0.06) ≠0.19úúú (0.04)
Elderly proportion ≠18.14 (12.13) ≠16.05 (9.87) 0.91úú (0.36) 1.10úúú (0.32)
Black proportion 24.64úúú (3.02) 19.27úúú (2.57) 1.00úúú (0.14) 0.93úúú (0.17)
Hispanic proportion 12.76úúú (3.85) 21.04úúú (6.66) 0.06 (0.07) 0.18 (0.12)
Freight intensity ≠0.19úú (0.08) ≠0.07 (0.07) ≠0.001 (0.01) 0.01 (0.01)
Public transit proportion 0.22 (0.14) 0.18 (0.13) 0.03úúú (0.01) 0.02úúú (0.01)
Household size 2.89ú (1.56) 1.41 (1.59) 0.21úúú (0.07) 0.17úúú (0.06)
Nursing home proportion 115.64úú (47.73) 49.60 (30.79) 6.39úúú (1.86) 4.49úúú (1.48)
Prisoner proportion 15.44 (9.82) 22.13úú (10.08) ≠0.12 (0.23) ≠0.08 (0.20)
Uninsured proportion 10.67 (8.27) 25.45úúú (7.19) ≠0.19 (0.23) 0.31 (0.25)
Frontline proportion 0.60 (1.24) 1.12 (1.24) ≠0.04 (0.05) ≠0.04 (0.05)

Plant count Level Level Level Level
Controls X X X X
State FE X X
Observations 3,032 3,032 3,032 3,032
R2 0.36 0.45 0.27 0.42

úp<0.1; úúp<0.05; úúúp<0.01

Expanded presentation of baseline model in Table 1 with all control covariates shown.
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Table 3: Livestock facilities and COVID-19 arrival timing

Timing of COVID-19 emergence, as of 2020-07-21

Days to 1 case Days to 10 cases

(1) (2) (3) (4) (5) (6)

Livestock facility ≠1.11úú ≠1.12úú ≠1.08 ≠5.12úúú ≠4.65úúú ≠6.71úúú

(0.44) (0.42) (0.66) (1.03) (1.08) (1.54)

Plant Level Level Binary Level Level Binary
Controls X X X X X X
State FE X X X X
Observations 3,032 3,032 3,032 2,768 2,768 2,768
R2 0.47 0.51 0.51 0.51 0.57 0.58

Note: úp<0.1; úúp<0.05; úúúp<0.01

Regression model estimating the relationship between a livestock facility and the number of days elapsed
since January 1, 2020 (Julian day) until the first confirmed case (Models 1-3) and the 10th case (Models
4-6). Livestock facility level is the sum of beef, pork, and poultry plants in the county. Livestock facility
binary denotes a binary variable representing whether a county has at least one livestock plant. Controls

include income per capita (log), density (population per built-up land area) and density squared, the
number of freight miles traveled, as well as proportions of the county population over the age of 70, Black,

Hispanic, public transit commuters, uninsured, frontline workers, or in nursing homes or prisons.
State-level fixed e�ects are included in Models 2, 3, 5, and 6. Standard errors are clustered at the state

level.
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Table 4: Livestock facility by type and county-level COVID-19 incidence

COVID-19 incidence per 1000 as of 2020-07-21

...... Case rate ...... ...... Death rate ......

(1) (2) (3) (4) (5) (6)

Beef plants 3.89úú 3.68úú 4.79úú 0.11úúú 0.11úúú 0.14úúú

(1.67) (1.47) (2.06) (0.04) (0.03) (0.04)

Pork plants 6.58úúú 6.00úúú 7.26úúú 0.07ú 0.07úú 0.09úú

(2.28) (1.82) (2.40) (0.04) (0.03) (0.04)

Poultry plants 3.68úúú 3.18úúú 3.38úúú 0.04úú 0.05úú 0.06úú

(0.71) (0.71) (0.83) (0.02) (0.02) (0.03)

Plant count Level Level Binary Level Level Binary
Controls X X X X X X
State FE X X X X
Observations 3,032 3,032 3,032 3,032 3,032 3,032
R2 0.36 0.46 0.46 0.27 0.42 0.42

Note: úp<0.1; úúp<0.05; úúúp<0.01
Regression model with cross-sectional county data. Dependent variables are COVID-19 cases (Models 1-3)

and deaths (Models 4-6) per thousand. For ‘Level’, beef plants, pork plants, and poultry plants are the
number of the respective plants in a county. For ‘Binary’, dummy variables taking the value of one if a

county contains, respectively, the respective plant. Controls include income per capita (log), density
(population per built-up land area) and density squared, the number of freight miles traveled, timing of

first case (index of Julian day of first confirmed case), as well as proportions of the county population over
the age of 70, Black, Hispanic, public transit commuters, uninsured, frontline workers, or in nursing homes
or prisons. State fixed e�ects included in Models 2, 3, 5, and 6. Standard errors are clustered at the state

level.
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Table 5: Livestock facilities and county-level COVID-19 cases, by size

COVID-19 incidence per 1000 as of 2020-07-21

...... Case rate ...... ...... Death rate ......

(1) (2) (3) (4)

Livestock facility (small) ≠0.32 ≠0.04 0.02 0.004
(0.23) (0.17) (0.01) (0.01)

Livestock facility (medium) 1.02 0.98 0.07 0.06ú

(0.87) (0.84) (0.04) (0.04)

Livestock facility (large) 6.06úúú 5.48úúú 0.06úúú 0.07úúú

(1.18) (1.14) (0.02) (0.02)

Controls X X X X
State FE X X
Observations 3,032 3,032 3,032 3,032
R2 0.37 0.46 0.27 0.42

Note: úp<0.1; úúp<0.05; úúúp<0.01
Regression model with cross-sectional county data. Dependent variables are COVID-19 cases (Models 1-2)
and deaths (Models 3-4) per thousand. Livestock facilities are the sum of beef, pork, and poultry plants in

the county, split into three separate variables, small, medium, and large, which take the value of 1 for
USDA FSIS Categories 3, 4, and 5, respectively. Controls include income per capita (log), density

(population per built-up land area) and density squared, the number of freight miles traveled, timing of
first case (index of Julian day of first confirmed case), as well as proportions of the county population over
the age of 70, Black, Hispanic, public transit commuters, uninsured, frontline workers, or in nursing homes

or prisons. State-level fixed e�ects are included in Models 2 and 4. Standard errors are clustered at the
state level.
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Table 6: Poultry facility and county-level COVID-19 incidence, by line speed waiver

COVID-19 incidence per 1000 as of 2020-07-21

...... Case rate ...... ...... Death rate ......

(1) (2) (3) (4)

Poultry plant 2.422úúú 2.729úúú 0.049 0.057úú

(0.748) (0.825) (0.030) (0.027)

Poultry plant:Waivers 2.426úú 0.028
(1.022) (0.029)

Poultry plant:Waivers 2020 4.895úú 0.021
(2.113) (0.046)

Plant count Binary Binary Binary Binary
Beef-pork controls X X X X
Controls X X X X
State FE X X X X
Observations 3,032 3,032 3,032 3,032
R2 0.458 0.458 0.420 0.420

úp<0.1; úúp<0.05; úúúp<0.01
Regression model with cross-sectional county data. Dependent variables are COVID-19 cases (Models 1-2)
and deaths (Models 3-4) per thousand. Livestock plants (poultry, beef, and pork included separately) are
indicated by a binary variable representing whether a county has at least one such plant. Beef and pork
plants are controlled for but omitted from the output. Poultry plant:Waivers denotes the interaction of
poultry plant counties and USDA line speed waivers. Poultry plant:Waivers 2020 is limited to waivers

granted in 2020. Controls include income per capita (log), density (population per built-up land area) and
density squared, the number of freight miles traveled, timing of first case (index of Julian day of first

confirmed case), as well as proportions of the county population over the age of 70, Black, Hispanic, public
transit commuters, uninsured, frontline workers, or in nursing homes or prisons. State-level fixed e�ects

are included in all models. Standard errors are clustered at the state level.
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Table 7: Livestock facilities and county-level COVID-19 cases, by company

COVID-19 incidence per 1000 as of 2020-07-21

...... Case rate ...... ...... Death rate ......

(1) (2) (3) (4)

National Beef 18.09úúú 16.32úú 0.31 0.27
(6.62) (6.09) (0.21) (0.21)

JBS 8.61úúú 7.47úúú 0.08 0.09ú

(2.41) (2.48) (0.05) (0.05)

Tyson 7.71úúú 6.71úúú 0.07 0.10úúú

(2.33) (2.15) (0.05) (0.04)

Cargill 5.71úú 5.40úúú 0.05 0.09
(2.25) (1.90) (0.07) (0.07)

Smithfield 5.16úú 4.65úúú ≠0.04 ≠0.03
(2.20) (1.63) (0.05) (0.03)

Other 3.68úúú 3.28úúú 0.08úú 0.07úú

(0.78) (0.76) (0.03) (0.03)

Plant count Binary Binary Binary Binary
Controls X X X X
State FE X X
Observations 3,032 3,032 3,032 3,032
R2 0.37 0.46 0.27 0.42

Note: úp<0.1; úúp<0.05; úúúp<0.01
Regression model with cross-sectional county data. Dependent variables are COVID-19 cases (Models 1-2)

and deaths (Models 3-4) per thousand. Covariates include a factor variable of counties with a livestock
plant (USDA FSIS category 4 and 5) by company ownership, implicitly a binary. In the rare occurrence
that multiple companies have plants in the same county, the county is assigned to the company with less

total plants. ’Other’ refers to all counties with livestock plants not owned by any of the companies shown.
The omitted category is counties without livestock plants. Controls include income per capita (log),

density (population per built-up land area) and density squared, the number of freight miles traveled,
timing of first case (index of Julian day of first confirmed case), as well as proportions of the county

population over the age of 70, Black, Hispanic, public transit commuters, uninsured, frontline workers, or
in nursing homes or prisons. State-level fixed e�ects are included in Models 2 and 4. Standard errors are

clustered at the state level.
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Table 8: Livestock facility and mobility patterns from Google

Change in time use from pre-March 13 baseline

Workplace Retail and recreation

(1) (2) (3) (4)

Livestock facility 0.97úúú 0.82úúú 0.49ú 0.50ú

(0.22) (0.21) (0.28) (0.27)

Controls X X X X
State FE X X
Observations 2,826 2,826 2,721 2,721
R2 0.33 0.41 0.20 0.27

Note: úp<0.1; úúp<0.05; úúúp<0.01
Regression model with cross-sectional county data. Dependent variable is the average change in Google’s
mobility-based index of people’s time spent visiting workplaces (Models 1-2) and engaging in retail and
recreation activities (Models 3-4) in the four weeks following March 13, 2020, relative to a baseline level
set prior to March 13, 2020. Livestock facility is the sum of beef, pork, and poultry plants in the county.

Controls include income per capita (log), density (population per built-up land area) and density squared,
the number of freight miles traveled, timing of first case (index of Julian day of first confirmed case), as

well as proportions of the county population over the age of 70, Black, Hispanic, public transit commuters,
uninsured, frontline workers, or in nursing homes or prisons. Some counties do not have mobility estimates

from Google during this time period due to lack of raw data. State-level fixed e�ects are included in
Models 2 and 4. Standard errors are clustered at the state level.
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Table 9: COVID-19 testing, livestock facilities, and COVID-19 incidence

Dependent variable:

...... Case rate ...... ...... Death rate ......

(1) (2) (3) (4) (5) (6) (7) (8)

Livestock facility 4.07úúú 4.30úúú 4.19úúú 4.19úúú 0.07úúú 0.06úú 0.06úú 0.06úú

(0.80) (1.23) (1.21) (1.20) (0.02) (0.03) (0.03) (0.03)

Testing per 1000 0.01ú 0.01ú 0.0001úú 0.0001úú

(0.003) (0.003) (0.0000) (0.0000)

Positivity rate 0.86úú 0.02úú

(0.38) (0.01)

Controls X X X X X X X X
State FE X X X X X X X X
Observations 3,032 1,773 1,773 1,773 3,032 1,773 1,773 1,773
R2 0.45 0.44 0.45 0.45 0.42 0.44 0.44 0.44

úp<0.1; úúp<0.05; úúúp<0.01

Regression model with cross-sectional county-level data from 31 states with livestock facilities and
available data on county-level testing gathered from 31 state health departments. Dependent variables are
COVID-19 cases (Models 1-4) and deaths (Models 5-8) per thousand in these states. Livestock facility is
the sum of beef, pork, and poultry plants in the county. Testing per thousand represents the number of

tests taken per thousand people in these states as of July 14, 2020. Positivity rate is total cases divided by
total tests. Controls include income per capita (log), density (population per built-up land area) and
density squared, the number of freight miles traveled, timing of first case (index of Julian day of first

confirmed case), as well as proportions of the county population over the age of 70, Black, Hispanic, public
transit commuters, uninsured, frontline workers, or in nursing homes or prisons. State-level fixed e�ects

are included in all models. Standard errors are clustered at the state level.
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Table 10: Manufacturing and county-level COVID-19 cases

Dependent variable:

COVID-19 cases per 1000 as of 2020-07-21

(1) (2) (3) (4) (5) (6)

Livestock facility 4.49úúú 4.35úúú 4.24úúú 4.07úúú 4.08úúú 3.97úúú

(0.88) (0.35) (0.35) (0.80) (0.80) (0.79)

Manufacturing establishments 0.002ú ≠0.0004
(0.001) (0.001)

Manufacturing income share 5.46úúú 4.23
(1.43) (2.67)

Controls x x X X X X
State FE X X X
Observations 3,032 3,032 3,032 3,032 3,032 3,032
R2 0.36 0.37 0.38 0.45 0.45 0.46

Note: úp<0.1; úúp<0.05; úúúp<0.01

Regression model with cross-sectional county data. Dependent variable is COVID-19 cases per thousand.
Livestock facility is the sum of beef, pork, and poultry plants in the county. Manufacturing establishments
is the number of such establishments in a county, and manufacturing income share is a county’s share of
total income from manufacturing. Models 1 and 4 replicated from Table 1 for reference. Controls include
income per capita (log), density (population per built-up land area) and density squared, the number of

freight miles traveled, timing of first case (index of Julian day of first confirmed case), as well as
proportions of the county population over the age of 70, Black, Hispanic, public transit commuters,

uninsured, frontline workers, or in nursing homes or prisons. State fixed e�ects included in Models 4-6.
Standard errors are clustered at the state level.
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Table 11: Livestock facilities and county-level COVID-19 incidence, subset counties within
100km of plants

COVID-19 incidence per 1000 as of 2020-07-21

...... Case rate ...... ...... Death rate ......

(1) (2) (3) (4) (5) (6)

Livestock facility 5.27úúú 4.30úúú 4.82úúú 0.10úúú 0.09úúú 0.10úúú

(1.19) (1.16) (1.21) (0.03) (0.03) (0.03)

Plant count Level Level Binary Level Level Binary
Controls X X X X X X
State FE X X X X
Observations 1,187 1,187 1,187 1,187 1,187 1,187
R2 0.41 0.54 0.53 0.35 0.49 0.49

úp<0.1; úúp<0.05; úúúp<0.01
Relationship between livestock facilities and COVID-19 cases and deaths per thousand. Replicating the

baseline model in Table1 but only includes counties within 100km of a livestock facility.
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Table 12: Livestock facilities and county-level COVID-19 incidence, non-linear transforms

COVID-19 incidence per 1000 as of 2020-07-21
...... Case rate ...... ...... Death rate ......

(1) (2) (3) (4) (5) (6)

Livestock facility 4.07úúú 0.31úúú 0.32úúú 0.07úúú 0.06úúú 0.25úúú

(0.80) (0.05) (0.05) (0.02) (0.01) (0.05)

Mean rate 8.06 8.06 8.06 0.21 0.21 0.3

Plant count Level Level Level Level Level Level
Transform None IHS Log None IHS Log
Controls X X X X X X
State FE X X X X X X
Observations 3,032 3,032 3,032 3,032 3,032 2,080
R2 0.45 0.63 0.62 0.42 0.44 0.42

úp<0.1; úúp<0.05; úúúp<0.01
Relationship between livestock facilities and COVID-19 cases and deaths per thousand. All models

replicate the baseline model in Table 1 using nonlinear transformations. In relation to the dependent
variable, ‘IHS’ denotes the use of an inverse hyperbolic sine transformation, and ‘Log’ denotes the use of a

natural log (with zero values dropped).
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Table 13: Balance table of counties with and without livestock plants

Covariate No plant Plant t_value

Counties 2, 813 259
Case rate 7.20 16.20 9.99

Death rate 0.19 0.34 5.67
Income (log) 10.66 10.65 -0.68

Density 1.21 1.32 2.79
Elderly 0.13 0.12 -11.01
Black 0.10 0.13 3.43

Hispanic 0.09 0.15 5.56
Freight 0.39 0.94 1.99

Public transit 0.83 0.83 0.04
Household size 2.51 2.62 7.73

Nursing 0.01 0.01 -2.48
Prison 0.02 0.01 -2.49

Uninsured 0.10 0.11 2.36
Frontline 0.17 0.07 -17.89

Summary statistics of covariates used in all models. Columns ‘No plant’ and ‘Plant’ are mean covariate
values of counties with and without livestock plants, and ‘t-value’ denotes the test statistic to discern

whether there is a statistically significant di�erence.
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Table 14: IV - first stage: livestock plant location and livestock sales in 1959

Dependent variable:

Livestock facilities

(1) (2) (3) (4)

Livestock sales 1959 0.015úúú 0.016úúú 0.019úúú 0.018úúú

(0.002) (0.002) (0.002) (0.002)

F-stat 87.3 37.1 70.8 16.5
Controls X X
State FE X X
Observations 3,032 3,032 3,032 3,032
R2 0.076 0.109 0.123 0.144

Note: úp<0.1; úúp<0.05; úúúp<0.01
First stage IV regression model. Dependent variable is current number of livestock

facilities in a county, which is the sum of beef, pork, and poultry plants. Livestock sales
1959 is the county-level sales of agricultural livestock products in 1959 from the USDA

census. Models 2 and 4 include the same controls from the baseline specification, including
income per capita (log), density (population per built-up land area) and density squared,

the number of freight miles traveled, timing of first case (index of Julian day of first
confirmed case), as well as proportions of the county population over the age of 70, Black,
Hispanic, public transit commuters, uninsured, frontline workers, or in nursing homes or
prisons. State-level fixed e�ects included in Models 3-4. Standard errors clustered at the

state level.
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Table 15: Livestock facilities and county-level COVID-19 incidence, IV

Dependent variable:

...... Case rate ...... ...... Death rate ......

(1) (2) (3) (4)

Livestock facility 9.00úúú 6.12úúú 0.13ú 0.06
(2.80) (1.43) (0.07) (0.06)

Controls X X X X
State FE X X
Observations 3,032 3,032 3,032 3,032
R2 0.33 0.45 0.27 0.42

úp<0.1; úúp<0.05; úúúp<0.01
Regression model with an instrument for the presence of a livestock plant in a county using the county’s

livestock production value in 1959 in terms of animals sold. Livestock facility is the sum of beef, pork, and
poultry plants in the county. Controls include income per capita (log), density (population per built-up

land area) and density squared, number of freight miles traveled, timing of first case (index of Julian day
of first confirmed case), as well as proportions of the county population over the age of 70, Black,
Hispanic, public transit commuters, uninsured, frontline workers, or in nursing homes or prisons.

State-level fixed e�ects are included in Models 2 and 4. Standard errors are clustered at the state level.
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Table 16: Comparison of counties with and without livestock plants, by quartile of plant
propensity score

t-value q1 q2 q3 q4

Counties 758 758 758 758
Income (log) ≠0.42 -0.62 2.62 -1.41

Density -2.11 0.94 1.18 -1.21
Elderly -0.89 -0.36 0.88 -1.36
Black -4.42 2.32 0.35 -2.36

Hispanic 0.85 0.34 0.66 2.10
Freight 0.76 0.81 1.59 0.67

Public transit -1.83 1.14 -0.18 -1.69
Household size 0.90 1.72 -0.89 1.43

Nursing -0.25 0.14 -0.54 0.66
Prison -0.14 1.42 -2.28 -1.09

Uninsured -0.47 0.12 1.02 0.64
Frontline -1.74 1.02 -3.14 0.74

Plant # 3 31 63 161

Balance table for propensity score matching analysis. T-value denotes the test statistic to discern whether
there is a statistically significant di�erence in covariate values between counties with and without livestock

plants, grouped by quartile of plant propensity score.
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Table 17: Average values of subsample after using the nearest neighbor matching algo-
rithm

Covariate No plant Plant t_value

Counties 516 258
Income (log) 10.66 10.65 -0.46

Density 1.30 1.32 0.54
Elderly 0.11 0.12 0.33
Black 0.13 0.13 -0.18

Hispanic 0.13 0.15 0.95
Freight 0.69 0.94 0.87

Public transit 0.79 0.84 0.29
Household size 2.60 2.63 1.15

Nursing 0.01 0.01 -0.43
Prison 0.01 0.01 -0.01

Uninsured 0.10 0.11 0.57
Frontline 0.07 0.07 0.43

Summary statistics of matching datasets constructed using a nearest neighbors algorithm. Matching
performed here at a 2:1 ratio, reflected in there being twice the number of counties without a plant as
there are counties with one. Columns ‘No plant’ and ‘Plant’ are mean covariate values of counties with

and without livestock plants, and ‘t-value’ denotes the test statistic to discern whether there is a
statistically significant di�erence.
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Table 18: Livestock facilities and county-level COVID-19 incidence, matching methods

Dependent variable:

...... Case rate ...... ...... Death rate ......

(1) (2) (3) (4) (5) (6)

Livestock facility 4.07úúú 3.95úúú 3.73úúú 0.07úúú 0.07úúú 0.08úúú

(0.80) (0.74) (0.82) (0.02) (0.02) (0.02)

Method None Propensity NN None Propensity NN
Controls X X X X X X
State FE X X X X X X
Observations 3,032 3,032 774 3,032 3,032 774
R2 0.45 0.32 0.44 0.42 0.31 0.41

úp<0.1; úúp<0.05; úúúp<0.01

Regression model with cross-sectional county data using three di�erent empirical models. Dependent
variables are COVID-19 cases (Models 1-3) and deaths (Models 4-6) per thousand. Livestock facility is the

sum of beef, pork, and poultry plants in the county. Method ‘None’ replicates Models 2 and 5 of the
baseline specification in 1 for reference. Method ‘Propensity’ uses a propensity score matching model.

Method ‘NN’ uses of a nearest-neighbor score matching model. Controls include income per capita (log),
density (population per built-up land area) and density squared, the number of freight miles traveled,
timing of first case (index of Julian day of first confirmed case), as well as proportions of the county

population over the age of 70, Black, Hispanic, public transit commuters, uninsured, frontline workers, or
in nursing homes or prisons. State-level fixed e�ects are included in all models. Standard errors are

clustered at the state level.
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Table 19: Counties by distance band from livestock facility (multiple categorizations)

In county 0-50km 50-100km 100-150km 150-200km

Counties 259 832 1, 816 2, 219 2, 422
Pop total 51, 759, 204 86, 263, 276 208, 939, 193 237, 238, 573 248, 145, 926
Pop avg 199, 842 103, 682 115, 055 106, 912 102, 455
Density 1.32 1.37 1.33 1.30 1.28

Plants/county 1.24 0.28 0.16 0.13 0.12
Cases total 762, 534 1, 151, 008 2, 544, 241 2, 879, 670 2, 900, 812

Deaths total 19, 964 53, 266 96, 552 106, 441 106, 053
Case rate (county) 16.20 10.71 9.36 8.83 8.47

Case rate (pop) 14.73 13.34 12.18 12.14 11.69
Death rate (county) 0.34 0.28 0.25 0.23 0.22

Death rate (pop) 0.39 0.62 0.46 0.45 0.43

Table 20: Counties by distance band from livestock facility (single categorization)

In county 0-50km 50-100km 100-150km 150-200km

Counties 259 711 1, 027 517 219
Pop total 51, 759, 204 70, 351, 016 116, 349, 269 49, 127, 602 22, 349, 326
Pop avg 199, 842 98, 947 113, 290 95, 024 102, 052
Density 1.32 1.36 1.31 1.16 1.05

Cases total 762, 534 912, 749 1, 259, 490 509, 034 248, 417
Deaths total 19, 964 51, 331 42, 983 17, 547 5, 631

Case rate (county) 16.20 8.63 7.51 6.99 5.80
Case rate (pop) 14.73 12.97 10.83 10.36 11.12

Death rate (county) 0.34 0.24 0.21 0.16 0.14
Death rate (pop) 0.39 0.73 0.37 0.36 0.25
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Table 21: Counties by distance band from livestock facility (single categorization), NYC
dropped

In county 0-50km 50-100km 100-150km 150-200km

Counties 259 710 1, 027 517 219
Pop total 51, 759, 204 61, 952, 268 116, 349, 269 49, 127, 602 22, 349, 326
Pop avg 199, 842 87, 257 113, 290 95, 024 102, 052
Density 1.32 1.34 1.31 1.16 1.05

Cases total 762, 534 685, 970 1, 259, 490 509, 034 248, 417
Deaths total 19, 964 28, 436 42, 983 17, 547 5, 631

Case rate (county) 16.20 8.60 7.51 6.99 5.80
Case rate (pop) 14.73 11.07 10.83 10.36 11.12

Death rate (county) 0.34 0.24 0.21 0.16 0.14
Death rate (pop) 0.39 0.46 0.37 0.36 0.25

Summary statistics for counties grouped by distance from geographical centroid to the nearest livestock
facility. The band ‘0–50km’ excludes the county itself. ‘Multiple categorizations’ means that counties can

have facilities at multiple distance bands and thus be counted several times. For example, a county located
25km away from one county with a livestock facility and 75km from another will be included in both

Categories 2 and 3. ‘Single categorization’ means that bands are non-overlapping: if a county contains a
livestock facility and there is also a facility outside the county within 50km, the county is coded ‘In

county’ and not ‘0-50km’. Rows represent the number of counties in each band, total population, mean
population by county, density by county, number of plants per county, cumulative COVID-19 cases and
deaths, equal-weighted county-level mean case rate, population-weighted county-level mean case rate,
equal-weighted county-level mean death rate, and population-weighted county-level mean death rate.

Table 21 drops all counties within New York City from the summary.
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Table 22: Summary of baseline COVID-19 e�ects as of 2020-07-21

Summary Cases Deaths

COVID-19 incidence 3, 868, 989 141, 200
Avg rate (pop) 11.91 0.43
Avg rate (county) 7.96 0.20
Coef (level) 4.07 0.07
Coef (binary) 5.98 0.10
County percent e�ect (level) 0.51 0.37
County percent e�ect (binary) 0.75 0.50
Plants ————————-
Total plants 322 322
Counties with plants 259 259
Population of plant counties 51, 759, 204 51, 759, 204
Population (county avg) 199, 842 199, 842
Population per plant (county avg) 180, 168 180, 168
Impact ————————-
Total impact (level) 236, 265 4, 313
Total impact (binary) 309, 572 5, 228
Percent of total (level) 0.06 0.03
Percent of total (binary) 0.08 0.04

Table depicting the intermediate calculations used to arrive at estimates of the excess COVID-19 cases
and deaths in the US attributable to livestock processing. COVID-19 incidence is the cumulative number

of positive COVID-19 cases or deaths. Avg rate (pop) and avg rate (county) denote respectively the
population-weighted and equal-weighted county-level means of cases and deaths. Coef (level) and coef

(binary) denote respectively the calculated livestock plant coe�cient in the level and binary model
specifications. County percent e�ect presents the percentage increase in the calculated livestock plant
coe�cient over the equal-weighted county-level means. Total plants denotes the number of all plants

counted in our dataset. Counties with plants represents the number of counties in our analysis that have
at least one plant. Population of plant counties denotes the sum population of counties with plants.
Population (county avg) is the total population in these counties divided by the number of counties.

Population per plant (county avg) is calculated by dividing individual counties’ populations per plant by
the number of counties with at least one plant. Total impact (level) is the estimated number of excess

cases or deaths, calculated by multiplying the level coe�cient by the average population per plant,
multiplied by the total plants. Total impact (binary) is the estimated number of excess cases or deaths,
calculated by multiplying the binary coe�cient by the average population per county, multiplied by the

total number of counties. Percent of total for level and binary specifications are the ratio of the total
impact calculated to the total number of cases or deaths.
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